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Preamble 

Brain research has in recent years indisputably entered a new epoch, driven by substantial 
methodological advances and digitally enabled data integration and modelling at multiple scales – from 

molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with 

technology and computing. This new science of the brain combines high-quality basic research, data 

integration across multiple scales, a new culture of multidisciplinary large-scale collaboration and 
translation into applications. A systematic approach, as pioneered in Europe’s Human Brain Project 

(HBP), will be essential for meeting the pressing medical and technological challenges of the coming 

decade. The aims of this paper are to 

• develop a concept for the coming decade of digital brain research 
• discuss it with the research community at large, in order to identify points of convergence and 

common goals 

• provide a scientific framework for current and future development of EBRAINS, a research 

infrastructure resulting from the HBP’s work  

• inform and engage stakeholders, funding organizations and research institutions regarding 
future digital brain research 

• identify and address the transformational potential of comprehensive brain models for artificial 

intelligence, including machine learning and deep learning 

• outline a collaborative approach that integrates reflection, dialogues and societal engagement 

on ethical and societal opportunities and challenges as part of future neuroscience research  
While we do not claim that there is a ‘one-size-fits-all’ approach to addressing these aspects, we are 

convinced that discussions around the theme of digital brain research will help drive progress in the 

broader field of neuroscience. 

1. Introduction 

Research in the last two decades has yielded impressive progress in our understanding of the human 
brain. In confronting brain complexity, researchers have studied the brain at different levels of 

organization, from the processes at the level of single molecules, synapses, cells, and local circuits to 

the level of the brain as a whole organ with areas, nuclei and their networks, involved in a variety of 
brain functions but also dysfunction. Neurological disorders are the second leading cause of death after 

heart disease with 276 million DALYS89 (Disability-Adjusted Life-Years; Global Burden of Disease 

2019) (Feigin et al., 2019). In 2010, the total cost of brain disorders in Europe came to €798 billion 

(Olesen et al., 2012). To address such a challenge, we need to better understand the fundamentals of 
how the brain works. Hereby, we are inevitably confronted with the complexity of the organ and its 

sheer size but also with legitimate ethical and methodical limitations that do not allow all of the 

necessary datasets to be acquired directly from human material. This poses challenges for both empirical 
research and digital approaches to data analysis, artificial intelligence (AI), data-driven models and 

simulation.   

Combinations of different methods, such as structural and functional magnetic resonance imaging 
(fMRI), magnetoencephalography (MEG) or electroencephalography (EEG) have successfully been 

applied to identify biological correlates of vision, motor control and executive function. However, how 

precisely structure is translated into brain activity and function remains unknown. In addition to 

connections, we also need to understand the “semantics” of how the various brain regions converse with 
each other (Douglas & Martin, 2007). According to (Buzsáki, 2019), global and local oscillations 

constitute the ‘syntax’ for communication within the brain. 

For many brain diseases, mechanisms of genetic control have been elucidated, with concrete relevance 
for diagnostics and therapy. Further, molecular and cellular mechanisms of a number of signal 

transduction pathways have been deciphered. Nevertheless, we are still lacking important insights into 
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brain organisation, the relationship between brain structure, function, dynamics and behaviour, brain 

reorganisation during learning and sleep, as well as the conditions leading to brain disease and the 

requisites for maintenance of mental health. Moreover, the actual networks that produce cognition 
remain poorly understood. Speculation regarding the building of machines to simulate consciousness 

means that ‘the hard problem’ of neuroscience and the potential of using AI to decipher its organization 

are already part of neuroscience discourse (see e.g.,(Dehaene et al., 2017; Graziano, 2019)). 

While the multiscale architecture of the brain accounts for its resilience, adaptive capacity and 

computational power, this property also significantly contributes to the inter-individual variability found 

at all levels of brain organisation. The degree of variability itself varies depending on the level, brain 
region and other factors. Understanding the consequences of variability will ultimately lead to improved 

diagnostics and personalised therapies and will facilitate elucidation of the mechanisms of cognitive 

functions. 

Innovative neuroimaging, advances in microelectronics and optical methods have contributed in recent 

years to an understanding of brain function at ever-higher spatial and temporal resolution and the study 

of brain activity and function over ever-longer periods of time; further, they have allowed scientists to 

better capture the dynamics of molecular, synaptic and structural changes. At the same time, large 
cohorts of thousands of subjects have been described with extensive data sets, but at lower resolution; 

these have facilitated the identification of factors determining brain health and aging such as lifestyle 

and genetic makeup, as well as their interplay. Such empirical research has resulted in significant 

volumes of highly structured data.  

So, what questions can already be answered based on the current data and where is additional work 

needed? Sydney Brenner stated during his 2002 Nobel lecture, ‘Nature’s Gift to Science’(Brenner, 
2003): ‘We are drowning in a sea of data and starving for knowledge. The biological sciences have 

exploded, largely through our unprecedented power to accumulate descriptive facts ... We need to turn 

data into knowledge, and we need a framework to do it’. This view has also been challenged. For 

example, the research aims and methods used in individual laboratories are generally very diverse and 
often cannot be directly compared with each other. Moreover, critical data, with high-quality, rigorous 

quality control and provenance tracking (e.g., functional imaging data with simultaneously high spatial 

and temporal resolution and broad coverage including omics data), are clearly missing. 

Therefore, it has become clear that defining and achieving ambitious scientific goals will require close 

collaboration between laboratories with expertise in different areas of neuroscience and complimentary 

technical expertise, for example, specialists in image analysis, neuroanatomy, data analysis, 

computation, physiology, biomedicine, modelling, theory and computing. Several (neuro)ethical issues 
and questions regarding societal needs and value are being raised in this context. Recognition of this 

fact is leading to closer interaction between neuroscientists and researchers from humanities. Taken 

together, these developments are giving rise to more collaborative ways of research and are also serving 
to enhance multidisciplinary collaboration, which has consequences for the underlying methods and 

tools, as well as for how collaborations are organised and valued.  

Such close collaboration across different domains of brain research is a defining feature of big 
international projects like the HBP90. The HBP is a European Flagship project in the field of Future and 

Emerging Technologies. Started in 2013, it was one of the first large-scale research projects worldwide 

and played a pioneering role in transforming digital brain research into a discipline that is more 

collaborative, reproducible and ethically and socially responsible (Amunts et al., 2022). 

The HBP has developed foundations for scientific workflows that enable a FAIR (findable, accessible, 

interoperable and reusable (Wilkinson et al., 2016)) comparison among multi-scale, multi-species 

experimental data and theoretical and data-driven models (Eriksson et al., 2022; Schirner et al., 2022). 
To give a few examples, research in the project has led to new insights into the mechanisms of learning 

(Bellec et al., 2020; Cramer et al., 2020; Manninen et al., 2020; Göltz et al., 2021; Jordan et al., 2021; 

                                                
90 https://www.humanbrainproject.eu/en/ 
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Masoli et al., 2021; Stöckl & Maass, 2021; Deperrois et al., 2022; van den Bosch et al., 2022), visuo-

motor control (Abadía et al., 2021; Pearson et al., 2021), vision (van Vugt et al., 2018; Chen et al., 2020; 

Svanera et al., 2021),  consciousness (Demertzi et al., 2019; Lee et al., 2022), sleep (Le Van Quyen et 
al., 2016; Rosanova et al., 2018; Capone et al., 2019), spatial navigation (Bicanski & Burgess, 2018; 

Stoianov et al., 2018; Northoff et al., 2020; van Beest et al., 2021), predictive coding and perception 

(Oude Lohuis et al., 2022) as well as language (Dehaene et al., 2015) and has  resulted in new theoretical 
concepts and analysis methods. A special issue of the journal Neuron 91  was devoted to cognitive 

architectures in 2015. The aim was to bundle together key research for understanding and modelling 

human brain function, with many of the featured publications resulting from collaboration in the ramp-

up phase of the HBP (Dehaene et al., 2015). 

The HBP has also empowered the neuroscience community to take advantage of the most recent 

developments in computing, simulation and artificial intelligence (AI). Experimental data, 

computational models and tools, instruments and dedicated hardware such as neuromorphic systems 
have been created in the project and made available with the intention of significantly speeding up 

developments in brain medicine and research as well as providing a model for low-energy consumption 

for the semiconductor industry ("Big data needs a hardware revolution," 2018). The consortium has 
developed and is operating EBRAINS as a collaborative research platform with the aim of bringing 

brain research to the next level through digital tools and computation and of further developing 

applications in medicine and neuro-inspired technologies. EBRAINS is now part of the European 

Strategy Forum on Research Infrastructures Roadmap (ESFRI). ESFRI aims to support a coherent and 
strategy-led approach to policy-making on research infrastructures in Europe, and to facilitate 

multilateral initiatives leading to the better use and development of research infrastructures, at the EU 

and international levels. EBRAINS is being developed as a sustainable research infrastructure – by 

scientists for scientists.  

To address ethical and societal questions, the HBP is incorporating principles and practices of 

Responsible Research and Innovation (RRI) into the EBRAINS infrastructure through a multi-pronged 
approach aimed both at the governance and research levels. The goal is to anticipate, reflect on and 

undertake network-wide action on these and future neuroethical, philosophical and societal and legal 

challenges (Stahl et al., 2021). Elements include neuroethical reflection and research, proactive 

governance structures including foresight and public outreach and dialogue activities, data governance, 
diversity and equal opportunities research and support for proactively addressing issues on dual-use 

research of concern, misuse and commercialisation of EBRAINS research and its outcomes. 

Looking to the next decade, we here identify gaps in our knowledge of the brain based on what has been 
achieved and articulate research goals for the future. We are convinced that efforts towards achieving 

these goals will benefit from progress in digital brain research as well as recent developments at the 

interface of technology and computing; these aims will also profit from the integration of neuroscience 
with neuroethics and multidisciplinary collaboration that engages with ethical and societal questions of 

need, acceptability and desirability. 

 

2. Neuroscience: state of the art  

To understand where we are in neuroscience research, it is critical to consider where we have come 
from and also to look to the future. Modern neuroscience was born in the last two decades of the 19 th 

century, when the brain basically went from being regarded as an unstructured mass to being recognized 

as an intricate network of neurons specialized for different areas of the nervous system (DeFelipe, 2009; 

Mazzarello, 2010; Shepherd, 2015). New concepts on the segregation of the brain into areas, which are 
relevant for a certain function, gave rise to microstructural brain maps at the beginning of the 20th century 

(e.g., (Brodmann, 1909; Vogt & Vogt, 1919). An understanding of structure led to elucidation of 

                                                
91 https://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7 
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function, and the full-brain electroencephalograms of the 1930s paved the way for intracellular 

electrophysiological recordings in the 1950s and to a basic understanding of the physiology of neurons 

and synapses. In addition, the discovery of the concept of chemical neurotransmission and the 
subsequent pharmacological revolution in the 1950s had great implications for neurology and psychiatry 

(Carlsson et al., 1957) as well as for our basic understanding of how distributed computing networks 

like our brain can adapt flexibly to our changing world (Dayan, 2012). Explorations of the physiology 
of the sensory (mainly visual) and motor systems in the 1960s and 1970s, and parallel advances in their 

anatomy, provided valuable insights, giving rise to an updated view of the brain that we nevertheless 

now understand was somewhat naïve and simplistic (Shepherd MD, 2009). The 1980s saw great 
advances in our understanding of neuronal membrane biophysics and the functioning of receptors and 

ion channels, while in the 1990s the advent of full-brain imaging techniques kickstarted a period of 

intense progress. Novel techniques, including molecular biology, genetics, pharmacology, 

psychophysics, neuroimaging and computational neuroscience, in combination with electronics and 

computing, have progressively enriched brain studies (Finger, 1994). 

The beginning of the 21st century saw the development of new tools to control brain circuits such as 

optogenetics, which, through activation or silencing, for the first time allowed investigation of the role 
of specific neuronal types (Südhof, 2017; Deubner et al., 2019; Häusser, 2021; Emiliani et al., 2022). 

Novel high-resolution imaging techniques, such as two-photon calcium imaging employed in animal 

experiments, have vastly improved our understanding of cellular and subcellular physiology (Yang & 

Yuste, 2017; Toi et al., 2022). In parallel with two-photon imaging, wide-field calcium imaging emerged 
as a powerful tool in systems neuroscience, allowing recording from multiple brain regions 

simultaneously with a sufficient spatio-temporal resolution to resolve behaviourally relevant 

information (Cardin et al., 2020; Ren & Komiyama, 2021b). Recent development of single-cell 
transcriptomics together with electrophysiological characterization and morphological reconstructions 

have enabled researchers to obtain a solid basis of knowledge concerning the neuronal types in the 

mammalian brain (Fuzik et al., 2016; Gouwens et al., 2020).  

Researchers have proposed that global properties of stimuli could be encoded by neuronal 

synchronization (Brama et al., 2015). For example the ‘binding by synchrony’ (Gray et al., 1989) theory 

held that features, like the color and motion of visual objects, are consolidated into coherent perceptions 

when the neurons encoding these features fire at the same time, with millisecond precision. Later studies 
demonstrated that binding by synchrony does not occur (Lamme & Spekreijse, 1998; Thiele & Stoner, 

2003; Roelfsema et al., 2004), but that features of objects are bound into coherent entities by object-

based attention which, at a neuronal level, increases neuronal firing rates (Roelfsema et al., 1998; Poort 
et al., 2012). Morphological and high-density recording tools for complete millisecond characterization 

of the circuits in animals carrying out specific tasks may be within reach in a few years for hippocampo-

cortical networks (Klausberger & Somogyi, 2008; Lisman et al., 2017), motor cortex (Li et al., 2015), 
the barrel cortex (Staiger & Petersen, 2021), the basalo-cortical network (Gombkoto et al., 2021)) and 

for some hypothalamic networks that organize sexual behaviors (Karigo et al., 2021).   

At the same time, our theoretical and conceptual understanding of particular brain functions has also 

become richer and more complex. Links between anatomy and function can be investigated at various 
scales, including at micro-, mesoscale, and macroscopic levels (Zaborszky, 2021). Microscale 

morphological features include myelo-, cyto-, receptor architecture, cell density, synapses, single neuron 

spike pattern, axonal and dendritic arborization pattern, spine density and gene expression, while 
physiological features range from ion channel biophysics to synaptic potentials or neuronal spike 

patterns. Studies have revealed area-specific synaptic organization, receptor-architecture and 

arborization patterns that show an unsuspected complexity of connections, though it is often unclear 

how these features contribute to specific processing differences within and between cortical layers and 

areal differences (Amunts et al., 2020; Haueis, 2021; Rockland, 2022).  

At the macroscale, researchers, using MRI, describe the brain in terms of  interconnected cortical areas, 

such  as the macroscale connectional pattern that underlies hierarchical processing in the visual system 
(Felleman & Van Essen, 1991). At this scale, the brain exhibits spontaneous and systematic patterns of 
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slow, low-frequency fluctuations in the blood oxygenation level-dependent (BOLD) signal measured in 

part in resting state functional connectivity studies (Raichle et al., 2001). However, the precise 

relationships between BOLD imaging and details of electrophysiological patterns are yet to be 
determined. Architectural types are hypothesized to determine hierarchical processing (Barbas, 2015; 

Vezoli et al., 2021).The connectivity of transmodal areas allows them to integrate multiple unimodal 

sensory representations into categorical and rule-based areas (Mesulam, 1998; Pandya et al., 2015). 
Progress has been made in attempting to bridge from this connectivity between areas to the neuronal 

complexity of components within areas. Specifically, the functional imaging BOLD signal used in many 

human studies correlates best to local energy consumption (Viswanathan & Freeman, 2007), likely 
reflecting dendritic activity and interneurons precisely mapped onto layer-spanning neurons and cortical 

layers. Such local microcircuit and dendritic activities serve important cognitive functions when 

comparing internal models and top-down expectations with bottom-up information flow. These local 

computations might crucially contribute to the cellular mechanisms of conscious processing (Aru et al., 
2020) and be missed in other electrical recording techniques measuring neuronal outputs. The 

understanding of layer-specific computation will be an important computational breakthrough that can 

be achieved by combining recording techniques sensitive to local microcircuit activity and dendritic 

activity (Larkum et al., 2018).  

The mesoscale has been defined at the level of microcircuits, where researchers describe the brain in 

terms of different cell types and their intrinsic connectivity and emergent dynamics. However, the 

relevant units remain a matter of debate. While in the 1970s, cortical columns of various sizes 
(minicolumns, hypercolumns, etc.) were thought to be functional modules (Szentágothai, 1978; Jones, 

1983; Mountcastle, 1997; Rockland, 2010), continued discussions propose a combination of basic 

circuitry types, including feedforward excitatory, recurrent feedback excitatory, feed-forward inhibitory, 
recurrent feedback inhibitory and inhibitory-inhibitory types (Nadasdy et al., 2006). These circuits may 

have been shaped through evolutionary pressure. Thus, it is important to understand the logic of evolving 

and maturing cortical circuits in order to identify specific circuits across species; this will tell us to what 
extent discrete anatomical features carry similar or dissimilar functions. An understanding of mesoscale 

circuits is important for properly linking micro- and macroscale descriptions of brain organization, in 

order to properly infer macroscale behavior from microscale features (Haueis, 2021). To this aim, wide-

field fluorescence imaging can bridge the gap between neural activity at micro and macro spatial scales 
and provide understanding regarding how local circuits relate to larger neural networks (Cardin et al., 

2020; Ren & Komiyama, 2021a).The limitations of single techniques can be mitigated by combining 

different recording modalities (Allegra Mascaro et al., 2015); fine examples are provided by recent 
studies using wide-field calcium imaging with other imaging methods, such as two-photon calcium 

imaging and fMRI (Barson et al., 2020; Lake et al., 2020). 

The emergence of this increasing complexity went hand in hand with the rise of computational 
conceptualization of mental phenomena and the success of artificial neural networks. David Marr (Marr, 

1982) recognized that, in addition to the level of neural implementation,  there are two further levels of 

organization: the algorithmic and the computational level. The need to involve computational 

neuroscience has grown in parallel with computational capabilities, which have expanded in the 21st 
century to the point where computational neuroscience has become an essential companion of both 

experimental and clinical studies. Apart from the modelling of concrete processes or computations, we 

can now consider more ambitious, larger and integrative models. These models will inevitably shed light 
on the brain’s cognitive architecture and contribute to the development of more general artificial 

intelligence. Brain theories integrate the computational models within conceptual frameworks and 

formulate principles of their functioning grounded in information theoretical frameworks such as Free 

Energy Principle (Friston et al., 2006) or dynamical systems theory such as Structured Flows on 
Manifolds (Jirsa & Sheheitli, 2022)). In addition to modelling biological information processing, 

computational approaches enable large and complex data sets to be analysed efficiently, supported by 

artificial neural networks, theory, modelling and simulation, allowing the linking of brain structure and 
function. Simulation at cellular-molecular-level and/or system models can facilitate the testing of 

specific hypotheses or prediction of properties of brain structures and dynamics, while integrating 
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findings from different researchers and obtained with various techniques. The integration of all 

experimental findings (models, texts, images, and analysis artefacts) into a unified knowledge 

framework is still necessary. This, in turn, is critical for translating findings from neuroscience into 
digital medicine, for proposing new strategies of intervention and for empowering neuro-inspired 

technologies that take advantage of a growing body of insights into perception, plasticity, learning and 

memory.  

Current state-of-the-art technologies to study processes across the entire spatio-temporal spectrum, from 

molecules to the whole brain and from milliseconds to lifespan, are typically tailored to a specific 

species, genus, family, order, class or phylum. Methods developed at different levels of the phylogenetic 
tree (e.g., invertebrates) are only slowly being adapted for usage at other levels in this tree (e.g., rodents, 

and primates). An annotated atlas of all cells and cell types has just been released for Drosophila (Li et 

al., 2020). Collaboration with the Drosophila research community, in the form of studies that probe how 

genetic specification of circuit changes result in functional changes at the macrolevel, would be highly 
welcome  (Handler et al., 2019). This information may be important for understanding how macrolevel 

state transitions may relate to individual differences in connectivity strengths (Taylor et al., 2022). Other 

examples are the exquisite reversible perturbation tools to dissect the functioning of micro- and macro-
circuits (e.g., optogenetics, chemogenetics, pathway-selective perturbations), which were first 

developed in algae and further refined in invertebrates. These tools have gone on to revolutionize rodent 

research (Kim et al., 2017) but have only recently begun to be integrated in primate studies (Han et al., 

2009; Gerits et al., 2012; Klink et al., 2021). Other species like zebrafish are being selectively employed 
to understand genetic or ontogenetic mechanisms that cannot be properly tested in mammals. Targeted 

perturbations can also be introduced by CRISPR/Cas9 into induced pluripotent stem cell models of 

neurons or brain organoids.  

Increasingly, neuroscientists not only study invertebrates, rodents and nonhuman primates, but also birds 

at the systems level, to understand deeper principles of vocalisation learning and cognition. Birds are 

being studied because, while their brains are vastly different to those of mammals, some of their 
cognitive abilities seem to be quite similar. Such comparisons can yield basic insights into the links 

between brain structure and function and offer the unprecedented chance of gaining deep conceptual 

insights into fundamental brain functions. These studies could potentially identify a core of identical 

neural mechanisms in the brains of birds and mammals that constitute hard-to-replace components of 
advanced cognition (Stacho et al., 2020). Large-scale comparative research, where no species should be 

considered ‘superior’ to the other, is key to understanding the neuronal mechanisms underlying normal 

and pathological human brain functioning. However, it is also important to keep in mind that there are 
fundamental structural and behavioral aspects that are unique to humans as well as to any other species. 

For example, the number and complexity of pyramidal cells and interneurons, as well as glial cells is 

among the most important differences that exist between human and other species (Berg et al., 2021; 
Fang et al., 2022). Thus, the functional significance of the human-specific structure should be dealt with 

by employing a range of specific strategies. Methods have now been developed that allow us to examine 

human brain organization and function at a level of detail similar to that we can obtain with animal 

models (Eyal et al., 2018; Montero-Crespo et al., 2020). By promoting comparative interdisciplinary 
studies involving the direct study of the human brain and those of other species, the HBP has made the 

challenge of better understanding the human brain a more surmountable one. 

This overview of modern neuroscience illustrates several important points: 1) Advances in neuroscience 
are not only the result of conceptual advances but are tightly linked to new methods and technologies. 

2) New techniques allow a better understanding of the brain, but at the same time open the door to a new 

level of complexity and open up new questions. 3) There is an increasing need for integration of 

knowledge and collaboration across different domains, scales and models of neuroscience research.  
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3. Instrumentation  

Research progress has always been tightly linked to the development of methods and instrumentation, 

and many new tools are facilitating profound insights into the brain’s structure and function; further, 

researchers also have at their disposal new capabilities and considerable computational power to analyse 
data and simulate brain function. For the first time in the history of neuroscience, we have a dedicated 

research infrastructure, EBRAINS92, which gathers data, tools, methods, and theories, which were 

previously fragmented and distributed between different labs, into a joint, digital, open, interoperable 

platform. This provides the technological basis and tools for a new approach to international, 
collaborative neuroscience and represents a large-scale interface for collaborative projects, e.g., 

organized in the International Brain Initiative (IBI)93. The NIH BRAIN Initiative is an important partner 

in this consortium, and is providing a broad range of innovative technologies, tools, methods and 
resources emerging from BRAIN-funded research (Litvina et al., 2019). Along the same lines, the 

European EBRA consortium developed a Shared European Research Agenda to increase the impact of 

brain research, advance basic, translational, and clinical brain research, improve the lives of persons 
with brain disorders, enable brain innovation and address societal and economic challenges in Europe 

and globally94.   

EBRAINS operates according to FAIR data principles and encompasses services for the sharing of 

neuroscience data and models, the multi-level atlas of the human, rodent and non-human primate brains, 
simulation, brain-inspired technologies, medical data analytics as well as dedicated tools for 

collaboration. In addition, EBRAINS incorporates innovative neuromorphic computing and allows for 

the execution of experiments in virtual robots. Fenix95, an infrastructure coordinated by experts from 
leading European centres for high-performance computing, greatly facilitates research with high 

computing and storage demands. Through Fenix, neuroscientists can also collaborate with other research 

communities to jointly develop new software and solutions in the broader domains of data- and 

computationally-intensive research.  

The EBRAINS research infrastructure attracts a broad community of users, ranging from experienced 

application/service developers and senior neuroscientists to young researchers and students. The 

infrastructure also interacts with numerous stakeholders, including funders, industry and patient 
organizations. Collaborative work and co-creation among stakeholders and users will be an essential 

part of the EBRAINS community and will guide the development and use of EBRAINS services to the 

benefit of society. The inherent diversity of the community is reflected in the heterogeneity of the 
EBRAINS research infrastructure services. The platform puts significant emphasis on the ease of use of 

its tools, and the interface complexity is balanced with user needs. This facilitates collaborative work, 

by linkage of combination of tools to form computational workflows that seek solutions to diverse 

problems (e.g.,(Fothergill et al., 2019; Eriksson et al., 2022; Wagner et al., 2022)). In that sense, 
EBRAINS is changing the research paradigm scientists use to study the brain, both for large-scale 

neuroscience and for individual projects. 

Computational workflows should be characterised by accessibility, shareability, automation, 
reproducibility, interoperability, portability and openness. In this context, of particular importance is the 

use of the Knowledge Graph96, which includes a multi-modal information representation as well as the 

following ‘independence’ features of EBRAINS workflows: 

 Independence of tools and services from the workflows in which they are used. The inputs of 
tools and services are parameterised so that they may produce different outputs depending on 

other tools and services with which they are (re-)used in diverse workflows.  

                                                
92 EBRAINS: https://ebrains.eu/ 

93 International Brain Initiative: https://www.internationalbraininitiative.org/ 

94 https://www.ebra.eu/sebra/ 

95 Fenix: https://fenix-ri.eu/  
96 https://search.kg.ebrains.eu/ 

https://ebrains.eu/
https://www.ebra.eu/sebra/
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 Independence of workflows from the underlying infrastructure in which they are executed:  the 

Common Workflow Language (CWL) 97  is being adopted for describing workflows in a 

common, standard fashion, offering transparent execution in infrastructures with different 

requirements, dependencies and configurations. 

 Independence of workflows from the underlying workflow management system. Several such 
systems are compatible with CWL for executing workflow steps, monitoring their execution, 

handling failures, automatically fetching logs and outputs and other relevant actions. 

4. What is missing?  

Deeper insights into brain function and dysfunction are not only now possible but are also urgently 

needed. Neurological and neuropsychiatric diseases create a significant burden for those directly 
affected, carers, relatives and society. Achieving progress in these areas is additionally motivated by 

philosophical questions of knowing and understanding our own nature, consciousness and cognition. 

These different perspectives have to come together for a better understanding the basis of brain health 
and the border between brain life and death. Ethical, philosophical, legal and regulatory, cultural and 

political challenges, which are intertwined, will need to be addressed concomitantly.  

Progress in brain medicine is tightly linked to advances in basic research, where some fundamental 
questions still remain open. To name but a few examples, the formation of memories and the basis of 

conscious perception, crossing the threshold of awareness, the interplay of electrical and molecular-

biochemical mechanisms of signal transduction at synapses, the role of glial cells in signal transduction 

and metabolism, the role of different brain states in the life-long reorganization of the synaptic structure 
or the mechanism of how cell assemblies generate a concrete cognitive function are all important 

processes that remain to be characterized. Moreover, the specific, dynamic consequences of variations 

in brain organisation, including cyto-, myelo-, chemoarchitecture and interregional connectivity, are not 
yet well understood, but likely ultimately influence the local ratio of excitatory to inhibitory cell activity, 

resulting in a variable balance across different brain regions (Deco et al., 2018; Demirtaş et al., 2019; 

Kringelbach et al., 2020; Jancke et al., 2022).  

Further, the need for interaction with the brain (both ‘reading’ and stimulation/manipulation) originally 

driven by clinical requirements, has opened novel and expanding fields such as the assessment of 

awareness in disorders of consciousness (e.g., unresponsive wakefulness syndrome, locked-in 

syndromes), brain-machine interfaces, cognitive enhancement, sensory restoration, and sense-
expanding technologies, which have relevance beyond the medical sector. There is also a need for brain 

recordings of high temporal and spatial resolution and activity control that are at the same time 

minimally or non-invasive. These technological advances require interdisciplinary work from 
neuroscience and areas such as micro- and nanoelectronics, optics, light-controlled drugs, nanorobotics, 

new materials (e.g., graphene), etc. It is to be anticipated that advances in security, biocompatibility, 

reactive changes in the brain (e.g., gliosis, cell death), signal-to-noise ratio, problems related to 

invasiveness (surgical, infections) and closed-loop control of brain function will be made soon; these 

advances will bring with them consequences in terms of legal and ethical issues. 

While progress in these fields has been impressive, a comprehensive understanding of underlying 

processes requires an integration of each system (e.g., visual, sensorimotor) with the rest of the brain, 
with the body and with the environment. Furthermore, it requires integration of molecular, subcellular, 

cellular and systems levels, to reach a ‘multiscale’ understanding that incorporates the emergent 

properties of all these complex relationships. All these levels act differently in different brain states, and 
they can also malfunction, resulting in a large variety of neurological and neuropsychiatric diseases. In 

order to understand the process holistically, one needs to understand all the individual steps, which is 

today in many cases difficult or impossible. It is  necessary to approach the individual steps at the 

                                                
97 https://www.commonwl.org/ 
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relevant level of abstraction and to develop a theory, and, in addition, to have access to the relevant data 

at the different levels of brain organisation through a multi-level atlas. 

The newest computational models are now able to integrate microscopic features, such as those of 
specific ion channels, synaptic receptors and neuromodulators, and evaluate their impact at the level of 

cellular subpopulations.  Recently, this approach was even extended to the whole brain level, by studying 

the effect of molecular targets of anaesthetics such as propofol, and their impact at the level of large-
scale activity. For example, changing K+ conductance, or the kinetics of inhibitory (GABA-A) synaptic 

receptors, can induce a switch of brain activity to synchronized slow-waves, similar to the effect of 

anaesthetics98. This is an example of an area where computational models can make a real contribution, 
through identifying mechanisms by which microscopic changes can be causally linked to macroscopic 

behaviour. It also illustrates that simulation can bridge multiple modalities and scales, a prerequisite for 

addressing multi-level brain organisation and function. 

Models are also tools to investigate how physiological mechanisms can be perverted in pathological 
conditions, e.g., where microscopic changes or modifications at the protein level can lead to aberrant 

behaviour or clinical symptoms (Mäki-Marttunen et al., 2019). Among the best understood cases are 

epilepsy disorders, where several microscopic targets have been identified, leading to abnormally high 
excitability. This may result in seizures at the behavioural level, which can be focal or generalised. In 

the case of seizures and their spatial profiles, concrete measurements can be precisely obtained by 

electrical recordings, and then used to generate and test realistic parameters in computational models 

that can then become particularly precise for these disorders. However, the brain signals of many other 
pathologies such as schizophrenia are not well understood, and computational models also have a 

potentially important role to play here – not only in identifying mechanisms but also in predicting 

potentially informative macroscopic and/or behavioral features. 

This type of interplay between experimental measurements and modelling predictions is very powerful 

and has led to impressive advances in understanding network-level phenomena such as oscillations, 

waves, etc. (Breakspear, 2017; Tort-Colet et al., 2021; Marder et al., 2022). The extension of such an 
approach to the level of the whole brain, however, is more challenging because of the high level of 

complexity involved, as well as the still-insufficient temporal and spatial resolution of non-invasive 

human imaging and recording techniques. Linking these models with imaging requires a deep 

biophysical understanding of the different signals involved. This is particularly relevant when 
computational models are used to quantitatively predict imaging data (e.g., patient data), and to build 

precise loops between computational models and clinical data, which should ultimately lead to a better 

understanding of neurological diseases. 

Box 1: Technological, methodical and computational challenges  

Brain research poses enormous technological and computational challenges for brain interfacing, 
analysis and mechanistic understanding, data interpretation and modelling of brain processing. To cite 

but some examples: 

 The complexity of data (multi-level brain organization, hierarchies, parallel information processing, 

redundancy, electrochemical processing, etc.). A key aspect of this complexity is the relationship 
between different scales that speaks to the level of granularity (and accompanying data) that is most 

apt for elucidating these relationships. One approach from physics is the notion of ‘renormalization’; 

namely, the conservation of laws from one scale to the next (e.g., sparse coupling, hierarchical 
dynamics, computational principles, etc.). In addition, measurements at all relevant scales are 

required to obtain information on how low-level states combine to generate states at higher level, 

and to account for neurodegeneracy, i.e., the propensity for different system configurations to 

support the same or similar functions.  

                                                
98work in progress in showcase 3 of the HBP: https://www.humanbrainproject.eu/en/follow-

hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/  
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 Many behaviours and some mechanisms are unique to humans, but a large proportion of data is not 

directly accessible and remains unknown (e.g., reactions at the cellular level cannot be measured in 

the living human brain). Comparative approaches as well as modelling and simulation are strategies 

to overcome this problem. 

 The specific spatial and temporal resolution of data sets, given the multiscale nature of brain spatial 
and temporal activity. Scale integration is challenging (from micro- and nanometre scales, through 

meso- to macroscale) as is the need to capture brain dynamics. This requires representation of 

different scales in a common framework according to the topography of the findings, i.e., in multi-
level and multi-scale atlas and models that accounts for the temporal domain. 

 The large size of ‘subsystems’ (e.g., large molecules such as neurotransmitter receptors with many 

atoms and complex, dynamic structures, large networks, whole-brain perspective as compared to 

regions of interest, large cohorts). 

 The wide spectrum of response patterns, dynamics, plasticity and behaviour of the system, not only 
in physiological but also in pathological conditions. 

 The changing nature of the system, which manifests plasticity at different spatial scales (from 

dendritic spines to large networks; processes such as spike adaptation, LTP (long-term potentiation), 

LTD (long-term depression)) or neurodegeneration after lesions.  

 The accuracy and reliability of predictions and analyses, applicable to individual subjects, which is 

particularly critical for translating applications into brain medicine. 

 The lack of a comprehensive brain theory, or a selection of competing theories.  

 The lack of integrability and documentation of extensive brain collections using modern 
experimental approaches, including those over 100 years old in Europe and worldwide, to make 

better use of historical brain preparations and data. These number in the many tens and hundreds of 

thousands of specimens and, for the most part, are not yet digitized and/or available via web-based 
tools. Some of them include rare species or brains obtained under conditions that cannot be 

reproduced any more (e.g., untreated patients with brain disorders). Making this digitally accessible 

for researchers worldwide would be of significant benefit to evolutionary, comparative and also 
clinical research; however, this aspiration is linked to significant challenges in data exchange and 

storage. 

5. Ethical and societal questions as drivers of responsible digital 

brain research 

Digital brain research should be driven by scientific curiosity and a desire to promote society’s best 

interests; further, it should reflect societal priorities, including a better understanding of the brain, the 

development of better diagnostic tools and more effective treatment of brain diseases. In this section, 
we briefly suggest how we can ensure that societal concerns are addressed and reflected in the research 

and its outcomes and describe approaches for guaranteeing that research and innovation processes are 

carried out responsibly. Future research programmes must integrate anticipatory practices, neuroethical 
reflection, multi-stakeholder and citizen engagement and support ongoing compliance with current 

legislation, regulation and good research practice. This includes careful consideration of the role of 

gender and diversity in data generation and governance of research, attention to potential dual-use 

research of concern or misuse of neuroscientific findings as well as reflection on the ethical sustainability 

of the research, its impact on human rights and its long-term societal and political implications.  

Additional social and legal issues to be considered in relation to digital brain research include those 

raised by data protection and General Data Protection Regulation-compliant data governance, social 
desirability, acceptability, and sustainability of digital brain models and issues raised by the possibility 

of advanced artificial cognition, brain-inspired computing and neurorobotics research, among others. In 

one example, the intersection of neuroscience and technology is likely to lead to new approaches to AI. 
Digital brain research must ensure adequate representation of diversity in data (sex/gender, age, 

ethnicity/race etc.) on brain health and brain architecture as well as in the involved scientists, 



Version 3, 14.11.2022, ‘living paper’, work in progress, initiated by the Science and Infrastructure Board, 
The Human Brain Project 

 

 
12 

 
 

practitioners, and stakeholders; this diversity will help ensure that the discipline remains vigilant to the 

much-discussed issues linked to the reproduction of biases in AI and can ensure that it proactively 

engages with new concerns that may arise from novel approaches, technologies and applications.  

The framework of Responsible Research and Innovation (RRI) defines a multidisciplinary approach to 

tackling the ethical, philosophical, societal, and regulatory challenges that accompany the vision of 

future digital brain research. Furthermore, RRI-inspired research and practices can be useful in building 
a future where responsible digital brain research is proactive in its recognition of existing and emerging 

societal and ethical challenges.  

Digital brain models are a key concept and model for future brain research. They raise significant 
philosophical questions (e.g., what are the limits of access of brain-machine interfaces to other brains?) 

(Evers & Sigman, 2013) and ethical and social issues (e.g., are there potentially problematic applications 

of the technology? Who is involved in the analysis and decisions on potential applications? How would 

we like to use such models in society?) (Evers & Salles, 2021). Conceptual clarity is a prerequisite for 
informed debates on the ethical issues raised by digital brain research. Approaching such questions 

through the framework of RRI includes reflection on the meaning and adequacy of the concepts 

involved, engagement and dialogue between different disciplines in neuroscience research, including 
philosophers, ethicists, and social scientists with societal stakeholders like policymakers, interest 

organisations and the public.  

  

6. Brain models as enablers of future brain research    

The accelerated development of information and communication technologies in the past two decades 

has not only supported the development of simulation and machine learning technologies, but has also 

made data and models interoperable within a common ecosystem leading to novel types of brain models. 

Directly tapping into the results stemming from basic research on the brain, brain simulation is expected 
to play a key role in elucidating essential aspects of brain processes (by demonstrating the capacity to 

reproduce them in silico) such as decision-making, sensorimotor integration, memory formation, etc. 

While mindful of some of the ethical and philosophical issues they raise, one may also envision the 
potential use of such models and simulations to address specific questions in brain research. From there, 

it is easy to envision how generic brain models can be customised to capture some of the distinct features 

of a given patient’s brain. For example, an individual’s structural and functional brain imaging data may 

constrain a generic digital brain model and render it subject-specific, thus enabling its use as a 
personalised analysis template or in silico simulation platform. A concrete instance of such an approach 

is the Virtual Epileptic Patient, wherein neuroimaging data inform in silico simulations of an epileptic 

patient’s brain to support diagnostic and therapeutic interventions, clinical decision-making and 
prediction of consequences (Jirsa et al., 2017). Multilevel atlas data represent another data source that 

can inform personalized brain models in instances where data cannot be directly obtained from that 

subject (Amunts et al., 2022 eNeuro). 

Such personalised ‘Virtual Brains’ can be seen as a stepping-stone towards something even more 

theoretically and technically, and possibly ethically challenging, but also better adapted to the ever-

changing nature of brain activity across all time scales. We see the logical culmination of personalised 

brain simulation in a model that is continuously informed and updated by real-world data, a type of 

model referred to as a ‘digital twin’.  

The concept of the ‘digital twin’ in this context needs to be carefully defined to avoid obscuring the 

limitations of the approach and to avoid creating unrealistic expectations of exact fidelity or even 
counterproductive hype (Evers & Salles, 2021). Historically, the concept of the digital twin originated 

in the realm of industry and manufacturing (Grieves & Vickers, 2017; Grieves, 2019), and comprises 

three components: the physical object, its virtual counterpart and the data flow back and forth between 
the two. Empirical data measured for the physical object are passed to the model, and information and 
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processes from the model are passed to the physical object. Today, the term ‘digital twin’ is widely used 

beyond its origins in the industrial domain and is now applied in many areas of research, including in 

biological and medical fields, although the concepts behind this term may differ.  

In manufacturing, the digital twin is more than a general simulation model. It is the specific instance of 

the general model for an individual object fed with empirical data from that specific object, e.g., an 

airplane engine in the industrial domain (Tao et al., 2019).  

One reading of a digital twin speaks to the dialectic between machine learning and generative modelling 

in AI. Generative models underwrite interpretability and explainability. Furthermore, they enable the 

move from ‘big data’ to ‘smart data’ (or more precisely selecting and integrating data features to 
maximise expected information gain). A generative model is a probabilistic specification of the mapping 

from (latent) causes to (measurable) consequences. In this sense, a digital twin can be taken as a formal 

specification of a model that is apt for generating the responses of a cell, subject, or cohort in question. 

Crucially, getting the generative model right affords an interpretable and mechanistic account of 
empirical data. Coincidentally, it casts the distinction between bottom-up and top-down modelling in 

terms of model fitting (i.e., inversion) and model selection (i.e., hypothesis), respectively. 

In constructing a ‘digital twin’ of a living organ, one is confronted by important challenges over and 
above those encountered when constructing the digital twin of an inanimate object. The brain is by far 

the most complex and multi-facetted organ. The question arises, to what extent can the digital twin 

concept be applied to neuroscience and the brain? The term digital twin, if applied 1:1 to the brain, could 

trigger major misunderstandings. Here, we want to contribute to the discussion by clearly defining the 
term in the specific context of brain science. We distinguish purpose-driven digital twins from the 

abstract idea of a full digital replica (or duplicate/copy) of the brain, the latter being the complete 

representation of all aspects of the brain at all levels (see Box 1). A full replica of the brain is neither 
achievable nor does it seem of clear practical use. When we speak of digital twins in what follows, we 

mean purpose-driven digital models generated for specific questions, unless explicitly indicated 

otherwise. The digital twin as discussed here should be understood as a virtual model designed to 
adequately represent an object or process that is constrained by data from its physical counterpart and 

that provides simulation data to guide choices and anticipate their consequences. The digital twin is thus 

a copy in the practical sense, usually associated with a model of a function or process, and its power lies 

in its usefulness in dealing with relevant problems faced by its physical counterpart at an appropriate 
level of abstraction. The aim is thus not to resemble the biological brain in as much detail and on as 

many levels as possible but rather to selectively reduce the amount of information to the data that has 

proven predictive for a specific (research) question – keeping the model as simple as possible but as 

complex as necessary.  

Even for a specialized model that aims to understand specific aspects of brain structure and dynamics 

or predict the progression of disease in a specific patient, one still needs a comprehensive source of data 
to draw from in order to generate sufficiently information-rich, complex Virtual Brain models. Such 

curated data systems have been created, for example in the form of the Human Brain Project’s high-

resolution multi-level human brain atlas on EBRAINS. These serve as an interface for integration of 

structural and functional data modalities. With each model, it must be demonstrated whether more data 
makes the model more powerful or not, i.e., do the added data enable more accurate, testable predictions? 

This also serves as an ongoing loop for testing whether the data selection is suitable for the question at 

hand, i.e., whether it reflects the major determining factors (Box 2: Categories of digital brain models). 

Box 2: Categories of digital brain models  

 Brain models 

Brain models are digital representations of the brain. The term is used in different contexts; common 

examples include digital atlases, artificial neural networks, anatomical models, network models, 

cognitive and behavioural models and mathematical and data-driven models.  
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 Personalised brain models 

Personalised brain models are special types of models that are personalised by integrating specific data 

of one individual into a more general model (e.g., as enabled by the Virtual Epileptic Patient).  

 Digital twins 

Next-generation personalised brain models that continuously evolve by being informed with real-world 

data. They are designed in a purpose-driven way, integrating data relevant for a specific research 

question.  

 Full replica 

The idea of a complete digital representation of all aspects of a brain at all levels (hypothetical concept). 

An important distinction between the digital twin and other personalized Virtual Brain models is that 

the digital twin constantly receives new information from the real world to immediately adjust to its 
environment. In a neuroscience context, a ‘digital twin’ of a brain in the above sense holds much promise 

as an approach for continuously adapting interventions in functional neurorehabilitation or for tailoring 

neurotechnology-based interventions. Applications making use of a high-fidelity digital twin of a human 
brain updated in quasi-real time will require technical developments (e.g., ecological immersion of that 

twin brain in simulated environments, high-bandwidth, stable brain-machine interfaces, very high 

computational power) that do (partly) not exist yet; as such, they remain a long-term objective for a 

rather distant future. This is not to say, however, that digital twins cannot already be applied in 
neuroscience and medicine today, provided they adequately address the intrinsic limitations of current 

brain models, of available personalization processes and those faced by current technologies in updating 

them at the required frequency. The twin thus defines the current horizon of our digital neuroscience 
roadmap and must be appropriately taken into account as a driver for future developments, e.g., in the 

EBRAINS architecture and neurotechnology and other platforms in the field. 

While the use of digital twins of the brain in concrete applications may still seem some way off, the era 

of digital brain research has, without question, already started, both in real world settings and research 
alike. Digital brain research is an umbrella concept under which data, models, theory, methods and 

computational technology are integrated for all research and development efforts undertaken in the 

framework of the HBP. Its value rests upon a successful demonstration of internal and external validity 
(features of experimental results) as well as ecological and construct validity (features of interpretative 

claims). It enables researchers to address some of the major challenges that have hindered progress in 

neuroscience for decades. These challenges include our understanding of intra- and inter-subject 
variability, non-identifiability of mechanisms and multiscale complexity. EBRAINS provides the 

infrastructure and user interfaces to allow interoperation of the required components of data, models and 

methods; in doing so, it de facto establishes the operational basis for the concept of the digital brain to 

take centre stage in neuroscience research (Amunts et al., 2022).  

We propose that there are three areas where digital brain models of all kinds (see Box 1) could be 

fruitfully applied in the short-to-medium term: (1) basic brain research, (2) applications in medicine, 

and (3) brain-derived technologies. 

(1) Basic brain research  

Digital brain models and their simulation should not replace basic research and knowledge accumulation 

but can be rather thought of as a useful ‘engineering’ tool that functions currently as an in-progress 

predictive model with a dual purpose: (1) putting current knowledge to the test, and (2) anticipating the 

effect of interventions on a single individual, desired effects, etc. The latter can be appealing as the 
number of interventional methods is expanding (deep brain stimulation (DBS), transcranial magnetic 

stimulation, transcranial direct current stimulation, transcranial focused ultrasound stimulation, drugs, 

optogenetics, photopharmacology). Although there are already various studies where computational 
brain models make predictions, drive the design of and explain effects observed in interventional 
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research (Frank et al., 2004; Frank et al., 2007), these methods are currently often applied ‘semi-

empirically’ with the available information about electrode location; circuit connectivity, function, and 

electrical models; genetic promoters of neuronal types; expression patterns of neuroreceptors and their 
signalling pathway models, etc. The digital twin may allow rational decision-making regarding these 

parameters, the testing of outcomes, followed by re-evaluation of the model and so forth.  

In order to be successful, underlying models must be biologically realistic, i.e., anatomically adequate 
and functionally comprehensive. This requires the integration of highly heterogeneous data across 

scales, including in vivo and ex vivo, in the same spatial reference framework. In an alternative, 

complementary approach, Cell Atlas Network (BICAN) will extend to the whole human brain the 
approach used in the US Cell Census Network (BICCN), undertaking in-depth characterization of 

(small-scale) components of the mammalian brain, e.g., the most detailed and comprehensive multi-

modal model of the primary motor cortex including single-cell transcriptomes and proteomes, chromatin 

accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and 

electrophysiological properties and cellular resolution input-output mapping (Callaway et al., 2021).  

Based on this concept, brain simulation plays a key role in elucidating brain complexity by allowing the 

testing of hypotheses about the brain’s multi-level organization and its functions that control the 
surrounding body. Clearly, following this line of research, it will become more and more important to 

interconnect simulations executed at different spatial levels (e.g., the EBRAINS simulation engines 

Gromacs at the molecular level, ARBOR and NEURON at the cellular level, NEST at the systems level, 

The Virtual Brain at the whole-brain level, and the neurorobotics platform at the level of the embodied 

organism and its environment (see Brain-derived technologies)).  

Unlike with the real living brain, the embedded simulated brain can be sampled at any point in space 

and time. It will be possible to look at all the processes in such a brain (provided those processes are 
modelled in the simulation, based on real-world data and/or on physics/chemistry) and perform this 

observation with simulated measurement devices, e.g., multi-array electrodes, fMRI scanners. Then, in 

principle, all kinds of functional hypotheses can be tested in a full-body and closed-loop environment; 
further, it will also be possible to build dynamic anatomical atlases, e.g., atlases that allow for the 

observation of the changes and processes in a brain section under a specific stimulus – in real simulation 

time. 

The multiscale complexity of the living brain, the limited accessibility for measurements and our 
incomplete understanding of brain processes makes the realisation of the digital twin approach difficult 

to say the least. The BigBrain as an anatomical model of a brain may serve as the scaffold for the 

integration of twin data in a strict sense (Amunts et al., 2013), data from other sources such as dynamic 
cellular data and those from experimental population studies as well as synthetic data simulated by 

models and different brains. Such an approach also determines the limitations and ranges of validity of 

the digital twin strategy, which is crucial for the responsible use of and subsequent trust in the 
technology. Nevertheless, such data-driven models may represent the closest digital representation of a 

living human brain that is achievable at any given point in time. 

(2) Brain medicine  

From such digital twins, personalised twins can be derived with the aim of improving diagnostics and 

therapy for patients in a new and powerful way and therefore supporting strategies towards brain health 
such as that recently published by the European Academy of Neurology (Bassetti, 2022). Analogous to 

cardiac digital twins (Gillette et al., 2021), i.e., digital replicas of patient hearts derived from clinical 

data that match all available clinical observations, human electrophysiological replicas have great 

potential for informing clinical decision-making and also for facilitating the cost-effective, safe and 
ethical testing of novel device therapies. Digital twins in medicine address a defined spatial scale, with 

a defined granularity, consider a defined time interval and serve a dedicated purpose. An application of 

the digital twin approach for Alzheimer’s disease has been proposed just recently (Stefanovski et al., 
2021), and while careful consideration of data privacy, security and safety aspects will be required, 

personalised twins might also offer a uniquely powerful strategy for treating such conditions. 
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The Virtual BigBrain enables construction of individual connectomes based on neuroimaging and EEG 

data of a subject and anatomical data from the BigBrain model (Jirsa et al., 2017). The ongoing EPINOV 

clinical trial employing the TVB represents a major step forward in this regard; scientists have developed 
individual models of the brains of patients undergoing epilepsy surgery to guide and predict the best 

seizure outcome (Proix et al., 2017). Here again, the strategy is to combine population data with data 

from an individual brain to develop a Virtual Brain model, a twin, that is realistic enough to allow 
simulation of the intervention prior to surgery. Patients with super-refractory seizures, i.e., seizures 

which persist over periods of anaesthesia, often require prolonged intensive care and are at a very high 

risk of permanent neurological damage and death. For such patients, a digital twin might be used to 
examine a vast array of models, with ongoing feedback from EEG, responses to drugs and blood ion 

and gas concentrations, all readily available in intensive care environments. 

As one example, DBS, and neurosurgery in general, would massively benefit from personalised twins, 

which could help in planning the procedure in such a way as to ensure maximum protection and 
preservation of healthy tissue. In particular, it could inform surgeons of the need to re-compute the 

model based on the brain signals detected by sensors during surgery. This would require running 

simulations nearly on-the-fly, e.g., before or during surgery, which means stringent requirements for 
high-availability service and security. This information could be fed to augmented reality glasses or an 

operating microscope, to provide the surgeon with online predictions of surgical damage. Certainly, this 

is not yet in close reach. Applications in intensive care units following stroke or traumatic brain injury 

would have similar requirements. Beyond invasive therapeutic interventions, a digital twin would be a 
powerful tool for predicting the consequences of brain lesions and pathophysiology, which is sometimes 

described in terms of computational neuropsychology, namely, characterising lesion-deficit 

relationships in silico, using synthetic lesions (Parr et al., 2018). This could revolutionise our capacity 
to personalise neurorehabilitation, while integrating complex information generated by virtual reality 

and robot-based therapies together with fine measurements of patients’ responses and progress. 

Other applications could employ simulations to test a ‘clinical’ simulated population that could be far 
larger than a real one, therefore providing data amplification by creating cohorts of ‘digital patients’. 

This could be particularly interesting for evaluating rare diseases, for studying the influence of gender 

or for predicting disease progression (Maestú et al., 2021). Moreover, the more diverse (and 

heterogeneous) the sources of data used for training, the greater the performance of the model on other 
datasets, resulting in good generalizability. This is one of the most interesting features provided by 

federated systems, which facilitate increasing the diversity of data sources (e.g., (Dayan et al., 2021)).  

Recently, the AlphaFold system developed by DeepMind (Jumper et al., 2021), an application of deep 
learning methods, has enabled prediction of protein 3D structure. This could be generalized to test the 

drug-protein or drug-protein-system interactions at a systems level. Another perspective would evolve 

from testing the effect of drugs in a virtual environment to uncover the mechanisms of the drug not only 
at molecular but also systemic levels. Considering that quantum mechanics/molecular mechanics are 

computationally highly demanding, such an approach at a systems level would require highly scalable 

tools run on the most powerful supercomputers. For example, fine-grained models of local microcircuits 

with molecular or cellular resolution, like those constructed and simulated using NEURON and 
ARBOR, can be directly used to map the local distribution of some molecules (e.g., ion channels, 

receptors) and then be used to simulate the impact of drugs on this system. These low-scale models can 

be tuned according to a given pathological condition and then transformed into patient-specific mean 

field models advancing the precision of digital twins. 

Finally, it would be expected that brain twins contribute to ‘human body twins’. This perspective goes 

beyond merely adding another organ, because it would allow modelling the interactions of nervous 

system activity with those of other organs at the systems level. 
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(3) Brain-derived technologies  

A fundamental challenge is to establish what level of granularity in brain modelling, what transitional 

computations, and what kind of simulated development is required to support the emergence of a variety 
of cognitive and sensorimotor functions. Models of the human brain, simulated in embodied settings, 

i.e., having the ability to control virtual or physical bodies interacting with realistic virtual or actual 

physical environments, and receiving time-dependent input streams to produce behavioural outputs, 
represent a uniquely attractive platform for investigating the links between brain structure, brain activity 

and cognitive and functional performance. 

How such bottom-up assembly and the emergent behaviour of the digital twin system can be evaluated 

against biological data remains an ongoing challenge, because typical synthetic development 
environments do not match the natural environment. As argued by Ed Yong (2019). The Human Brain 

Project Hasn’t Lived Up to Its Promise. The Atlantic 99  “large-scale simulations are useful for 

understanding weather and galaxies, but ‘planetary systems are not about anything other than 
themselves. A brain is built to be about other things.’ …. Simulating the tissue is do-able, but 

meaningless.” 

The previous paragraphs provide several examples where simulation has led to progress in in basic 
neuroscience and brain medicine for well-defined research questions. Additionally, the Human Brain 

Project from its start aimed to develop biologically accurate brain and nervous models ("Booklet | Brain-

inspired intelligent robotics: The intersection of robotics and neuroscience sciences," 2016), and to use 

such models to develop new technologies. In other words: a simulation of certain processes occurring 
in the brain is embedded in a real or simulated body with all its sensors and actuators connected to the 

simulation. In principle, these sensors and actuators can just as well be real or simulated or a combination 

thereof. Likewise, this body is embedded in a real or virtual world. Once we have these elements, 

simulated or real, we can combine them in any sensible way. 

Obviously, this approach is heavily dependent on models representing the physics of the real world, and 

it also requires sophisticated software that can simulate spatial environments in high fidelity and that 

can provide adequate physics of environments, sensors and actuators, connection to brain simulators, 
facilities for storing the results of simulations, graphical rendering and the orchestration of these 

complex software modules. All of these (co-)simulations can be run at different time scales (ideally of 

course in real time), in closed-loop or open-loop scenarios and with entities modelled at different 

granularities.  

A software environment that was designed to perform all these steps, run simulations based on diverse 

sets of data from biological experiments as well as input from real world robots, and integrate machine 
learning on top of those simulations is the neurorobotics platform of the HBP100. While this platform 

was originally conceived of for the purpose of designing neurorobots, i.e., robots that are controlled by 

biologically inspired models of the brain, over time it has evolved into a software environment that can 

be used to connect and integrate all types of entities ranging from simulated mouse bodies by way of 
sophisticated sensor models to various neuron and brain simulators. Today, the neurorobotics platform 

can be considered to be both an environment for robot design, and at the same time, an execution 

platform for neuroscientific experiments. It is therefore a powerful vehicle for virtualizing neuroscience, 
up to the point where system-level in vivo experiments can be replaced with in silico experiments that 

run completely inside this platform. 

In addition, the neurorobotics platform allows for training the ‘brain’ (AI-based controller) of embodied 
robots with real neuroscientific data, even before they are built. It is also conceivable that a simulated 

copy of the real environment in which they will be used serves as the reference basis for the training, so 

                                                
99 https://www.theatlantic.com/science/archive/2019/07/ten-years-human-brain-project-simulation-

markram-ted-talk/594493/ 

 
100 https://www.neurorobotics.net/ 
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that they can be pre-trained before they are shipped to the end user, who will only need to make small 

adaptations to (emergent) behaviour to ensure that the robot performs its tasks in a perfect manner. We 

suggest that such robots (or parts of them) would be very good examples of “brain-derived 

technologies.” 

We will refer to approaches following this paradigm as brain-derived technologies as they are directly 

based and built on findings from brain research. Importantly, these findings can be implemented at 
different levels of organization. In neuromorphic engineering, the main components, i.e., biological 

neurons, are emulated by functionally equivalent electrical circuitry to construct highly energy-efficient, 

possibly analogue, processors and sensors. Likewise, the neural models running on these systems can 
be derived from specific types of neurons, microcircuits or brain regions that have been identified in 

biological brains. When connecting these systems to robotic embodiments (both simulated and/or 

physical) or to biological organisms, it becomes possible to replicate some aspects of the full closed 

loop of perception, cognition, and action. Modelling can thereby be extended to the complete organism 
and address all aspects of complex cognitive processes at the behavioural level. Brain-derived 

technologies are therefore not limited to approaches that mimic structural features of the brain but can 

also encompass cognitive models and architectures along with their underlying neural dynamics. These 
technologies will be important new tools for brain research and enable new innovations in computing, 

robotics and AI. 

One field expected to benefit greatly from this approach is neurorehabilitation, where realistic models 

of brain-body interactions will be useful in elucidating the neural mechanisms at play. (Rowald & Amft, 
2022) The combination of highly detailed brain models with models of the spinal cord and of the 

musculoskeletal system indeed affords special opportunities, such as allowing investigation of the 

relationship between neural activity and resulting motor behaviour in a detailed, quantitative manner. 
Personalised models could thus be integrated into decision-support systems to guide the choice and 

combination of rehabilitation strategies by a physician or a therapist. They may also support 

breakthrough developments in central nervous system (including spinal cord) stimulation technology 
and functional electrical stimulation, improving the efficacy of these techniques and expanding their 

relevance to a greater breadth of conditions. A very promising recent application reported successful 

epidural electrical stimulation to treat spinal cord injury (Rowald et al., 2022). 

Similarly, the combination of high-fidelity models of both the human musculoskeletal and central 
nervous systems is also expected to support the emergence of in silico technologies for so-called 

electroceuticals, i.e., medical devices that provide neurostimulation for therapeutic purposes (e.g., in 

Parkinson’s disease, epilepsy, etc.). There is little doubt that the medical device industry would have a 
fundamental interest in tools guiding their product design, generating predictions regarding efficacy and 

overall de-risking of the whole product development process. With the brain atlases and the multiscale 

brain simulators created by the HBP, it thus seems timely to consider the collection and integration of 
new data (e.g., dielectric properties) as a prelude to the development of simulation tools and services 

geared towards the evaluation of electroceuticals. Simulating the effect of such electroceuticals seems 

to be overdue, given that DBS is already being widely used. 

The HBP has supported the SpiNNaker many-core and BrainScaleS physical emulation neuromorphic 
computing platforms in establishing the first open neuromorphic computing services and has contributed 

to the further development of these technologies. Neuromorphic technologies, where both data transfer 

and processing are event- i.e., spike-based, provide a multitude of opportunities for edge computing, 
mobile robotics and neuroprosthetics. Considering current trends in automation of mobile systems and 

deployment of ‘always-on’ sensor arrays, in particular, neuromorphic devices are expected to deliver 

enhanced, low-latency capacities for perception, cognition and action, while reducing the impact of 

onboard operations on the system’s energy consumption (Göltz et al., 2021; Cramer et al., 2022). For 
example, combining spike-driven processing units with spike-generating sensors (e.g., dynamic vision 

sensors, dynamic audio sensors) into complete neuromorphic systems (sensors and processing units) 

will make it easier to perform data fusion and overcome constraints related to the heterogeneity of data 
sources. Advances in the neurocomputational understanding of learning by neuronal circuits, especially 
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through synaptic plasticity, will also provide new ways of endowing neuromorphic circuits with ever-

more complex functionalities at a lower training cost (e.g., one-shot and continuous on-line learning). 

In particular, the restriction to local plasticity constitutes a manifest advantage over conventional von 

Neumann architectures.  

The circuitry of analogue neuromorphic processing systems such as BrainScaleS emulates the ion flows 

in biological neurons by electrical currents. Unlike traditional microprocessors that are based on the 
classic von Neumann architecture, every silicon neuron is physically incorporated into the chip with 

dedicated components. Like in the brain, these neurons exchange information based on spikes, which 

allows for an extremely efficient implementation and is one of the reasons why neuromorphic systems 
are a promising technology for a new generation of real-time-capable and extremely energy-efficient 

computers. An important consequence of their direct derivation from the brain’s structure is that 

neuromorphic processors are typically not well suited for loading external data but instead support 

learning online in real-time. This unique feature enables new types of learning rules that do not require 

large data sets but adapt dynamically as required. 

Learning rules based on spike timing-dependent plasticity are a remarkable success story of brain-

derived systems. They are directly rooted in experimental results and have become a cornerstone for 
research on learning algorithms in both theoretical neuroscience and neuromorphic engineering. 

Importantly, traditional machines have also benefited considerably from brain research. One of the most 

prominent examples are arguably convolutional neuronal networks, precursors of which have originally 

been derived from the architecture of the visual cortex. 

Another important area where basic brain research has fostered the emergence of new technologies is 

that of neuromorphic sensors, particularly dynamic vision sensors and dynamic audio sensors. The 

former mimic the functioning of the retina and, like neuromorphic processors, encode information with 
spikes. The characteristics of these are completely different from their traditional counterparts. Since 

they only signal changes rather than capturing full image frames, they can operate extremely efficiently, 

give rise to new types of image processing algorithms, and ideally complement neuromorphic 

processors. 

From a technological perspective, the human brain is also the most promising ‘Rosetta Stone’ for the 

implementation of advanced cognitive abilities in artificial systems. Modern artificial agents are 

characterised by limited levels of intelligence, difficulty in generalising beyond provided training sets 
and an often-superficial understanding of their environment. The lack of generalisability implies either 

the necessity for large data sets (the resource-intensive big data paradigm), continuous human 

supervision (remotely controlled systems) or extensive, rigid mission planners accounting for any 
allowable occurrence (for planetary or ocean exploration). The superficiality of perception and lack of 

explainability imply a lack of robustness of and trust in artificial perception systems, a known obstacle 

to the emergence of, e.g., effective driving automation. To mitigate against such limitations, brain-
inspired multi-area model architectures must be developed in conjunction with new embodied and 

incremental learning algorithms, with a view to finding those that best emulate the functional 

mechanisms underlying human perceptual cognition. Harnessing such mechanisms and understanding 

the emergence of cognitive functions will be essential for creating explainable, reliable and eventually 

more general AI. 

 

The functional architecture of the brain with its different regions is the basis for many types of cognitive 
architectures that have been defined for technical systems. This is especially true for robotics, where 

brain-derived approaches are studied extensively. Examples include the research on phenomena related 

to embodiment or the development of novel perception and sensing systems such as artificial whiskers, 

inspired by the actual somatosensory system in rodents 

Future developments in neural networks for artificial intelligence applications will see a convergence 

between mainstream AI and neuromorphic technologies. Multiscale brain models can make a critical 

contribution to the construction of advanced robotic controllers. These could embed plastic rules and 
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autonomously adapt through their interaction with the environment. Thus, basic brain science will be 

key in informing the development of these technologies. Moreover, neuromorphic computing might help 

reduce the substantial carbon footprint of large deep learning models (Strubell et al., 2019). 

 

7. Conclusion 

An improved understanding of brain function depends on a deeper understanding of brain organization 

and a better appreciation of the fundamental mechanisms – the actual biological processes, their 

relationships and the rules that govern them. Only then can we target prevention, therapies and 
mechanism-based diagnoses. Although now feasible, digital twins of the brain are still at an early stage 

and once developed have to undergo rigorous testing and validation before they can meaningfully 

address brain disorders and become the basis for disruptive new health technologies. Therefore, we need 
to understand the computational goals and algorithms of the systems and subsystems to be able to see 

the limitations and possibilities of implementation in individual cases. Further, brain twins raise ethical 

questions that we will need to address in an open dialogue with society. Twins can be seen as a kind of 

endpoint for ongoing developments of brain models and analytics.  

With this goal in mind, a digital infrastructure that can host such digital brain twins, and which provides 

interoperability, information security, multi-level data, access to knowledge-based computing resources 

including high-performance computing and other relevant technologies may foster progress in 
understanding the rules and refining our digital brain twins to a point where they pass validation testing 

and become useful for clinical translation. EBRAINS is an infrastructure that is capable of hosting such 

developments. To make that successful, training of younger generations to work with EBRAINS and 

leverage the potential of new digital tools is key.  

Structuring data and knowledge such that they can easily be recombined and integrated towards a 

plethora of digital brain twins by the research community – together with delivering the powerful 
technology with which complex simulations of these twins can be performed – may in itself represent a 

disruptive technology for generating scientific insight. 

 

8. Scientific Goals – a Roadmap 

Short term  

 combination of and close mapping between bottom-up and top-down models to speed 

up the theoretical approach to understanding how information processing is 

mechanistically implemented in the vertebrate brain  

 building on a whole set of complex high-resolution regional models and integrating 
them into cognitive architectures 

 using the existing expertise of EBRAINS to create state-of-the art brain atlases for 

other animal models like birds 

 leveraging the potential of next-generation multilevel human brain atlases for 

neuroimaging, modelling and clinical applications 

 extending the multi-level human brain atlas with physiological and functional 
knowledge, e.g., providing the foundations for a curated and standardised 

perturbational atlas of effective connectivity, built on, for example, intracortical 

stimulation and simultaneous intracranial (stereo EEG) and extracranial (high-density 

EEG) recordings before and after lesions and for maps of cortical reactivity and 
connectivity (TMS-EEG), multimodal neuroimaging data sets in healthy controls and 

patients 
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 developing detailed models integrating neuronal data with those from glial cells, 

molecular and immunological signalling pathways as well as vasculature 

 developing neurorobotics experiments that connect brain models to robotic 

embodiments to enable the study of closed-loop systems that can interact with the 

environment 

 based on developments in the field of epilepsy and the ongoing EPINOV trial, 
developing personalised brain models for several other brain diseases using 

neuroimaging and physiological data of individual brains in combination with atlas 

data from post-mortem and in vivo brains  

 producing more complex combined models of several brain regions (e.g., cerebellum 
and striatum with cortex) or of different scales (e.g., whole-brain activity with detailed 

cellular models) to represent biologically realistic circuits; simulating these models 

and comparing the results with empirical data  

 approaching multiscale dynamics and deciphering how they relate to structure 

 generating the most comprehensive model of the hippocampus as a key region 
involved in Alzheimer’s and epilepsy, integrating macro-, meso- and microscopical 

levels, to derive therefrom a twin of a rodent’s and/or non-human primate’s 

hippocampus  

 translating theoretical and data-driven models for brain medicine into neurosurgery, 

and creating new, high bandwidth interfaces with the brain 

 taking inventory of currently discussed brain theories and corresponding strategies of 
aligning experimental work and theory 

 incorporating tools for automated meta-analysis of the literature  

 piloting, fine-tuning and co-creating the European Health Data Space strategy to make 

it fit-for-purpose for neuroscience research 

 establishing sustainable and long-term collaborations between neuroscience, social 

science and the humanities, and developing systematic and sustainable approaches to 

societal engagement and reflection on ethics, values and needs of societal stakeholders 

and citizens (including patient communities). 

 

Middle term  

 creating ultra-high-resolution integrated models of the brain’s cellular and axonal 

structure as a spatial framework of a multilevel brain atlas with resolution down to the 
sub-micrometre scale with imaging data incorporating proteomics, genomics, 

connectomics and molecular information to better understand how the different levels 

of brain organisation contribute to brain function, dysfunction and behaviour.  

 developing such models for different phases of brain development and aging    

 developing more complex combined models, across several regions and/or scales and 
predicting features of brain structure and function based on the simulation platform of 

EBRAINS 

 implementing first behavioural, information and graph theory analyses, 

complemented by whole-brain computational approaches, based on a multiscale, 

causal (stimulation and recording) approach for the diagnosis and treatment of stroke, 
disorders of consciousness, neurodegenerative and mental diseases  

 developing a set of criteria to quantify the goodness-of-fit and the predictive power of 

large-scale brain models; special attention should be paid to the notorious problem of 

overfitting small empirical data sets. 

 generating whole-brain models of sleep-wake states, attention and using twins in 
diagnostics to monitor consciousness  
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 simulating complex behaviour in robots and robot simulations with rich environments, 

using whole-brain and organism models that are capable of learning from and 

interacting with the environment 

 generating useful new principles for the machine learning field and reaching the 

‘tipping point’ at which the level of understanding of brain mechanisms behind 
perception, memory, cognition, decision-making and motor control will significantly 

impact the fields of artificial intelligence, robotics and neuromorphic technology 

 using general models of neuronal function to study inter-species differences  

 integrating meta-analytic results with imaging, signals, and experimental artefacts 

 making available existing brain collections at large scale via web-based tools 

 developing and implementing a federated data space fit-for-purpose for cutting-edge 

AI and allowing cross-border privacy-preserving data sharing of GDPR-sensitive 

high-dimensional brain-related data in line with the European Health Data Space 

Strategy 

 

Long term  

 developing realistic, large-scale brain models of sensorimotor function, cognitive, 

perceptual and language function 

 evaluating emerging models of learning and adaptivity in biological brains for their 

potential to enable fundamentally new concepts and algorithms for machine learning 
and artificial intelligence and novel engineering applications (e.g., new materials, 

artificial life, replacing and enhancing brain function). 

 developing highly efficient and real-time-capable brain-derived neuromorphic control 

systems for robots that are capable of online learning and interacting with rich and 
complex environments 

 constructing dynamic anatomical brain atlases based on neurorobotics experiments 

that enable the real-time observation of neural activity in a brain area that occurs in 

response to a specific stimulus applied to the body 

 constructing data-driven models of development and aging, applying these models to 
brain medicine in children and adolescents, and providing these algorithms to industry 

to emulate learning, development and self-repair and for application of detailed 

anatomical and physiological models in brain medicine (e.g., preparation of brain 

surgery, diagnostics, monitoring rehabilitation) and co-developing human body twins 

 applying simplified, yet reasonably realistic twins for different functional systems in 
brain medicine, with the option of updating them on-the-fly with information from 

real-life sensor data, e.g., during diagnostics, rehabilitation or in acute situations such 

as surgery or intensive care  

 developing combined, multi-organ models that hasten the advent of Patient Twins by 
reflecting mechanisms of regulation of the nervous system with respect to the function 

of inner organs and the body   

 integrating literature-, image- and signal-based meta-analysis with models to provide 

a consolidated knowledge base 

 new neurotechnological interventions that specifically target malfunctioning brain 

circuits 

 computing data-driven, trustworthy AI models to predict the risk for progression of 

chronic neurological diseases 
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