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Abstract 

Defect prediction is one of the significant challenges in the software development lifecycle for improving software 

quality and reducing program testing time and cost. Developing a defect prediction model is a difficult task, and 

several techniques have been developed over time. Previous reviews focused on defect prediction in general, and 

none have specifically addressed defect prediction based on the semantic representation of programs from source 

code. This review presents a comprehensive and holistic survey of software defect research over three decades, 

covering motivations, datasets, state-of-the-art techniques, challenges, and future research directions. We 

specifically concentrate on source code semantic-based methods. We also give particular attention to the 

techniques based on semantic features because it presents the field's current state of the art. We focus on the 

process of cross-project defect prediction (CPDP), within-project defect prediction (WPDP), and the most recently 

used datasets. Defect datasets for 60 projects in different programming languages (C, Java, and C++) are presented 

and analyzed. Open issues are studied, and potential research directions in defect prediction are proposed to supply 

the reader with a point of reference for important topics that deserve study. 

Keywords: Cross project, deep learning, Semantic features, Software defect prediction, within project  

 

1) INTRODUCTION 

Software Defect Prediction (SDP) is one of the most critical study fields in software 

engineering. Software defect prediction models supply a list of fault-prone software products, 

enabling the quality assurance team to spend limited investigating resources and testing 

software products efficiently (Song Wang, et al., 2016). They can influence more time-

consuming and expensive quality assurance approaches (e.g., human inspection). Boehm and 

Basili (Boehm & Basili, 2007) report that previous research has found that most software 

defects occur in a small number of software modules. As a result, many previous studies have 

been devoted to determining how to prioritize software quality efforts. 

As the scale and complexity of software projects grow, SDP mechanisms are becoming 

increasingly important. SDP models help developers and testers identify whether a software 
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system is defective early in the project life cycle, allowing them to effectively manage test 

resources, optimize the testing process, and increase software quality (Wan, et al., 2018). 

Earlier on, researchers used metric-based techniques to solve the problem, relying on different 

data types, such as previous defects, code metrics (lines of code, complexity), or process 

metrics (recent activity, number of changes). Subramanyam et al. (Subramanyam & Krishnan, 

2003) and Nagappan et al. (Nagappan, Ball, & Zeller, 2006) presented empirical evidence for 

using OO design complexity measures in determining software defects, specifically a subset of 

the CK suite. Moser et al. (Moser, Pedrycz, & Succi, 2008) evaluated the efficiency of static 

code and changed attributes in defect prediction. Hassan (Hassan, 2009) created a defect 

prediction model using complexity measures based on the source code change process rather 

than the source code itself. In some cases, the researchers' conclusions were inconsistent; for 

example, in opposition to the decision of Fenton et al. (Norman E. Fenton & Ohlsson, 2000), 

Gyimóthy et al. (Gyimóthy, Ferenc, & Siket, 2005) showed positive outcomes in the case of 

size metrics. 

As an alternative to standard metric-based methodologies, semantic strategies have evolved for 

defect prediction in recent years. This method predicts defects directly from the project's source 

code rather than relying on metric generator analysis (Liang, Yu, Jiang, & Xie, 2019). These 

approaches involve employing unsupervised learning for fitting an obstetric model to create 

features that perform well for reconfiguring the source code as the sequential structure or 

abstract syntax trees in the input data set. Other classification algorithms will use these features 

similarly to metric-based defect prediction, but with metrics replaced by the features of 

unsupervised learning.  

Several previous reviews and surveys of the field have been performed; Fenton et al. (Norman 

E Fenton & Neil, 1999) Fenton provided a critical study of defect prediction models, which 

have shown that many theoretical mistakes and methodological have been made. Catal and Diri 

(Catal & Diri, 2009) reviewed studies published before 2009 concerning datasets, metrics, and 

methods. Hall et al. (Hall, Beecham, Bowes, Gray, & Counsell, 2011) analyzed the articles on 

fault prediction published between 2000 and 2010 using a systematic literature review. Wahono 

(Wahono, 2015) identified and analyzed defect prediction research trends, frameworks, 

methodologies, and datasets from 2000 to 2013. Rathore and Kumar (Rathore & Kumar, 2019) 

searched through many online libraries and identified the relevant studies published between 

1993 and 2017. This review differs from others in the following ways: 

 Semantics features analysis: This review is characterized by a review of previous 

studies based on the semantics features of source code, while previous reviews did not 

allocate space to these studies 

 Timeframes: This review is more holistic and contemporary because it covers research 

published between 1970 and 2021. 

 Comprehensiveness: Unlike most previous reviews, our review does not depend 

entirely on search engines; we read the articles from related journals and conferences 

one by one. As a result, we studied a wide range of papers. 
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 In this review, we make four significant contributions: 

 This review provides an updated survey of software defect prediction techniques: 

history, present, and future challenges. The approaches reviewed were analyzed and 

summarized under various conditions. 

 This review presents and analyze the most used defect datasets for 60 projects in 

different programming languages (C, Java, C++) and divide them under their metrics 

and defect labels. 

 This review has summarized more than 115 scientific publications on software defect 

prediction and its solemn data gathering and preprocessing problems from 1970 to 

2021. These publications have been classified according to various approaches: simple 

metrics, Just-In-Time (JIT), cross-project prediction, semantic techniques with deep 

learning, and hybrid models. We give particular focus approaches based on semantic 

features, which are currently employed for predicting software defects. 

 This review highlights some new trends and future challenges for software defect 

prediction technology by paying particular attention to the aspect of source code 

semantic-based techniques. 

This review is structured as follows. In Section 2, we introduce the related work. The process 

of SDP is explained in Section 3. Section 4 describes the available datasets and evaluation 

measures. Section 5 presents software defect prediction based on semantic features. In Section 

6, we discuss the SDP challenges and future directions. Finally, in Section 7, we conclude our 

review. 

 

2) RELATED WORK 

Before going on, we first discuss the similar reviews and surveys on SDP. Fenton et al. 

(Norman E Fenton & Neil, 1999) provided a review of the state-of-the-art. They also advocated 

for ‘software decomposition’ research to evaluate fault introduction hypotheses and develop a 

better software engineering science. Catal and Diri (Catal & Diri, 2009) reviewed 74 SDP 

publications and compared studies released before and after 2005 in performance metrics, 

techniques, and datasets. Hall et al. (Hall, et al., 2011) identified a review for defect prediction 

articles published between 2000 and 2010. The criteria they set and applied summarized the 

qualitative and quantitative results of 36 research that provided sufficient contextual 

information. They also investigated how the independent variables, the context of models, and 

the modeling approaches used affect the defect prediction model performance. 

Hosseini et al. (Hosseini, Turhan, & Gunarathna, 2017) summarized and synthesized existing 

CPDP studies to identify the type of performance evaluation criteria, modeling techniques, 

approaches, and independent variables employed in CPDP model development. They 

conducted a comprehensive literature review with meta-analysis to achieve their study goal 

and answer the research questions. Moreover, their study aimed to compare the achievement 

of WPDP models with that of CPDP models. Malhotra (Malhotra, 2015) reviewed works in the 
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literature that used machine learning approaches for SDP from January 1991 to October 2013. 

They evaluated the effectiveness of machine learning algorithms for SDP in existing research 

and identified seven machine-learning technique categories. Their results showed the machine 

learning ability to predict whether a module or class is defect-prone. Li et al. (Z. Li, Jing, & 

Zhu, 2018) analyzed and discussed almost 70 relevant defect prediction publications from 

January 2014 to April 2017. They summarized the selected papers into four aspects: effort-

aware prediction, data manipulation, machine learning algorithms, and empirical studies. Li et 

al. (N. Li, Shepperd, & Guo, 2020) carried out a systematic review identifying and analyzing 

the studies published between 2000 and 2018. The confusion matrices were recalculated, and 

they used Matthews Correlation Coefficient (MCC) as their primary performance indicator. As 

a result, their meta-analysis has shown that supervised and unsupervised models are 

comparable for both CPDP and WPDP. Rathore and Kumar (Rathore & Kumar, 2019) searched 

many digital libraries to locate the relevant publications published between 1993 and 2017. 

Akimova et al. (Akimova, et al., 2021) presented the software defect prediction based on deep 

learning approaches, such as the LSTM architecture. They identified the primary challenges of 

defect prediction as a lack of data and a complex context, and they proposed solutions to these 

issues. These publications are categorized into defect prediction methodologies, software 

metrics, and data quality concerns. Taxonomic classifications of various methods, as well as 

their observations, have been presented for each class.  

This review presents the history of defect prediction technology, the current approaches, and 

future challenges. Given the relatively short history of work in SDP based on the source code 

semantic information of programs, the first paper published on this point was in 2016 by Wang 

et al. (Song Wang, et al., 2016). As a result, many publications based on source code semantic 

information were not included in previous reviews. Given the practical implications 

abovementioned, this powerfully demonstrates a research gap, justifying our motivation to 

complete this review. 

 

3) SOFTWARE DEFECT PREDICTION PROCESS 

3.1 Within-project defect prediction 

In the case of the Within-Project Defect Prediction, researchers train SDP models using 

historical data from the same project and then use them to predict faults in future releases. On 

the other hand, WPDP models are built and tested in the same project (Nam, 2014). The first 

stage in building a WPDP model is creating instances from historical project data (archive of 

programs) such as version control systems, e-mail archives, issue tracking systems, etc. Based 

on prediction granularity, instances can represent a software system, a code file, package, 

function, class, and a source code modification. The instances have some features (attributes) 

extracted from historical data labeled as defective or clean. As shown in Figure 1, instances 

generated from the historical data are marked with ‘1’ (defective), ‘0’ (clean). After creating 

instances with attributes and labels, preprocessing techniques are applied to divide the datasets 

into training sets and test sets. Finally, the prediction model trains on the final training set, as 

shown in Figure 1. The prediction model predicts if a new instance is defective or not. 
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Here we will summarize some significant research works. Elish et al. (Elish & Elish, 2008) 

used an SVM to predict defect-prone and compared its prediction accuracy with eight machine 

learning algorithms on the NASA dataset. Lu et al. (Lu, Kocaguneli, & Cukic, 2014) use active 

learning to estimate defects; they also utilize feature compression approaches to reduce the 

features in defect data. Li et al. (M. Li, Zhang, Wu, & Zhou, 2012) proposed ACoForest, a 

semi-supervised technique that can sample the most helpful prediction modules for learning. 

Seiffert et al. (Seiffert, Khoshgoftaar, Van Hulse, & Folleco, 2014) evaluated 11 methods and 

seven data sampling approaches and discovered that data noise and class imbalance negatively 

impact the prediction accuracy. Jin.(C Jin, 2011) presented how to predict software fault-

proneness using a Quantum Particle Swarm Optimization and ANN. ANN is used to categorize 

software modules into defect-prone or non-defect-prone groups, while the QPSO reduces 

dimensionality. 

3.2 Cross-project defect prediction 

Cross-project defect prediction is a practical method to predict defects in projects with limited 

historical data or new projects (Gong, Jiang, Bo, Jiang, & Qian, 2019). CPDP model is first 

trained using existing training data from one project with a sufficient dataset and then used to 

predict the defects of a new project with a limited dataset (Cong Jin, 2021a).  

Figure 1 : Process of software defect prediction (Song Wang, Liu, & Tan, 2016) 

 

The main challenge in CPDF is transferring efficient metrics from a source project. And using 

these features to create the prediction model in a target project. These problems are because 

the development languages, application scenarios, and the developers' skills of the source and 

target projects are often quite different (Zhu, Zhang, Ying, & Wang, 2020). 

Despite the distinctions mentioned above between various software systems, there are some 

similarities, such as similar coding styles, the same development language, architecture 

similarity, etc. These similarities indicate the connection between source and target projects. 

Figure 1 shows the main processes of CPDP model and how the dataset is generated and 

extracted. Many CPDP models have recently been presented, and many academics have paid 

attention to them; some significant research efforts will be listed below. Jin (Cong Jin, 2021a) 

used kernel-twin support vector machines for performing domain adaptation to meet various 

training data distributions. In this study, the author used KTSVMs with domain adaptation 

functions as the CPDP model. Ryu et al. (Ryu, Choi, & Baik, 2016) studied whether class 

imbalance training can assist with CPDP models. The similarity weights and cost of 
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asymmetric misclassification generated from distribution features are strongly linked in their 

approach to determining the optimal resampling strategy. Zhang et al. (F. Zhang, Zheng, Zou, 

& Hassan, 2016) used three public datasets (AEEEM, NASA, and PROMISE) from 26 projects 

to compare the achievement of supervised and unsupervised classifiers. Among five supervised 

classifiers (decision tree, random forest, logistic regression, naive Bayes, and logistic tree 

model) and five unsupervised classifiers (fuzzy C-means, partition medoids, k-means, spectral 

clustering, and neural gas), their proposed connectivity-based classifier is regarded as one of 

the best.  

Zimmermann et al. (Zimmermann, Nagappan, Gall, Giger, & Murphy, 2009) investigated 

CPDP models on a large scale. Their research employed cross-project to provide 622 

predictions on 12 real-world systems. Their findings suggested that CPDP is a challenging task 

and that relying on models from similar projects in the same field or studies utilizing the same 

approach would not produce reliable results. Turhan et al. (Turhan, Menzies, Bener, & Di 

Stefano, 2009) also investigated CPDP. They get results similar to Zimmermann et al. 

(Zimmermann, et al., 2009) in a first experiment, a defect prediction model trained from one 

project performs poorly on future projects, especially in terms of the false positives rate. After 

a deeper investigation, they discovered that the bad results were due to irrelevant details; for 

example, the model learned much irrelevant information from previous projects. As a result, 

Turhan et al. (Turhan, et al., 2009) used a relevancy filtering strategy, which significantly 

reduced the number of false positives. The feasibility of CPDP is another exciting issue. 

According to most reviewed research, CPDP is challenging to produce, and only a few CPDP 

combinations work. There have been several studies on the feasibility of CPDP; He et al. (Z. 

He, Shu, Yang, Li, & Wang, 2012) studied the feasibility of CPDP, concentrating on training 

data selection and defect prediction in a cross-project scenario. Table 1 shows the list of studies 

was made on within/cross projects. 

Table 1: List of studies was made on within/cross projects 
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4) AVAILABLE DATASETS AND EVALUATION MEASURES 

4.1 Available datasets 

Researchers created several public defect datasets and used them to train defect prediction 

models. Based on these datasets, defect prediction models can predict either defect-proneness 

(classification) or the defect count (regression). In this review, we collected the most used 

defect datasets. Table 2 summarizes the commonly used datasets. 

Table 1 : Summary of datasets 

 

4.2 Evaluation measures 

The prediction model has four possibilities for predicting the result of a code change: 1) predict 

a defective code change as a defect (True positive, TP); 2) predict a defective code change as 

no defect (False Positive, FP); 3) Predict a nondetective code change as no defect (True 

Negative, TN); 4) Predict a nondetective code change as defective (False Negative, FN) (Abdu, 

et al., 2022). According to these four possibilities, the prediction model results in the test set 

and can calculate the performance indicators such as recall, F-measure, precision, G-measure, 

accuracy, balance, and G-mean. 

Precision refers to the proportion of all correctly classified defective changes to all classified 

as faulty changes; as introduced by Menzies et al. (Menzies, Dekhtyar, Distefano, & 

Greenwald, 2007), precision is a volatile performance measure when datasets have a low ratio 

of defects. 

Precision =
TP

TP + FP
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Recall:  refers to the proportion of all correctly classified defective changes to all truly faulty 

changes. This indicator is significant for defect prediction, as prediction models aim to detect 

as many false instances as possible. 

Recall =
TP

TP + FN
 

F-measure: It is a comprehensive performance indicator that combines the precision rate and 

the recall rate. It is the harmonic average of the precision rate and the recall rate: 

F − measure =
2 × precision × recall

precision + recall
=

2TP

2TP + FP + FN
 

G-measure: According to Peters et al. (Peters, Menzies, Gong, & Zhang, 2013), G-measure is 

the harmonic mean of recall and 1-PF, which is calculated as: 

G − measure =
2 × recall × (1 − pf)

recall + (1 − pf)
 

PF: represents specificity in Jiang et al. (Jiang, Cukic, & Ma, 2008), which is defined as: 

Pf =
FP

FP + TN
 

Accuracy: Refers to the ratio of correctly classified code changes to all code changes: 

Accuracy =
TP + TN

TP + FP + FN + TN
 

G-mean: Geometric mean is used to measure the overall predictors in the imbalanced context. 

Wang and Yao (Shuo Wang & Yao, 2013). It calculates the G-mean of recall and 1−Pf. In the 

SDP case, G-mean is defined as: 

G − mean = √recall ×  (1 − pf) 

Balance: It determines the Euclidean distance between Pf = 0 and recall= 1 on the ROC sweet 

spot. As a result, the higher balances approach the ideal sweet spot of Pf = 0 and recall= 1 more 

closely. Balance is defined as: 

Balance = 1 −
√(0 − Pf)2 + (1 − recall)2

√2
 

AUC: Area Under Curve refers to the area under the ROC curve and is a commonly used 

evaluation indicator in real-time defect prediction research (Lessmann, Baesens, Mues, & 

Pietsch, 2008). In practical applications, developers will use the output results of the prediction 

model to schedule work, and AUC is suitable for evaluating this scheduling. 

MCC: Matthews correlation coefficient is defined as the measure of true and false positives 

and negatives (F. Zhang, Mockus, Keivanloo, & Zou, 2016). With values in [-1, 1], MCC 

estimates the relation between measured and predicted binary classifications (X. Jing, Wu, 
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Dong, Qi, & Xu, 2015). MCC is defined as follows: 

MCC =
TP × TN − FP × FN

√(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
 

Table 3:  Software metrics and performance measures across the categorical studies 

 
According to the analysis of the previous studies, we can say that Precision, Recall, and F-

measure are the metrics that have been widely adopted to evaluate defect prediction techniques. 

 

5) SOFTWARE DEFECT PREDICTION BASED ON SEMANTIC FEATURES 

As an alternative to standard metric-based methodologies, semantic strategies have evolved for 

defect prediction in recent years. In 2016, Wang et al. (Song Wang, et al., 2016) supposed a 

new approach to predict defects directly from the project's source code rather than relying on 

metric generator analysis. These approaches involve employing unsupervised learning for 

fitting an obstetric model to create features that perform well for reconfiguring the source code 

as the sequential structure or abstract syntax trees in the input data set. Other classification 

algorithms will use these features similarly to metric-based defect prediction but with metrics 

replaced by the features of unsupervised learning (Abdu, et al., 2022).  

5.1 Code representation 

To work with the problem of SDP, researchers require a representation of the source code. 

Furthermore, because many machine learning approaches work with vectors, the code 

representation should be as simple as a vector. Moreover, this representation should include all 

relevant information (Song Wang, Liu, Nam, & Tan, 2018). The source code can be represented 

in different ways. Moreover, different granularities are required for different purposes; for 

example, token-level embedding is needed for code completion, but function clone detection 

requires function embedding. Different levels of granularity are used to solve SDP problems, 
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such as components, methods, classes, subsystems, and changes (Allamanis, Barr, Devanbu, 

& Sutton, 2018). 

One approach is to generate the vectors from the code handcrafted features. This method 

proposes that an expert generates a set of attributes and then determines the best among them 

(Dam, et al., 2018). Statistical code metrics are usually included in these features, such as code 

complexity, code size, process metrics, or code churn. The three types of code representation 

now in use are token-based representations, graph-based representations, and AST-based 

representations (Hua, Sui, Wan, Liu, & Xu, 2020). 

In the process of code representation based on a token, the code fragment is divided into tokens, 

and the bag of words (BOW) term is used to count the frequency of each token that appears in 

a document (Sajnani, Saini, Svajlenko, Roy, & Lopes, 2016). Since a code line generally 

includes several tokens, token-based representation demands more CPU time and memory than 

line-by-line comparison. However, token-based representation can utilize various 

transformations, by which many code segments are identified as clone pairs, and differences in 

coding style are efficiently avoided (Kamiya, Kusumoto, & Inoue, 2002). 

AST is a type of tree that is used to represent the source code's abstract syntactic structure.  It 

has been used by software engineering tools and programming languages (Baxter, Yahin, 

Moura, Sant'Anna, & Bier, 1998). Compared with the simple source code, AST is conceptual 

and does not contain delimiters and punctuation. On the other hand, AST can describe the 

source code's syntactic structure and linguistic information (J. Zhang, et al., 2019). 

In the state of code representation based on the graph control flow CFGs (Allen, 1970), such 

as program dependence graphs (Gabel, Jiang, & Su, 2008), graph representation of programs 

(Yousefi, Sedaghat, & Rezaee, 2015), and call graphs, can be used to display the structural 

information of the code. Each code representation technique is well designed to gather specific 

data that can be used alone or with other methods to produce a more extensive result. After 

completing the code representation, metrics carrying important information from the source 

code will be gathered, which can be used in code clone detection, defect prediction, automatic 

program repair, etc. (H. Wang, Zhuang, & Zhang, 2021). 

5.2 Deep learning model for software defect prediction based on semantic features 

Deep learning models is currently gaining popularity in the software defect prediction based 

on analysis source code semantic features. Figure 2 shows the deep learning model process for 

the software defect prediction based on semantic features, which displays the following main 

steps. 

 Extracting features from source code repositories to compose the defect datasets 

consisting of software metrics. 

 Performing the preprocessing on the software metrics and then acquiring the training data 

and test data. 

 The third step uses deep learning techniques such as DBN, LSTM, CNN, Transformer, 
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and other deep learning algorithms to build an SDP model. 

 The fourth step is to train a model using the training dataset; after the model is trained, 

use the test dataset to test the prediction results and do some predicting cases, i.e., predict 

whether a code module is defective or clean. 

 The last step is to evaluate the model's performance using evaluation measures, such as 

balance, recall, precision, accuracy, and other performance measures.  

Figure 2: Software defect prediction based on deep learning 

 

 

 

 

 

 

Deep Belief Network is a type of neural network that is represented as a generative graphical 

model, built up of multiple layers of implicit variables (hidden units) with links between layers 

but not between the units inside each layer (Hinton, Osindero, & Teh, 2006). Several works 

use DBN approach in defect prediction, Yang et al. (Xinli Yang, Lo, Xia, Zhang, & Sun, 2015) 

suggested a deep learning model for JIT defect prediction. Their approach uses a DBN to 

extract a collection of expressive attributes from an input set of basic change measures. It then 

uses logistic regression to train a classifier relying on the retrieved features. Wang et al. (Song 

Wang, et al., 2018) use the DBN to predict defects based on the source code semantics 

information; the authors created a DBN to learn semantic information from the source code. 

The AST and code changes of the programs are used as input for the network in the situations 

of change-level and file-level prediction, respectively.  

Long short-term memory is a recurrent neural network, and it can process entire data sequences 

and single data points (Hochreiter & Schmidhuber, 1997). LSTM unit is made of input gate, 

output gate, cells,  and forget gate. The three gates control the information flow into and out of 

the cell, and the cell recalls values across arbitrary time intervals. Dam et al. (Dam, et al., 2019) 

propose a new deep learning tree-based defect prediction model. Their model is based on a 

tree-structured LSTM network that perfectly matches the AST source code representation. As 

the code representation for statement-level SDP, Majd et al. (Majd, et al., 2020) merged the 

token sequence of each line of code with the static metric. Their study employed LSTM to 

encode these sequences, and the model outperformed the RF classifier. Deng et al. (Deng, Lu, 

& Qiu, 2020) used LSTM to learn the semantic metrics from the source code. They go through 

each file's AST and feed them into an LSTM network to automatically extract the program's 

semantic metrics, which are then used to predict the defects in the file. Shi et al. (Shi, Lu, 

Chang, & Wei, 2020) also propose a model for defect prediction based on Bi-LSTM network 
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and AST path pair representation. 

Convolutional Neural Networks are utilized to process data with a grid-like architecture 

(Goodfellow, Bengio, & Courville, 2016). This network uses a mathematical process called 

convolution instead of standard matrix multiplication. CNN mainly consists of three layers: 1) 

Convolutional layers; 2) nonlinear layers;  3) pooling layers. Many researchers explored CNN 

networks in their studies; for example, Li et al. (J. Li, et al., 2017) proposed an SDP model 

based on CNN, named DP-CNN. Their approach is based on the programs’ ASTs; token 

vectors are extracted and encoded as numerical values. They feed these numerical vectors into 

CNN to learn the semantic information of programs. After that, the semantic features are used 

for defect prediction. Hoang et al. (Hoang, Dam, Kamei, Lo, & Ubayashi, 2019) proposed a 

deep learning framework called DeepJIT. The CNN is the basis for this model. It employs 

convolutional network layers to process commits, text, and code changes, and a combination 

layer combines the two embedding vectors into one. Meilong et al. (Meilong, He, Xiao, Li, & 

Zeng, 2020) also presented a CNN model to learn source code semantic features and then use 

these semantic features for predicting defects. 

Transformer models are also used to represent source code and predict software defects, Guo 

et al. (Guo, et al., 2020) presented GraphCodeBERT, a multilayer transformer framework. It 

uses three main components as input: source code, data flow graph, and paired comments. It 

assists with code clone identification, translation, refinement, and other downstream code-

related processes. 

More defect prediction methods based on semantic features using deep learning models were 

proposed; Qiao et al. (Qiao, Li, Umer, & Guo, 2020) introduced a new method to predict the 

fault count in software systems using deep learning techniques. They started by performing 

data normalization on an available dataset. They are then modeled the data to get it ready for 

the DL model. Finally, they fed the processed data into a neural network to predict the fault 

count. Tong et al. (Tong, Liu, & Wang, 2018) introduced SDAEsTSE, a new SDP approach 

that combines SDAEs and ensemble learning, especially the suggested two-stage ensemble 

learning (TSE). The two main phases of their method are the deep learning phase and TSE 

phase. They first employ SDAEs to extract DPs from standard software features and then 

propose TSE as a novel ensemble learning strategy to address the problem of class imbalance. 

Zhao et al. (Zhao, et al., 2019) introduced a defect prediction model called Siamese parallel 

fully connected network, which combines the benefits of deep learning and Siamese networks 

into a single method. The AdamW method is used to train this model and determine the best 

weights. 

Zhou et al. (Zhou, et al., 2019) proposed a new SDP model based on deep forest (DPDF). Deep 

learning and ensemble learning are fully utilized in this design. This model detects more 

significant defect features using a new cascade method, transforming random forest classifiers 

into a layer-by-layer design. Fan et al. (Fan, Diao, Yu, Yang, & Chen, 2019) proposed an SDP 

model using attention-based RNN. Their model generates semantic information from the 

source code and then uses them in predicting defects. Xu et al. (J. Xu, Wang, & Ai, 2020) 

provided a model for predicting software defects based on graph neural networks (GNN-DP), 
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detecting software defect patterns that combine semantics and context information. GNNs are 

used in GNN-DP to collect semantic information to predict defective modules. In addition, 

their approach combines code concepts and semantic information to capture defect patterns in 

specific contexts. 

  

6) CHALLENGES AND FUTURE DIRECTIONS IN SOFTWARE DEFECTS 

PREDICTION 

Based on the results of the previous and current studies, in this part, we will discuss some 

challenges and future trends in software defect prediction. 

 Semantics information of the source code and unlabeled dataset.  

Nowadays, deep learning models can process long texts, such as source code. Unlike 

handcrafted features, source code semantics features are collected bottom-up, including 

semantics information and the source code structure. As a result, the dimension of labeled 

datasets will be reduced; and the unlabeled data will be used to pretrain the associated activities, 

allowing trained models to grasp the source code more deeply and thoroughly. This procedure 

will enable the detection of more profound defects. 

 Defect prediction in mobile applications. 

 Mobile applications have received widespread attention because of their characteristics of 

simplicity, portability, timeliness, and efficiency. The business community is constantly 

developing office applications and mobile applications suitable for various application 

scenarios. Therefore, the importance of mobile applications is self-evident. The type of device 

on which the application is installed and used, the size and application complexity, and the 

operating system are significant differences between mobile and desktop applications. Current 

defect prediction methods mainly focus on desktop applications, and it is still unknown whether 

these methods apply to mobile applications. Therefore, it is necessary further to explore the 

applicability of existing approaches in mobile applications.  

 Study severity of software defect reports.  

At present, most defect prediction models give whether a module has defects. Still, there are 

few studies on the number of defects in a specific module and the severity of the defect severity 

of the module. Further research on a range of classification and prediction challenges is 

required to perform systematic analysis and research on the severity of software defect reports. 

Thus, researchers should give a lot of attention and focus on the accurate, comprehensive, and 

efficient evaluation of the severity of defect reports in the maintenance of large open-source 

projects. 

 Cross-project defect prediction in closed source software projects.  

In cross-project SDP, various new techniques proposed by researchers are based on open-

source software projects. However, there are significant distinctions between open and closed 

source software (such as commercial software). For example, the details of code 
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implementation in closed source software are not disclosed. Therefore, whether the existing 

cross-project defect prediction methods are suitable for closed-source software projects 

remains explored.  

 

7) CONCLUSION 

In software engineering, SDP is a significant challenge. Defect prediction models can enhance 

the quality of software systems while also decreasing the cost of delivery. Early in the software 

lifecycle, using SDP models allows developers to focus their testing efforts such that parts 

classified as "prone to defects" are checked more thoroughly than other parts of the software 

project. As a result, various SDP studies have been published. According to our review of more 

than 165 previous studies, some have provided promising results helpful in this field. Still, 

many were less valuable than they could be and offered insufficient contextual information to 

fully comprehend the model.  

This review also presents the recent research progress in SDP using deep learning algorithms. 

We describe the primary challenges of the defect prediction issue as code representation and a 

lack of data, and we explore how to deal with these issues. A defect is usually not specific to a 

small function or line of code, and it can be fixed in various ways. For example, a defect can 

be corrected either inside the code or when calling it. As a result, the fault no longer has exact 

coordinates inside this source file. Furthermore, if a line of code is not an explicit defect, it can 

become defective over time. The purpose of the code may change due to the changed context, 

and the previous implementation may no longer match the modern requirements or 

specifications. 
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