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Abstract—Cyber-Physical Systems constitute one of the core
concepts in Industry 4.0 aiming at realizing production systems
that combine the efforts of human workers, robots, and intelligent
entities. This is particularly crucial in Human-Robot Collab-
oration manufacturing where a tight peer-to-peer interaction
between humans and intelligent autonomous robots is necessary.
The work proposes the integration of novel Artificial Intelligence
technologies to enhance the flexibility and adaptability of collabo-
rative robots. The integrated functionalities allow a collaborative
robot to autonomously recognize the tasks a human worker
performs, and accordingly adapt its behavior. The approach is
deployed on a real HRC scenario showing the functioning of the
developed cognitive capabilities and the increased flexibility of
resulting collaborations.

Index Terms—Human-Robot Collaboration, Robot Perception,
Knowledge Representation and Reasoning, Automated Planning

I. INTRODUCTION

Cyber-Physical Systems (CPS) constitute one of the core
concepts in Industry 4.0 whose aim is to push manufacturing
systems towards an ever tighter integration of computational
capabilities with physical processes and entities [1]. Con-
sidering an antropo-centric evolution of CPSs [2], research
should push coexistence and combination of skills of humans
and automation [3]. Modern and future CPSs should increas-
ingly take into account the human factor which is crucial to
design efficient, safe and acceptable synergetic interactions
between human and artificial actors [4]. This is especially
true in Human-Robot Collaboration (HRC) scenarios where
higher levels of flexibility and adaptability are necessary to
dynamically adapt control policies to production needs as well
as different skills and features of workers that take part in
collaborative processes [5], [6].

A symbiotic coexistence of human operators and au-
tonomous robots raises several technological challenges since
human behaviors are neither predictable nor controllable.

This work is partially supported by ShareWork project (H2020, European
Commission – G.A. 820807).

Classical control processes that usually rely on static models of
robot capabilities and production dynamics are today obsolete
[7]. Robot controllers require higher levels of flexibility and
adaptability to effectively support dynamic production envi-
ronments [8]. Human-Robot Interaction scenarios are intrin-
sically characterized by uncertainty due to the coexistence of
uncontrollable human agents and controllable artificial agents
[9]. Artificial Intelligence (AI) can play a role in endowing
controllers and thus robots with the cognitive skills needed to
effectively and reliably behave in such scenarios [10], [11].
Towards this goal, we are investigating the use of novel AI
technologies in HRC to allow collaborative robots to: (i)
perceive the environment [12], correctly interpret occurring
events and situations to build and maintain knowledge about
production contexts [13]; (ii) reason about their own capa-
bilities/skills and dynamically contextualize possible actions
according to the known state of a production scenario [14],
[15] and; (iii) autonomously decide how to interact with the
environment and other “actors” (i.e., human operators but even
other robots if necessary) in order to carry out tasks and
dynamically support production needs [16]–[18].

This paper presents an original integration of technologies
realized within a EU-funded research project, Sharework 1.
It describes the integration of novel AI-based perception,
representation and planning modules and their deployment
in a real-world HRC scenario. The main contribution is the
integration of AI-based modules that support the synthesis
of flexible behaviors by enhancing cognitive skills, decisional
autonomy and awareness of collaborative robots. A perception
module allows the robot to autonomously recognize objectives
of the environment and states/situations that are relevant with
respect to the production. A semantic module allows the robot
to internally represent production processes and reason about
tasks the worker and the robot itself could perform to achieve
desired objectives. A planning module allows the robot to au-

1https://sharework-project.eu



tonomously synthesize and execute actions that are necessary
to support collaborative processes, according to observations
and “triggers” received from the environment. Such generic
HRC control system is then deployed and demonstrated to be
effective in dealing with a realistic manufacturing scenario.

Section II provides a brief overview of the Sharework
project with a general description of the functionalities sup-
ported by the developed modules. Section III describes the
real-world HRC scenario considered in this work, and the
involved modules. It specifically describes with more details
the technologies behind these modules and their “tailoring”
to the needs of the scenario. Section IV describes the in-
tegration scheme and near-real-time deployment of modules
in the real-world scenario. This section aims at showing the
increased flexibility, awareness and autonomy provided to
the robot through the integration of the developed modules
and underlying AI technologies. Section V then concludes
the paper summarizing the contribution and discussing some
improvements and future developments.

II. THE SHAREWORK PROJECT

The Sharework project aims at developing an effective and
safe CPS system for anthropocentric Human Robot Collab-
oration with no fences. It defines a novel architecture made
of 15 software and hardware modules, supporting modularity
through a wide range of configurations in order to customize
the deployment according to the different and specific indus-
trial needs. This work specifically focuses on the integration
of the modules responsible for enhancing perception and
decisional capabilities of HRC cells.

A. Environment Cognition

The environment cognition module of Sharework combines
high-level and explainable AI (XAI), and artificial cognition
algorithms to enable any factory personnel to implement cog-
nition applications without knowledge about machine learning
in general. The module consists of multiple sub-modules appli-
cable to different industrial domains and application scenarios:
(i) To supervise and allocate tasks on a widespread work
space, typical workshop items are localized and classified with
unsupervised segmentation and deep learning techniques [12].
Training the neural networks is made lenient, as training data
is directly generated from the segmentation data, and may
therefore be applied with low effort on the work cell. Typical
items are screw drivers, wrenches, drills, or hammers. (ii)
To supervise collaborative screwing processes, another sub-
module allows to locate screws inserted into a work piece.
By applying XAI and an intuitive user interface, the screw
detection can be commissioned within five minutes2. XAI
means that the user may understand how the algorithm comes
to its conclusion. Therefore, we define a total five simple
features arranged in a Random Forest classifier [19].

All sub-modules are implemented in a cognition framework
[12] that, on the one hand, deals with accelerating computation

2https://www.youtube.com/watch?v=vNPjjKpIDWw

by applying efficient data structures such that all methodology
is available in real- or online-time depending on the use-
case. Fast computation is an inherent feature required to
allow further computation based on cognition data. On the
other hand, high-level AI and machine learning techniques
are wrapped for more lenient usage, which makes it easier for
untrained or personnel less knowledgeable in the methodical
background.

B. Hybrid Reasoning for Behavior Synthesis

The knowledge base module and the task planning module
of the Sharework architecture support hybrid reasoning capa-
bilities enhancing autonomy, flexibility and context awareness
of collaborative robots [17], [20].

The knowledge base serves as a centralized repository
aggregating and “abstracting” information gathered from other
modules to infer the current state of a HRC cell and production
processes. It interprets and refines knowledge about a col-
laborative production scenario using a domain ontology [21]
developed within Sharework, called SOHO [13]. This ontology
has been designed to characterize collaborative processes
according to three main synergetic perspectives, formalized
through contexts: (i) environment context; (ii) behavior context
and; (iii) production context. The task planning module en-
capsulate automated planning and execution capabilities [22],
[23] to dynamically synthesize robot and expected worker
behaviors and reliably carry out production processes. This
module specifically relies on the timeline-based planning for-
malism [24] and coordinates human and robot skills through
the synthesis of synchronized time-aware and controllability-
aware [25] behaviors (i.e., timelines) that take into account
both safety and efficiency of a collaborative process [18].

The tight integration of these two modules support higher
levels of flexibility and adaptability of the whole HRC cell
[14]. On the one hand it supports dynamic reconfiguration of
planning models according to the known physical configura-
tion of a HRC cells and skills/features of the “acting agents”
that take part to collaborative processes [5], [14], [15]. On the
other hand, it supports online detection of relevant situations
and events triggering automatic adaptation of robot behaviors.

III. THE GOIZPER USE CASE

The HRC scenario subject of this work takes into account
the shop-floor of a company offering differential and global
solutions in power transmission and spraying components. It
specifically considers a servo rotary table that is assembled
in seven fixed assembly stations. In each station there is an
operator performing a specific task of the assembly process.
All tasks are carried out manually, just using cranes and lifters
to transport the heavy components from one station to another.
The collaboration between the human operator and the robot
concerns two out of seven tasks of the rotary table assembly
process. Figure 1 shows part of the physical environment
(Figure 1(a)) and the workpiece (the rotary table) considered
in the current work (Figure 1(b)).



(a) (b) (c)

Fig. 1. Pictures (a) and (b) show the original scenario and the target workpiece. Picture (c) shows the scenario after the introduction of the cobot.

TABLE I
ROTARY TABLE BOLTS TIGHTENING STEP BY STEP TASK EXECUTION SEQUENCE

Step Operator Robot
1 Place the rotary table on the working station

Rest position2 Mount correct bit on the tightening tool
3 Select the robot program on the HMI
4

Put adhesive on bolts and insert them in the rotary table holes
Identify inserted bolts

5 Screw each bolt with required torque
6 Signal correct operations/errors to operator through the HMI

The introduction of collaborative robots in this scenario
aims to improve the working condition of operators by sup-
porting them in their most low added value and repetitive tasks
and in handling heavy parts. We thus specifically consider the
bolt tightening and torque measuring task, which in particular
is repetitive and alienating. Moreover, the ergonomic of the
operator is not always optimal when performing the manual
task, due to the wide area of the working station that needs to
be covered.

Figure 1(c) shows the obtained physical environment where
the working unit is equipped with a collaborative robot (an
UR10e robotic arm) integrated with an electric screwdriving
tool which allows to control the screwing torque. RGBD
cameras monitor the working environment, to ensure a safe
HRC, and one additional camera is mounted on the robotic arm
to have a clear view of the rotary table. Broadly speaking, the
process requires the human and the robot to “collaboratively”
perform a number (N = 16) of screwing operations of
bolts on the rotary table of Figure 1(b) (i.e., the workpiece).
Bolts are supposed to be covered with adhesive and then
placed by the worker on the rotary table while the robot
should dynamically “react” accordingly, by screwing those
that are “ready” with a required torque value (69 Nm). Table I
provides the detailed workflow of the assembly task performed
collaboratively between the human operator and the robot,
where tasks executed in parallel are indicated in the same row.

In this specific scenario, collaborative robotics is preferable
to a fully automated solution. This is because the presence
of the human operator is necessary to ensure the flexibility
of the process. A fully automated solution would have been
possible (for example implementing cooperation between two
robots, one that places the bolts and the second that screws
them), but this would have been a robotic process tailored to a

specific product, losing the level of flexibility required by the
end user. Moreover, a fully automated solution would have
required a significant increase in costs (having to purchase
many duplicate components, such as robot and tool), and a
much higher degree of implementation complexity, having to
take care, for example, of the coordination of movement of
two different robots. Since the task of placing the screws in
the rotary table is not heavy or ergonomically dangerous for
operators, the implementation of such a complex solution was
not considered justified and the collaborative solution proposed
in this document was preferred. In addition, the operator plays
an important role of supervisor of the whole process, by
continuously monitoring that the screwdriving tool applies the
required torque to tighten the bolts, role that could not be
substituted by an automatic process.

The key aspects of this scenario are the perception capabili-
ties required to automatically recognize the correct position of
the bolts and synchronization capabilities needed to recognize
opportunities of actions for the robot and synthesize robot
behaviors (i.e., screwing of bolts).

A. Deployment of Perception Capabilities
The main objective of the perception module is to detect

screw candidates and classify them into holes and screws.
Hence, the robot gains knowledge on where screwing actions
may be performed. For input, a camera is mounted concentri-
cally over the rotary disk, facing the main surface area (see
Figure 1(b)). Screw detection is based on tree-learning [19]
with a small number of features to maintain a certain level
of understandability [12]. The perception module is capable
of finding silver and black screws within varying lighting
conditions. To train the classifier, the user is consulted with a
GUI. First, images are taken using the camera. Then, screw
candidates are segmented using an underlying Hough Circle



Transform [26], and then presented to the user. The user then
decides whether the candidate is a screw, hole, or an erroneous
segmentation by pressing the according buttons. Using only
about 60 samples the classifier is trained successfully and
may be directly deployed in the application. Depending on
the lighting conditions an accuracy measure between 85.3%
and 94.7% is realized which is fully sufficient to perform
autonomous screwing in the use-case.

B. Production and Planning Knowledge

To achieve flexible and proactive production-level support,
the knowledge base encapsulates a model of production dy-
namics and tasks the human and the robot should perform.
The deployed knowledge base instantiates the general model
of the SOHO ontology [13] to contextualize production events
and human/robot skills. Production tasks characterizing “bolt
screwing” are in this case represented as synchronous collab-
orative operations [27], [28] (i.e., instances of the ontological
class SynchronousHRCTask). Each screwing operation
indeed requires the human and robot working on the same
target/workpiece (i.e., a specific part composing the whole
rotary table), following a strict temporal ordering in the
execution of their operations. The robot should start screwing
a bolt only after the worker has placed it on a hole of the
rotary table.

Considering the Taxonomy of Functions [29] integrated in
SOHO, each screwing task is decomposed into two func-
tions. As instance of SynchronousHRCTask, a human
function is executed before a robot function and they are
respectively: (i) a PickPlace function performed by the
worker to place a bolt on the workpiece; (ii) a Screw
function of the robot to actually tighten placed bolts. The
production procedure of the GOIZPER use case is encapsu-
lated into the knowledge base in shape of a decomposition
graph. This graph describes the hierarchical decomposition
of high-level production tasks (i.e., goals) into increasingly
simpler tasks that can be performed by the human and/or
by the robot. Specifically, the high-level ProductionGoal
rotary-table-assembly is decomposed into a number
of (complex) ConjunctiveTask, one for each screwing
task that can be performed. The leaves of the graph thus are
the functions (i.e., low-level primitive operations) the human
and the robot should perform.

The knowledge is used to configure the task planning mod-
ule [14] and automatically trigger production goals according
to detected events and current state of production. Production
goals entail either the execution of the whole process or part
of it like e.g., the execution of a single screwing task of a
specific bolt of the rotary table. In the considered scenario,
production goals concern single screwing tasks in order to
synthesize robot behaviors adapted to the observed behavior
of the worker. In particular, the planner further decomposes
Screw functions of the robot into the primitive motions and
tool commands (activation and deactivation of the screwdriver)
necessary to actually implement them and dynamically support
production. The developed task planner module encapsulates

the open-source framework PLATINUm 3 [30] and integrates
timeline-based planning and execution capabilities into ROS
through ROXANNE 4.

IV. ADAPTIVE COLLABORATION THROUGH LAYERED
PERCEPTION AND REASONING

The environment cognition, the knowledge base and the
task planner modules have been integrated into a ROS-based
control architecture in order to support the collaborative pro-
duction scenario depicted in Figure 1(c) 5. Figure 2 shows the
integration scheme of the developed modules. The modules
can be organized into two architectural levels. An environment-
aware level encapsulates ROS modules that directly interact
with the production environment abstracting data and execut-
ing skills. A production-aware level encapsulates ROS mod-
ules that contextualize detected information and synthesize
robot behaviors by taking into account production needs and
requirements of the considered scenario.

First the knowledge base module is initialized building a
knowledge graph based on standard semantic technologies
(OWL [31]). The knowledge base completely characterizes the
production scenario providing the whole architecture with a se-
mantic representation compliant with the SOHO ontology [13].
The knowledge base then is ready to interpret data received
from the environment cognition module and trigger suitable
production goals to the task planner module. The timeline-
based model of the task planner is automatically generated
from the knowledge base in order to operationally support
known production goals. Every time a goal is triggered by
the knowledge base, the task planner synthesizes plans whose
execution coordinates low-level skills of the robot issuing
suitable commands. As Figure 2 shows, the task planner in
this case dispatches commands to ROS nodes “exposing”
a functional interface for the robotic arm (i.e., the motion
planner) and the screwdriver (i.e., the screwdriver controller).
Execution feedback notifies the task planner about the correct
execution of issued commands or failures. Table II shows with
more details the actual topic and messages used to exchange
information between modules and to implement the design
cognitive control flow.

The scenario has been designed as ”reactive” where the
robot uses perception capabilities to autonomously react to
the observed behavior of the worker, deciding the task to
perform in order to support the collaborative process. The
worker behaves freely and applies the adhesive and places
one or more bolts to be screwed on the work piece according
to her/his preferences. The environment cognition’s processing
actions are performed on the pictures acquired by a camera
that is mounted directly on the robotic arm, ensuring that its
field of view includes the whole surface of the rotary table. The
example of an image taken by the camera and processed by
the environment cognition module is reported in Figure 3(a),

3https://github.com/pstlab/PLATINUm.git
4https://github.com/pstlab/roxanne rosjava.git
5All Sharework modules are compliant with ROS Melodic http://wiki.ros.

org/melodic



Fig. 2. Architectural view of the integrated Sharework modules. The knowledge base and the task planner are configured with a model of the GOIZPER
scenario. Every time the environment cognition detects some bolt to be screwed on the rotary table, it notifies the knowledge base. The knowledge base
contextualizes received data with respect to the know production procedure and triggers a production goal to the task planner. The task planner then synthesizes
and executes a suitable robot behavior by dispatching commands to the motion planner and the screwdriver controller.

TABLE II
ROS-BASED INTEGRATION DETAILS SHOWING TOPICS AND MESSAGES USED TO IMPLEMENT THE “CONTROL FLOW” OF FIGURE 2

ROS Node Node Input Node Output
Environment

Cognition - topic: /screw detector/screw to be tightened
msg: sharework cognition msgs/DetectionResult

Knowledge
Base

topic: /screw detector/screw to be tightened
msg: sharework cognition msgs/DetectionResult

topic: /sharework/taskplanner/request
msg: task planner interface msgs/TaskPlanningRequest

Task
Planner

topic: /sharework/taskplanner/request
msg: task planner interface msgs/TaskPlanningRequest

topic: /cartesian pose
msg: geometry msgs/Pose
topic: /sharework/taskplanner/goal
msg: task planner interface msgs/TaskExecutionRequest

Motion
Planner (*)

topic: /cartesian pose
msg: geometry msgs/Pose

topic: /motion result
msg: task planner interface msgs/MotionResult

ScrewDriver
Controller (*)

topic: /sharework/taskplanner/goal
msg: task planner interface msgs/TaskExecutionRequest

topic: /sharework/taskplanner/feedback/robot
msg: task planner interface msgs/TaskExecutionFeedback

(*) Messages on output topics are used by the the task planner as execution feedback of plans.

where the bolts detected by the algorithm on the surface of the
rotary table are marked with a green circle, and the holes with
a red square. In addition to autonomously recognizing the bolt
placement, the environment cognition module allows the HRC
cell to detect the physical location of the bolts placed by the
worker by extracting related geometric coordinates expressed
with respect to the camera frame.

Before the coordinates of the detected bolts are dispatched
to the knowledge base, they must be converted into the robot
reference system. The algorithm that performs the conversion
calculates the distance between the detected bolt and the center
of the rotary table in the camera frame and then converts it into
the robot frame. This solution was feasible since, as mentioned
above, the camera used to acquire pictures of the rotary table
was mounted on the robotic arm, making its absolute position
and orientation easily controllable. After the conversion is
performed for each detected screw, the translated positions are
dispatched to the knowledge base module which contextualizes
received data with respect to the known production procedures
and operational constraints.

This is done by taking into account the structure of known

production processes of the scenario but also the current state
of production. This means that for example, the knowledge
base knows bolts that have been screwed already and therefore
it would be able to validate data received from the envi-
ronment. Namely, the knowledge base would automatically
recognize false positives (i.e., notifications about bolts already
screwed) and avoid unnecessary operations. If the internal val-
idation of the knowledge base is successful, it asynchronously
triggers a planning goal signal to the task planning module in
order to synthesize robot tasks suitable to dynamically support
production. In this case, the task planner module receives
a goal specifying a list of bolts placed by the worker and
detected by the environment cognition module. The planner
synthesizes robot motions and screwing actions that are online
dispatched to the robot controller for their actual execution
(Figure 3(b) and Figure 3(c)) following the scheme of Figure 2
and Table II. In order to verify if the screwing action was
successful (i.e., the correct torque value was reached during the
tightening) the corresponding output of the electric screwdriver
is checked and sent as feedback to the task planner.



(a) (b) (c)
Fig. 3. Automatic execution of the bolt tightening and torque measuring task. The first picture (a) shows the automatic screw detection performed by the
perception module; the second two pictures (b and c) show the actual tightening process of one screw.

V. FINAL REMARKS AND FUTURE WORKS

This work shows the integration of perception, represen-
tation and reasoning capabilities into a ROS-based cognitive
control architecture to enhance flexibility and awareness of
HRC cells. Specifically the paper shows the deployment of
AI-based modules developed with the EU H2020 project
Sharework on a real-world production scenario. These modules
effectively support advanced cognitive control capabilities
allowing a HRC cell to: (i) autonomously detect and abstract
relevant events from the environment (i.e. placement of bolts);
(ii) contextualize gathered information and recognize opportu-
nity of actions according to known production needs, and; (iii)
synthesize suitable production tasks (i.e. bolt screwing tasks)
and coordinate robotic skills to implement the needed low-
level operations (i.e. robot motions and activation/deactivation
of the screwdriver). Future works will further generalize
the developed architecture by taking into account different
scenarios. They will consider also the integration of cognitive
capabilities necessary to evaluate safety constraints of a HRC
cell at different levels of abstraction and accordingly adapt
motions of the robot as well as implemented production tasks
and the resulting collaborative plans.
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