Mineral nitrogen distribution in a paddy soil profile

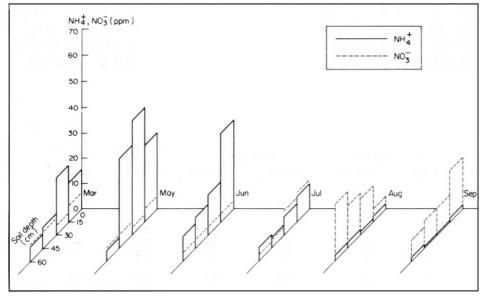
F. R. Pedrazzini, C. N. R. Institute of Soil Chemistry, Via Corridoni, 78, 56100 – Pisa, Italy

Monthly recordings of NH₄⁺-N and NO₃-N were made in soil profiles of four commercial fields during the rice growing season.

Soil samples were collected at the end of Mar 1981 and at monthly intervals from May through Sep at 0-15, 15-30, 30-45, and 45-60 cm depths.

Rice fields, continuously flooded until Aug, were located near Mortara (Pavia, Italy) in the middle of a region where, during 1979, rice production totaled 288.500 t on 54.381 ha.

Fields had different soil characteristics, fertilization rates, and management


(see table), but they showed a homogeneous rate of mineral nitrogen use. Commercial fields are usually fertilized before flooding and about 1 month after flooding. Fertilizers are scattered on the soil surface.

Ammonium was the dominant form of inorganic nitrogen in the soil during the first half of the rice growing season. Levels were higher on the surface and lower at the 45-60 cm depth (see figure).

Soil analysis and dates and kind of cultural practices, Mortara, Italy.

Field	Soil pH	% sand	% silt	% clay	Cation exchange capacity (meq/100 g)	Organic matter (%		Flooding date	Seeding date	Basal application ^a (kg/ha)	Topdressing (kg/ha) and date
Giarre I	4.4	87.6	7.6	5.2	11.9	2.06	1	May 81	4 Apr 81	150 K 90 P 70 N	30 N 5 Jun 81
Giarre II	5.7	78.1	12.3	6.7	13.4	2.2	17	Apr 81	21 Apr 81	60 K 40 P 50 N	20 N 18 May 81
Mede	5.8	63.0	21.4	15.4	18.7	2.4	29	Mar 81	13 Apr 81	40 K 46 P 49 N	15 K 15 P 70 N 2 May 81
Campalestro	5.4	77.5	13.7	8.8	17.4	1.8	13	Apr 81	21 Apr 81	130 K 50 P 50 N	70 N 2 May 81

^aFor nitrogen fertilization, the following compounds in granular form were used: urea in Giarre I, CaCN₂ and (NH₄)₂SO₄ in Giarre II and Campalestro, CaCN₂, (NH₄)₂SO₄, and urea in Mede.

Ammonium and nitrate content in a paddy soil profile during rice culture at Mortara, Italy.

After June, NH₄⁺-N decreased and NO₃⁻-N increased, perhaps because of NH₄⁺-N oxidation in the surface aerobic layer.

During Aug and Sep very low levels of NH₄⁺-N were detected in the soil and nitrate content increased. This was related to field drainage, and the consequent increase in soil oxygen content which encouraged NH⁺₄-N oxidation to NO₃-N.

During Aug, NO₃-N accumulated in lower soil depths and in Sep higher NO₃-N content was found in the surface layer, which indicates a possible nitrate reduction in the soil depth. Moreover, relative NO₃-N abundance in the surface layer at the end of the rice growing season could have led to nitrate leaching during autumn rainfall. □

The International Rice Research Newsletter (IRRN) invites all scientist to contribute concise summaries of significant rice research for publication. Contributions should be limited to one or two pages and no more than two short tables, figures, or photographs. Contributions are subject to editing and abridgement to meet space limitations. Authors will be identified by name, title, and research organization.