Federico Zenith Green Hydrogen from Intermittent Renewables

SINTEF Mathematics & Cybernetics

25 October 2022 Belfort, France

$H_A \supseteq \otimes L \cup S$

Co-funded by the European Union

Clean Hydroge

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

Hydrogen Valleys Opportunities in Finnmark The Svalbard Case

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

Hydrogen Valleys Opportunities in Finnmark The Svalbard Case

Hydrogen

- The lightest element in nature: one proton, one electron
- In native state, H_2 is a *very* light gas: $12 \text{ Nm}^3/\text{kg}$
- Very reactive with a weak H-H bond
- Wide explosion range in air, 4 % to 75 %; can ignite w/o spark
- · High energy density 33 kWh/kg for reaction with oxygen to give water
- The most common element in the universe...
- · Yet, not to be found native on Earth: we have to make it!

ਸ਼ੵA ヹ � L U S

Safety First

- Easily ignited
- No spark necessary, only static charge
- Invisible and non-radiating flame
- + Light gas will shoot for the sky
- + Composite tanks are very durable
- Safer than diesel and gasoline...

HAIのLUS

• ... if you know what you are doing!

Do you know how many survived this?

Safety First

- Easily ignited
- No spark necessary, only static charge
- Invisible and non-radiating flame
- + Light gas will shoot for the sky
- + Composite tanks are very durable
- Safer than diesel and gasoline...
- ... if you know what you are doing!

Do you know how many survived this? 62 of 97

ਸ਼ੵĂヹ��LUS

Hydrogen Production

- Most produced by NG reforming, but...
- *Electrolysis* is key for renewables: split H₂O with electricity
- Two technologies: alkaline and PEM
- Alkaline: mature, efficient, proven
- PEM: flexible, fast, compact

HA弍釣LUS

- SO: high-temperature, in research
- 2020 targets: 52 kWh/kg, 2 M€/(t/d), 2 s (hot)– 30 s (cold) start
- Haeolus report: https://www.haeolus.eu/?p=1155

PEM electrolysis (20-100°C) Cathode Anode $= H_0 O$ Ho a > 1/202 Cathode Anode Mombrane $H_{2}O \longrightarrow 2H^{+} + \frac{1}{2}O_{2} + 2e^{-1}$ Anode 2H⁺ + 2e⁻ Cathode H2 + 1/202 Total Reaction

Hydrogen Storage (1/2) Mobile & On-Board Storage

- Compressed gas (cH_2), 350 bar to 700 bar
 - No self-discharge, resilient
 - Requires compressor, 2 kWh/kg
 - Good for minor amounts
- Liquid hydrogen (LH₂)
 - Critical point 33 K@13 bar
 - Large plant required, 5 to 10 kWh/kg
 - Boil-off and large ATEX zone
 - Good for large amounts, maritime
- Metal hydrides (MH)
 - Volume as LH_2 , no odd p or T
 - High weight and cost
 - Only special applications (submarines)

ਸ਼ੑੑਸ਼ヹੴLUS

700 bar cH₂ tanks onboard Toyota Mirai

- Low-pressure or cryogenic spheres
- PEM electrolysers produce at 30 bar
 - Can avoid compressor
- Bulk ships for long-range LH₂ export
- Chemical carriers (LOHC, NH₃, ...)
- Salt caverns (geology-dependent)

ਸ਼ੵĂヹ��LUS

Hydrogen Use

 $HA \equiv \Im L U S$

- Fuel cells: opposite of electrolysers
- Many types (also other fuels):
 - LT-PEM: most developed
 - HT-PEM: (a little) higher temperature
 - Alkaline: good, but CO2-intolerant
 - Solid-oxide: very high temperature
 - Methanol, formic acid, PAFC, molten carbonate...
- Typical efficiency 50 % to 60 %

Caveat on Efficiency Lies, Damned Lies, Statistics and Efficiency Definitions

Thermodynamics of the reaction:

$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$

- + $\Delta g_l^0 = 237 \, \mathrm{kJ/mol}$: maximum obtainable **work**, $V^{\mathrm{rev}} = 1.23 \, \mathrm{V}$
- $\Delta h_g^0 = 242 \, \mathrm{kJ/mol}$: maximum obtainable **heat** (LHV), $V_{ heta}^{\mathrm{rev}} = 1.25 \, \mathrm{V}$
- + $\Delta h_l^0 = 286 \, \mathrm{kJ/mol}$: maximum obtainable **heat** (HHV), $V_{ heta}^{\mathrm{rev}} = 1.48 \, \mathrm{V}$
- If converting to power, use Δg ("second-law" efficiency)
- · If converting to power and heat, it is debatable
- · Some cheat by selecting most convenient definition
- Stick to kWh/kg and you're safe! (sort of: pressure, part load, purity...?)

ਸ਼ੑੑਸ਼ヹੴLUS

The Hydrogen Society Do you remember the early 2000s?

- An energy carrier, not a source
- Take over mobile energy storage
- · Produce from renewables
- Use in zero-emission vehicles
- A lot of hype for H₂ cars in early 2000s
- · In everything from mobile phones to power plants
- Technology was still immature

 $HA \equiv \mathfrak{S} L U S$

- Batteries have been getting better
 - Private EVs will likely stay on batteries
- Hydrogen will focus on professional and heavy-duty uses
 - Taxis
 - Trucks
 - Ships
 - Trains
 - Planes (short- to mid-range)
 - Energy export

EV traffic jam in Oslo

Hydrogen vs. Batteries In Guesstimated Numbers & Factoids

- CAPEX (note structure)
 - Batteries: 200 \$/kWh
 - » Lithium price *decuplicated* since 2021!
 - Fuel cells: 1500 \$/kW
 - » mass production: 268 \$/kW
 - Hydrogen tanks: 10-20 \$/kWh
- Storage efficiency

ዘል፰ኇ/LUS

- Round-trip batteries: 90 %
- with fast charging: 80 %
- Hydrogen: 30 % to 40 %

• Lifetime

- Batteries: \approx 1000–2000 cycles
 - » Depends on type, usage
- Fuel cells: up to 30 000 h
- Hydrogen tanks: 20+ years
- Power tariffs
 - Standard: full power always available
 - Interruptible: power company can throttle

Hydrogen production can be dispatched, battery charging cannot

Note on Battery Prices

- Long followed Moore's law with -20 %/year
- · Improvements focused on manufacturing
- No new technologies on the market (maybe solid-state?)
- · Battery price cannot fall below raw material's!
- · Not much improvement in raw material supply
 - Li, Co, Ni, Mn...

 $HA \equiv \Im L U S$

• Li is not main cost in batteries, but its main use is batteries

Heavy vs. Light Duty Fuel Cells Why we are so interested in heavy duty

- Increasing interest in hydrogen for HD applications
- There are also batteries, what is the case for hydrogen?
- · Batteries have established an advantage in the car sector
- Cars vs. heavy-duty vehicles:
 - 95 % parked vs. maximised operation time
 - Distributed vs. focused/dedicated infrastructure
 - Disposable income vs. cost minimisation
 - Free time vs. salaried time
- All these factors push towards hydrogen

ਸ੍ਰੁ A ਤੋ ਿ L U S

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

Hydrogen Valleys Opportunities in Finnmark The Svalbard Case

Hydrogen and Power Grids

- IEA HIA task 24 for "Wind Energy & Hydrogen Integration" identified 3 roles:
 - Mini-grids
 - Energy storage
 - Fuel production
- IEA HIA task 38 "Power-to-H₂ and H₂-to-X"
 - H₂ downstream uses
 - Grid services

HAIstLUS

Utsira, experimental minigrid with 50 kW FC and 215 kg hydrogen storage (2004–2008)

Renewables are now the cheapest energy sources Source: Lazard LCOE Analysis 2021

HA 三 劣 L U S

Flexibility of Power Generation

Baseload (inflexible, constant):

- Coal
- Nuclear

Flexible:

- Gas turbines
- Hydro

New renewables:

- Tidal (scheduled)
- Solar (pprox predictable)
- Wind (almost random)

ਸ੍ਰ A ਤ ਿ L U S

Flexibility of Power Generation

Baseload (inflexible, constant):

- Coal
- Nuclear

Flexible:

- Gas turbines
- Hydro

New renewables:

- Tidal (scheduled)
- Solar (pprox predictable)

 $HA \exists \Im LUS$

• Wind (almost random)

lexibility of Fower Genera

More wind power:

 \Rightarrow Less predictable generation

\Rightarrow Negative prices

Flexibility of Power Generation

Baseload (inflexible, constant):

- Coal
- Nuclear

Flexible:

- Gas turbines
- Hydro

New renewables:

- Tidal (scheduled)
- Solar (pprox predictable)

 $HA \equiv \Im L U S$

• Wind (almost random)

More wind power:

 \Rightarrow Less predictable generation

\Rightarrow Negative prices

.. What about the demand side?

Power Consumption Profiles

- An uncontrollable external input
- Production and import to match
- Periodicity due to:
 - Weekends
 - Power-intensive industry
 - Meal times
- Shape due to characteristics
 - Electricity or gas heating
 - Presence of industries
 - Climate

HAIGLUS

Load profiles for New England, 1919.

Norwegian Consumption Profile July 2018–June 2019

- Small weekly oscillations (electric heating)
- Significant seasonal oscillation (cold winter 2018-2019)

Interplay of Consumption and Renewables The California Duck Curve

- Increasing solar power
- Daily demand dip

HAIGLUS

Interplay of Consumption and Renewables The California Duck Curve

- Increasing solar power
- Daily demand dip
- Risk of curtailing

HAIGLUS

Interplay of Consumption and Renewables The California Duck Curve

- Increasing solar power
- Daily demand dip
- Risk of curtailing

Generation is becoming less flexible: what about flexible consumption?

Demand Flexibility

Batteries

- Store excess energy
- Compensate for wind
- Smooth power output
- High efficiency
- \Rightarrow Re-electrification
- Hydrogen
 - Store excess energy
 - Modulate production
 - Export hydrogen
 - High storage capacity
 - \Rightarrow Large scale

HA 王 ③ L U S

Hornsdale Power Reserve 129 MWh, 100 MW, 56 M€

Hydrogen in the Big Picture Stabilising the Grid by Dispatching Production

- Electrolysers are large consumers with fast dynamics (ms)
- · Hydrogen production is not time-critical
- · Re-electrification is (usually) not economical
- Money-makers:
 - Hydrogen sales
 - » Hydrogen is an energy carrier for mobile applications
 - $\,\,{}^{\,\,}$ $\,$ Over 25 % of energy worldwide is used for transport
 - Interruptible power supply tariff
 - Grid services in all time scales
 - Reactive power compensation (rectifiers at part load)

ਸ੍ਰੁ A ਤੋ ਿ L U S

Hydrogen in the Small Picture Application to Microgrids

- · Centralised control vs. market economy
- · Power constraints instead of pricing
- Direct automatic frequency support
 - No contracts, bids, etc.

HAIGLUS

- Re-electrification with fuel cells
- Different criteria for hydrogen storage sizing & security of supply

Longyearbyen, Svalbard: 2000 inhabitants and a microgrid

Grid Services

A viable side income for hydrogen production plants

- Balancing markets
 - Keep frequency between 49.9-50.1 Hz
 - Add-remove power to adjust
 - Regulations change *a lot* among countries
- Primary reserves (FCR)
 - Automatic, few seconds to start
- Secondary reserves (aFRR)
 - Automatic, 30 seconds to start
- Tertiary reserves (FRR-M)
 - Manual, up to 15 minutes to start

HA 王 ③ L U S

Grid Services

A viable side income for hydrogen production plants

- Balancing markets
 - Keep frequency between 49.9-50.1 Hz
 - Add-remove power to adjust
 - Regulations change *a lot* among countries
- Primary reserves (FCR)
 - Automatic, few seconds to start
- Secondary reserves (aFRR)
 - Automatic, 30 seconds to start
- Tertiary reserves (FRR-M)

 $HA \equiv \mathfrak{S} L U S$

- Manual, up to 15 minutes to start

• FCR/aFRR can be

- Procured (Norway, Germany)
- Mandatory (Italy, France)
- Remuneration based on
 - Capacity (Denmark)
 - Activation (Italy)
 - Both (Norway)
- Direction
 - Symmetric
 - Up- or down-regulation
 - Asymmetric with set ratio (Spain)

Hydrogen Production with Grid Services

- · Electrolyser within a wind park
 - No power import (user fees)
 - Electrolyser power is controllable
- Nominal operation
 - Electrolyser at full power
 - Use all wind power for $\rm H_2$
 - Income for exported power
- Grid-service operation
 - Throttle electrolyser as needed
 - Reduce hydrogen production
 - Income for exported power
 - Income for grid services

H,A 로 જ L U S

Value of Curtailed Hydrogen

Measuring the value of grid services-and only that

- Price of sold hydrogen is unknown or volatile
 - Often agreed "politically" rather than set by market
 - Agreed-upon quantity may be limited
- Keep spare capacity
 - Ready for market expansion
 - Deployment of new electrolysers takes time
- Monetise this spare capacity
 - Operational income I
 - Hydrogen production H
 - H_0 , I_0 for nominal, "full power" case
 - H, I for grid-service case

ਸ੍ਰੁ A ਤੋ ਿ L U S

 $v_{\mathrm{H}_2} = \frac{I - I_0}{H_0 - H}$

"Value of hydrogen we did not produce because of grid services"

- Same electrolyser
- Same OPEX/CAPEX
- Easily computable

Data and Method

- Data for wind power from several countries (2017), scaled to Raggovidda's 45 MW
- Data for spot prices, FCR/aFRR capacity and activation for same year from grid operators
- Data gathered for Norway (NO4), Spain, France, Italy (CSUD)
- Electrolyser sizes: Haeolus (2.5 MW) and Raggovidda full scale (45 MW)
- Minimum power 0.3 MW, minimum bid 1 MW
- Symmetric and asymmetric services
- Calculate I and H and compare

ਸ਼ੵA ヹ � L U S

Results

https://doi.org/10.1016/j.ijhydene.2022.08.152

- · Not so good results with lots of hydro (Norway)
 - Hydro is fast to control, little need of balancing
 - Wind, solar are increasing worldwide: demand will pick up
- · Electrolyser size does not matter much
- Up-regulation most profitable
- · Wind subsidies help a lot, but not decisively
- 2030 hydrogen price targets: 1.8 €/kg (EU), 1 \$/kg (USA)
- · A lot of electrolysers will flood the market
- Use: "catapult" effect for early units

ਸ਼ੑੑਸ਼ヹੴLUS

[€/kg]	Up- regulation	Symmetric regulation	Down- regulation
France			
Energy	2.27	2.28	2.29
Capacity	7.92	0.76	0.40
Incentives	3.38	3.38	3.38
Total	13.57	6.43	6.07
without incentives	10.19	3.05	2.69
Italy			
Energy	2.74	2.54	2.45
Net activation	3.32	2.75	2.27
Incentives	5.72	5.72	5.72
Total	11.79	11.00	10.45
without incentives	6.07	5.28	4.73
Norway			
Energy	1.35	1.34	1.34
Capacity	0.52	0.20	0.13
Net activation	0.08	0.03	0.02
Tariffs	-0.08	-0.08	-0.08
Incentives	0.70	0.70	0.70
Total	2.56	2.20	2.11
without	1.86	1.50	1.41
incentives			_
Spain			
Energy	2.48	2.60	2.63
Capacity	3.44	1.50	0.96
Net activation	0.31	0.21	0.19
Total	6.23	4.32	3.78

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

lydrogen Valleys Opportunities in Finnmark The Svalbard Case

Motivation

- EU 2030 target: 40 % renewable energy mix
 - Up from previous target 27 %
 - In 2015 it was 13 %, in 2020 17 %
 - Production is already over 40 % (2020)
 - ... up from 26 % in 2015
 - No renewables in energy imports
- · Most renewables produce electricity
- Several are not controllable
- Some are unpredictable

H_AA 로 중 L U S

Energy mix for the European Union

Constraints of Wind Power

- · Hard to predict production
- Capacity factor about 33 %
- Need reserve capacity
- Often, good wind power is found where:
 - there is little hydro potential
 - few people live
 - the grid is weak
 - accessibility is difficult
- All this even more true for offshore wind!
- Beyond 20 % wind share, value plummets
- Hydro is rarely possible to combine

ਸ੍ਰ₄ ਤੱ ਿ L U S

The HAEOLUS Project http://haeolus.eu - @HaeolusProject

- A FCH2 JU Innovation Action
- Objectives:
 - Enable more wind power
 - Test multiple use cases
 - Demonstrate a 2.5 MW system
 - Demonstrate remote operation
 - Report & disseminate
- Key figures:
 - Budget: 7.6 M€ (5 M€ from EU)
 - Time frame 2018-2023
 - Capacity 1t/d

 $H_A \equiv \Im L U S$

- Production start: June 2021

The Haeolus plant in Berlevåg (video)

The Wind Park

HAIのLUS

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW

The Wind Park

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW
- Capacity factor 50 %
- Local consumption max. 60 MW
- · Local economy based on fishing
- Partner operator of park & grid:

H₂A 로 ᢒ L U S

The Electrolyser System's Site

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- Located beside Berlevåg harbour
- Compact 2.5 MW PEM electrolyser
- 100 kW fuel cell for re-electrification
- New 10 km power line from Raggovidda
- Virtually "inside the fence"
- · Accessibility by road or sea
- At least 120 t over 2.5 year
- Partner electrolyser manufacturer:
 HYDROG(E)NICS
 SHIFT POWER | ENERGIZE YOUR WORLD

View of Berlevåg, site highlighted

Control System

- Mixed-Integer Dynamical model
- Model-Predictive Control (MPC) on multiple time scales
- · Model with 5 discrete states
- Cost of state change
- Load tracking
- Application to current practice?
- Partner university:

University of Sannio

Other Activities

- Techno-economic analysis
- Life-cycle analysis

System prognostics

 $HA \equiv \Im L U S$

- Reduce on-site inspections
- Optimise maintenance
- Avoid unscheduled stops

- Execution of demonstration
 University of Sannio
- · Remote control and implementation
- · Integration with smart grids
- H₂ valorisation plan

- · Convince Varanger Kraft to expand hydrogen production
- Export model to other sites in Europe (other EU projects?)
- Allow deployment of wind power beyond 20 %
- · Push hydrogen utilisation in the area
 - Mobility, industry, etc.
- Contribute to EU renewable targets & energy independence

H₄A Ξ ℬ L U S

Public Deliverables

Reports (18):

- Raggovidda energy analysis
- Dynamic model & control
- Impact on energy systems, RCS
- Valorisation plan
- Business case analysis
- Road to MAWP 2023 targets
- Techno-economic analysis
- Environmental performance
- Demonstration protocols & data

ਸ੍ਰੁ A ਤੋ ਿ L U S

Other (15):

- Workshop at ECC2019 Naples
- Real-time demo on website
- Plant visit
- Academic seminars
- Student internship
- · Presence at industrial fair

What to Do with the Hydrogen?

Valorisation Plan: Identified Opportunities

Action	Realism	Size	Gimmick
Svalbard energy supply	\checkmark	\checkmark	\checkmark
Coastal ships	(√)	\checkmark	\checkmark
Fishing boats	(√)	\checkmark	
Ammonia production	\checkmark	\checkmark	
Aquaculture	(√)	\checkmark	
Fast passenger boats	(√)	\checkmark	
Cars	\checkmark		\checkmark
Regional mini-buses	\checkmark		
Waste collection trucks	\checkmark		
Backup generators	\checkmark		
Snowmobiles			\checkmark
Regional planes		\checkmark	\checkmark
ZE steel production		\checkmark	
Mining and ore processing		\checkmark	

Outline

Hydrogen Technology

Hydrogen and the Grid

The HAEOLUS Project

Hydrogen Valleys Opportunities in Finnmark The Svalbard Case

How to Start a Hydrogen Valley

Hydrogen producers want:

- to sell hydrogen regularly
- to have a reliable income
- not to go broke in the "Valley of Death"

Hydrogen users want:

- to be sure hydrogen will stay available
- a reliable supply chain
- a predictable hydrogen cost
- readily available maintenance

ਸ੍ਰੁ A ਤੋ ਿ L U S

How to Start a Hydrogen Valley

Hydrogen producers want:

- to sell hydrogen regularly
- to have a reliable income
- not to go broke in the "Valley of Death"

Hydrogen users want:

- to be sure hydrogen will stay available
- a reliable supply chain

HAIGLUS

- a predictable hydrogen cost
- readily available maintenance

Regional strategy in Troms & Finnmark

- Solid, known producer (Varanger Kraft)
- Identify key 1st movers on demand side
- · Coordinate with local authorities
- · Disseminate to local businesses

Breaking the Deadlock Also known as the "chicken-and-egg" problem

- Hydrogen suppliers
 - Energy companies
- Hydrogen users
 - Transport companies
 - Shipping companies
 - Public authorities
 - Industry
 - Private citizens
- · Suppliers need demand to make money
- · Users need offer for their equipment
- Is the other side going to hold out?

ਸ੍ਰ₄ ਤੱ ਿ L U S

Breaking the Deadlock Also known as the "chicken-and-egg" problem

- Hydrogen suppliers
 - Energy companies
- Hydrogen users
 - Transport companies
 - Shipping companies
 - Public authorities
 - Industry

 $HA \equiv \Im LUS$

- Private citizens
- · Suppliers need demand to make money
- · Users need offer for their equipment
- Is the other side going to hold out?

• We must start with infrastructure

- How do we make it viable?
 - Identify key niche
 - Find one big customer
 - Find a "side hustle"
- Involve the authorities
 - Guarantee demand with buyback of hydrogen equipment
 - Guarantee supply with buyback of hydrogen fuel

Core Distribution System

- Pressurised tanks at 350 bar
- Commercial containers
 - 20' or 40' (resp. ca. 350 and 700 kg)
 - Cost 150–300 k€ each
- Compressor in Berlevåg
 - Advantage to start from 30 bar
 - Cost about 350 k€
- Minimal distribution system
 - 1 compressor and 2 containers
 - 0.7-1 M€ in investment
 - Container leasing? Smaller compressor?

Specific minimum cost mode for hydrogen transport LD										
		Dista	ance (km)							
		10	50	100	250	500	750	1000	2000	3000
	1	CT	СТ	CT	CT	CT	LT	LT	LT	LT
	5	CSP	СТ	CT	СТ	LT	LT	LT	LT	LS
_	10	CSP	СТ	СТ	LT	LT	LT	LT	LS	LS
퉖	20	CSP	CSP	CSP	LT	LT	LS	LS	LS	LS
)e	30	CSP	CSP	CSP	CSP	CS	CS	CS	CS	LS
5	40	CSP	CSP	CSP	CSP	CS	CS	CS	LS	LS
2	50	CSP	CSP	CSP	CSP	CS	CS	CS	LS	LS
tion	60	CPP	CSP	CSP	CSP	CS	CS	CS	LS	LS
Ē	70	CPP	CSP	CSP	CSP	CS	CS	LS	CS	LS
ĕ	80	CPP	CSP	CSP	CSP	CS	CS	CS	LS	LS
	90	CPP	CSP	CSP	CSP	CS	CS	CS	LS	LS
	100	CPP	CSP	CSP	CSP	CS	CS	CS	CS	LS

(Project work by Simen A. Madsen)

45

ਸ੍ਰ A ਤੋ ਿ L U S

Liholmen Biogas Plant

- · Newly opened in "neighbouring" Båtsfjord
 - Produce biogas, burn in turbine, sell power
- Methanation of biogas $(CH_4 + CO_2)$
 - $\operatorname{CO}_2 + 4\operatorname{H}_2 \longrightarrow \operatorname{CH}_4 + 2\operatorname{H}_2\operatorname{O}$
 - Biomethane more valuable as marine fuel
- Potential regular customer
 - Steady need for hydrogen
 - Long-term agreement possible
- · Båtsfjord biogas plant
 - Right distance (90 km)
 - Right size (80 t/year)

ਸ਼ੵĂヹ��LUS

Liholmen Biogass plant in Båtsfjord

Fishing Boats

HAISLUS

- Main activity in region is fishing
- Battery-driven boats already operate
 - Karoline, Angelsen Senior
 - Diesel remains for propulsion
 - Battery-only on fishing field
- Hydrogen can remove all emissions
- · Several Berlevåg fishermen interested
- FHF-sponsored SINTEF report (2021:00632)
- Quota system hampers zero-emission propulsion

Design of a zero-emission coastal fishing boat

Fast Passenger Ferries

- Three consortia developing ferries
 - ESNA (Kristiansand)
 - Brødrene Aa (Hyen)
 - TECO 2030 (Narvik)
- Interest in counties Vestland, Trøndelag, Nordland and Finnmark
- Pilot scheduled for 2025

 $HA \equiv \Im L U S$

- Kirkenes-Vadsø a possible case
 - Currently: 15 min plane or 2 hour drive
 - 40 km over the Varangerfjord

Brødrene Aa's H_2 ferry concept

Coastal Express

- · The Coastal Express already stops in Berlevåg
 - Electrolyser is right by the dock
 - Visible application for tourists
- New competitor Havila seeks green profile
- 4 new ships (two operational)
- · New ships are ready for hydrogen and ammonia
- Retrofit planned with 2.3 MW fuel cells
- · Storage based on liquid hydrogen

HAIのLUS

• Approval granted by DNV in May 2022

- 1 t/d is enough for 3000 cars, not realistic but...
- Lighthouse effect ("world's northernmost H₂ station")
- · Finnmark has fewest electric cars in Norway
- Users: local municipalities, Varanger Kraft, taxis...
- Hydrogen cars can drive & return anywhere in East Finnmark from Berlevåg
- · All mayors in Varanger want hydrogen stations!

Snowmobiles

Great lighthouse potential

HAIのLUS

- · Prototype developed in Austria
- · Interest from Nordkapp municipality
- · Zero-emission day trips for North Cape tourists
- Also relevant for Varanger Kraft to access
 Raggovidda

The Rotax HySnow prototype

Hydrogen Planes

HAIGLUS

- Batteries are and will remain inadequate for commercial planes
- · Airbus announced grand hydrogen strategy
- · Large STOLport network in Northern Norway
- "Milk route" between Tromsø and Kirkenes
- No replacement for current Dash 8 after 2030
- High-activity area (Airbus, Schiphol, ZeroAvia...)

Ammonia Production

- "Grand plan" of Varanger Kraft
- Green ammonia from electrolysed hydrogen
- Extension to over 100 000 tons NH₃
- Electrolyser capacity 40-50 times HAEOLUS
- Key markets:
 - Shipping industry (ZEEDS groups: Aker Solutions, Wärtsilä, Equinor, . . .)
 - Export to Svalbard and similar communities

H, A 크 중) L U S

Energy Supply to Svalbard

- 2100 inhabitants in Longyearbyen
- · Old coal power plant, planned to be shut down
- · LNG would be cheapest, but zero emission has support
 - Politicians, organisations and companies (Statkraft, NEL)
- Hydrogen import or NH₃ as energy carrier?
- μCHP is an off-the-shelf technology

HAIGLUS

· Gradual introduction of hydrogen into the energy system

Last Holdout of Coal in Norway

- Uses about 120 MWh/year
- · Wasteful with district heating
- Max electrical load 8 MW
- 2 coal boilers, 6 diesel gensets
- Old coal plant should be replaced...
- Multiconsult: LNG is cheapest

ਸ਼ੵA ヹ � L U S

Last Holdout of Coal in Norway

- Uses about 120 MWh/year
- · Wasteful with district heating
- Max electrical load 8 MW

HAIのLUS

- 2 coal boilers, 6 diesel gensets
- Old coal plant should be replaced...
- Multiconsult: LNG is cheapest
- Svalbard is a hot spot for climate change, common example
- · Installing fossil generation is not politically viable

Hydrogen Import to Svalbard

- Not considered in Multiconsult's report
- Can exploit better green H₂ sources
 - Wind in Finnmark
- H₂ can be readily imported
 - Container solutions available
 - (Initially) also non-green H₂?
- Combined heat & power fuel cells
 - High efficiency (45 %+45 %)
 - Market ready

HAIGLUS

Flexibility & Scalability in Deployment

- Fuel cells are modular
- Can be introduced gradually
 - Start with smaller pilot
 - Extend later: future-proof
 - LNG needs MW investment
- Can add local renewables later
- Distributed generation
 - Same efficiency

HAIのLUS

- E.g. replacing boilers FH1-6
- Better reliability and redundancy
- Can replace diesel generators

Hydrogenics "closet" with 4×33 kW fuel cells systems. Each can be replaced individually. Already deployed in 1 MW unit i Kolon, Korea (in a 40' container).

Data Sources

- Finnmark energy cost: 21.5 €/MWh¹
- Electrolyser: 0.93 M€/MW
 - OPEX 7 % thereof²
- Compressors: 0.6 M€/MW_{H2}
 - OPEX 4 % thereof²
- 40' container, 780 kg_{H₂}: 0.3 M€
- Transport logistics: 1€/kg_{H₂}
- CHP fuel cells: 2.5 k \in /kW, 22 years³

Sources:

- 1. Multiconsult LCOE calculation for Davvi wind power plant
- 2. Noack et al. (DLR, LBST, Fraunhofer, KBB)
- 3. FCH JU's Multi-Annual Implementation Plan

Full Deployment with only Imported Hydrogen All Items are NPV over 25 years with 4 % Discounting Rate

Energy costs	88.2 M€
30 MW Electrolysers	27.9 M€
Electrolyser OPEX	30.4 M€
Compressors	15.8 M€
Compressor OPEX	7 M€
243 H ₂ containers	72.9 M€
Logistics (25 years)	78.9 M€
FCs in Longyearbyen	21.2 M€
Total	342.3 M€
Energy cost	0.09€/kWh

HAIGLUS

· Reasonable kWh price

- Extra 60 MW @ Raggovidda
- Burning some H₂ for heat
- What can improve in time?
 - Fuel cell cost
 - Electrolyser cost
 - Cheaper H₂ storage
 - Heat savings (-40 %)
- It can land at about 200 M€

Pilot Deployment in Conjunction with HAEOLUS Adapted to a 1 t/d production in Berlevåg

Investments

Compressor	0.8 M€
Fuel cells	1.6 M€
10 containers	3 M€
Total investments	5.4 M€
Yearly OPEX	
Energy	0.41 M€/y
Logistics	0.36 M€/y
Compressor OPEX	0.03 M€/y
Total OPEX	0.8 M€

 $HA \equiv \mathfrak{S} L U S$

- Budget within range of an EU project
- Proceed in steps:
 - Replace diesel gensets
 - Supplement local renewables
 - Combine with battery storage
 - Gradually expand capacity
- Optimise battery+hydrogen+import
- Finally, take coal plant offline

Conclusion

- · Hydrogen can store large quantities of (renewable) energy
- It is best suited for heavy-duty mobility
- Electrolysers and renewables can "solve each other's problems" through grid services
- · Many opportunities, but need coordination between supply and demand
- The main issue is now politics and economy-the technology is here

Conclusion

- · Hydrogen can store large quantities of (renewable) energy
- It is best suited for heavy-duty mobility
- Electrolysers and renewables can "solve each other's problems" through grid services
- · Many opportunities, but need coordination between supply and demand
- The main issue is now politics and economy-the technology is here

Thank you for your attention!

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under the European Union's Horizon 2020 research and innovation programme under grant agreement № 779469.

Any contents herein reflect solely the authors' view.

The FCH 2 JU and the European Commission are not responsible for any use that may be made of the information herein contained.

Co-funded by the European Union