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ABSTRACT

The emergency department (ED) of a hospital is an important unit that deals 
with time-sensitive and life-threatening medical cases. Rapid treatment and 
accuracy in diagnosis are considered the main characteristics of excellent 
operational processes in ED. However, in reality, long waiting time and 
uncertainty in the diagnosis has affected the quality of  ED services. Nonetheless, 
these problems can be improved by utilising computing technologies that 
assist medical professionals to make fast and accurate decisions. This paper 
investigates the issues of under-treatment and uncertainty condition of acute 
asthma cases in ED. A novel approach, known as the fuzzy logic principle 
is employed to determine the severity of acute asthma. The fuzzy set theory, 
known as Fuzzy Rule-based Expert System for Asthma Severity (FRESAS) 
determination is embedded into the expert system (ES) to assess the severity 
of asthma among patients in ED. The proposed fuzzy methodology effectively 
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manages the fuzziness of the patient’s information data, and determines the 
subjective judgment of medical practitioners’ level on eight criteria assessed 
in severity determination. Knowledge acquisition and representation, 
fuzzification, fuzzy inference engine, and defuzzification are the processes 
tested by the FRESAS development that incorporates expert advice. The 
system evaluation is performed by using datasets that were extracted from the 
ED clerking notes from one of the hospitals in Northern Peninsular Malaysia. 
System evaluation demonstrates that the proposed system performs efficiently 
in determining the severity of acute asthma. Furthermore, the proposed system 
offers opportunities for further research on other types of diseases in ED, and 
improves other hybridisation approaches. 

Keywords: Emergency department, acute asthma, fuzzy rule-based.

INTRODUCTION

The emergency department (ED) is a unit in the hospital that assesses and 
treats unscheduled patients arriving for immediate treatment. Apart from 
conducting emergency treatments, accurate diagnosis is also a critical aspect 
of excellent services in the ED. With the evolution of computerised systems, 
the incorporation of an expert system would assist medical decision-making 
processes in ED. This paper focuses on the development of an expert system 
(ES) for asthma severity identification in the ED. The asthma cases were 
chosen as the medical domain to be investigated, instead of the many other 
cases at the ED as the boundaries of asthma studies are carefully identified. 
The adult acute asthma cases were selected to be incorporated into the ES 
due to its ability to fulfil the criteria needed for ES development, and the 
immediate need to obtain fast and accurate decisions in asthma management.                               
                                                                                                                                                                                                                                
Asthma is a well-known disease that is described as a condition when both 
chronic airways are inflamed, while increasing airway hyper-responsiveness 
that leads to the narrowing of the airways, thickening of the airway wall 
and increase of mucus formation. It is usually observed through the typical 
symptoms such as wheezing, chest tightening and shortness of breath 
(Colledge, Walker & Ralston, 2010). There are two types of asthma, which are 
acute asthma and chronic asthma. Acute asthma refers to an asthma attack that 
can last minutes or days, while chronic asthma is a lifetime disease. In addition, 
acute asthma is diagnosed as asthma flare-up, exacerbation, or an attack that 
is typically seen in the ED, that is usually diagnosed as chronic asthma if 
the symptoms are persistent. In managing acute asthma cases, determining 
the severity of asthma is essential to prescribing the suitable medicine and 
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treatment. An incorrect acute asthma severity identification may lead to under-
treatment, and  would worsen the asthma. Therefore, the purpose of this paper 
is to develop a fuzzy rule-based expert system that is  capable of determining 
the severity of asthma in the ED. The developed system may help the triage 
officer to hasten the diagnosing process, and eventually help the patient to 
obtain the correct treatment. 

The subsequent sections will be thoroughly discussed in this paper. In the 
following sections, literature review and the methodology applied in the study 
are presented. The results from the proposed system are discussed, and a brief 
conclusion is provided. 

RELATED WORK

Asthma Diagnosis in Emergency Department

Asthmatic patients assume that the ED is the only place to seek emergency 
treatment, instead of other primary care providers due to the easy access to 
ED (The National Healthcare Statistics Initiative, 2015).  It has been reported 
that 1.8 million asthmatic patients have had emergency visits to ED every year 
in the United States, where female patients have had the highest visiting rate, 
from all age groups (Ginde, Espinola & Camargo, 2008; Fernandes, 2015). In 
Europe, 23.9% of asthmatic patients were reported to have emergency care 
visits yearly (Price, Fletcher & van der Molen, 2014). Furthermore, about 38% 
of asthma patients in eight Asian countries including Malaysia had sought out 
asthma treatments in ED (Price et al., 2015). Respiratory cases are the most 
common emergency case chief complaints, that made up 40% of ED visitors, 
and has indicated that almost 34.6% of common diagnosis in ED is the acute 
exacerbation of bronchial asthma (Ginde, Espinola & Camargo, 2008).

An ED is one of the most important department in a hospital that does not 
only receive asthma cases to be treated, but accepts various other diseases and 
emergency cases. Throughout the years, it has been reported that the number 
of ED visits had risen dramatically since 2009, from 7.143 million patients to 
9.362 million patients in 2013 (The National Healthcare Statistics Initiative, 
2015). The rise in cases and diagnoses over the years from high-acuity 
patients, and the increase in the number of patients in ED as led to several 
critical issues of poor quality service such as overcrowding, long waiting 
time, overutilisation of emergency service, and high variability and potential 
for medical error (Hitchcock, 2011; Hoot & Aronsky, 2008; Ismail, Karim, 
Majid & Saiful, 2009; Richardson & Mountain, 2009). Hence, the increasing 
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pressure exerted on health practitioners to deliver swift, efficient, and precise 
diagnosis, has forced them to find alternatives to streamline the delivery of 
high-quality medical care to their patients (Agrawal, & Kosowsky, 2009).

Many issues at ED, such as long waiting time and the uncertainty conditions 
create an extremely high-pressure department that are required to perform 
speedy treatments and produce highly accurate diagnosis (Sinclair & Croskerry, 
2010; Ahmad, Ghani, Anton, Tahar & Teo, 2012). Asthma exacerbation 
severity determination is an important procedure during the triage process 
in ED for the immediate treatment to reduce the possibility for the disease to 
worsen, and the delay for treatment may lead to death (Broaddus et al., 2016). 
Adherence to asthma management guideline in ED has shown improvement 
in clinical care (Scribano, Lerer, Kennedy, & Cloutier, 2001). However, not all 
healthcare practitioners routinely adhere to asthma guideline recommendations, 
due to several limitations such as obstacles in organisations that lack protocol 
in the implementation strategy, and after all, belief and attitude of healthcare 
practitioners contribute to a major factor of guideline disobey (Wahabi & 
Alziedan, 2012). In addition, a study has indicated that the implementation of a 
decision support system can be conducted to influence healthcare practitioners 
towards asthma guideline, rather than through feedback and auditing Okelo 
et al., (2013). During asthma severity identification, one of the challenges in 
asthma management is that the asthma is classified based on the historical 
symptom patterns and evidence of obstruction in variable expository airflow 
(Levy et al., 2009). The historical data of asthmatic information are gained 
from the caretaker and involves layman linguistic terms in describing the 
patient’s condition. Consequently, this contributes to uncertainties on the 
information and possible misinterpretation of asthma conditions (Yang, 
Simons, Foty, Subbarao, To, & Dell, 2016). 

Modelling Uncertainty in the Expert System

In the case of uncertainty modelling approach, various mathematical 
approaches have been developed and introduced, such as the Fuzzy set 
theory (Zadeh, 1965), rough set theory (Pawlak, 1982) and Bayesian network 
(Spiegelhalter, Myles, Jones, & Abrams, 1999). However, the fuzzy set theory 
is considered the best-suited method in handling linguistic uncertainties 
(Zadeh, 1972), vagueness, measurement imprecision, symptomatic remedies 
and natural diversity in the acute asthma severity knowledge (Steimann, 
2001). In addition, the combination of a rule-based approach with fuzzy 
reasoning and knowledge information are utilised to examine the potential and 
possible areas for fuzzy rule-based ES implementation in medical diagnosis 
and identification (Innocent, John & Garibaldi, 2004; Sikchi, Ali, & Shkchi, 
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2013; Siler & Buckley, 2005; Zadeh, 1988). Moreover, the necessity of the 
fuzzification approach in medical diagnosis ES is to overcome the problem 
of capturing subjective or ambiguous evaluations that are made in medical 
diagnosis (Ali & Singh, 2010). Additionally, the fuzzification approach leads 
to better outcomes compared to the conventional practice, whereby doctors 
in ED usually refer their patients to other experts, thus establishing the 
need for practical guidelines in decision making. The application of this ES 
system would assist in decision making processes as the expert knowledge 
has already been embedded into the system. The linguistic terms commonly 
used by patients to describe their condition are general and vague. Hence, 
the fuzzification approach is capable of converting the linguistic terms into 
valuable information for disease identification. 

Historically, ES is a clause for Artificial Intelligence (AI) software that was 
established for real-world usage since the 1970s. However, the study of AI 
philosophy had started 2000 years ago with a variety of vicissitudes in the 
research field, where at last the first recognised ES, known as DENDRAL was 
invented by Edward Albert Feigenbaum in 1965 (Buchanan & Feigenbaum, 
1978; Leondes, 2002), and was subsequently followed by MYCIN (Shortliffe, 
1976), XCON (McDermott, 1980) and many more. Since the introduction of 
these concept on a knowledge-based system or ES, various other ES were 
created. As ES is analogues to human behaviour on reasoning knowledge and 
problem-solving skills, this has led to a high demand of intelligent computer 
programs in diverse areas such as engineering, manufacturing, medicine, 
management, military, education, training, and many more (Feigenbaum, 
1977; Tan, Wahidin, Khalil, Tamaldin, Hu, & Rauterberg, 2016). In the field 
of security, various organizations have implemented ES to overcome several 
issues, such as shoplifting (Mohd Zahari & Zaaba, 2017). With the extension 
of various methods and techniques that have been utilised, the medical field 
has provided the opportunity for the development of ES.

Fuzzy Expert System for Diagnosing Asthma 

From literature, the utilisation of fuzzy rule-based method as a decision 
support system for disease diagnosis and identification were explored, and a 
comprehensive review has been conducted by several studies which indicated 
the extended use of this methodology in the medical area (Mishra, 2014; Mishra 
& Jha, 2015; Seising, Schuh & Adlassnig, 2003). The employment of fuzzy 
ES in the asthma case is common with several published papers, specifically 
in dealing with asthma cases that have started during pre-treatment of medical 
consultation till the predictions on the fatal causes of asthma. In 2007, Lurie 
and her team applied the fuzzy technique in assessing patient’s perception on 
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asthma severity, and compare them with the GINA 2006 guidelines (Lurie, 
Marsala, Hartley, Bouchon-Meunier & Dusser, 2007). 

In 2009, Computer-aided Intelligent Diagnostic System for Bronchial Asthma 
(CAIDSA) was designed and developed by a research team from India. It 
is the first interactive computer-aided intelligent diagnostic system for the 
investigation of the type of asthma evaluation and its degree of severity. The 
system performance obtained an accuracy of 90.03% (Chakraborty, Mitra, 
Mukherjee & Ray, 2009). However, this research implemented neural network 
approach, where the hidden layers are unable to provide a clear explanation on 
the choice of answers that were made. In clinical practise, every decision taken 
should be deeply understood and presented with strong evidences. On the other 
hand, a group of researchers had utilised the Fuzzy Rule-based Expert System 
(FRES) to determine the degree of possibility of asthma at initial stages, 
where the results suggested a 94% sensitivity and 100% specificity in 2010. 
In addition, the authors modified the FRES approach according to a different 
scope of study that predicted fatal asthma by determining the degree of asthma 
instability. However, more data was needed to validate the performance of their 
model. In 2012, the authors extended the implementation of FRES in classifying 
asthma diagnosis, evaluation, management, communicative facilities and 
prediction to assess the level of asthma exacerbation. Furthermore, the same 
approach was implemented to determine the level of asthma control with 
main features in order to decrease the cost of examination in asthma therapy 
processes (Zarandi, Zolnoori, Moin, & Heidarnejad, 2010; Zolnoori, Zarandi,  
Moin & Taherian, 2012; Zolnoori, Hossein, Zarandi & Moin, 2010; Zolnoori, 
Zarandi & Moin, 2012). Later, a team of Indian researchers had developed 
and implemented an ES for detecting and estimating diseases that are related 
to the lungs. The system distinguished patients based on their symptoms and 
performed diagnosis with the appropriate pulmonary disease, which were 
either asthma, tuberculosis or chronic obstructive pulmonary disease (COPD) 
(Anand, Kalpana, Vijayalakshmi, Hartley & Boucho-meunier, 2013).  

Most of the aforementioned studies in the fuzzy ES field were conducted in 
different countries, however, limited studies have been carried out in the local 
context, especially in Malaysia. Although some researches have conducted 
studies on asthma severity, no studies have been found that implemented the 
full criteria suggested by the current guideline, which makes the emergency 
department of hospitals the perfect setting for system evaluation. To the best 
of our knowledge, this study is the first in Malaysia that applies the GINA 
2017 guideline into a computerised  system. To implement an ES in ED, the 
system must possess the ability to be a fast decision support system that can 
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handle uncertain conditions. There are many suitable methods to develop an 
ES, however for the acute asthma problems, the rule-based deduction method 
is considered, due to the following existing criteria of the case problem:

i.	 The main requirement for the application of this method is that the 
underlying knowledge must be organised, whereby the asthma severity 
identification has been inputted by an authorized health organization 
with the corresponding guidelines. 

ii.	 The classification of asthma severity are classified in distinct categories, 
where a table format guideline to determine the asthma severity can be 
referred from Global Initiatives for Asthma (GINA) 2017. 

iii.	 In order to assess the asthma severity, small context dependence 
is employed as one of the criteria that is applied into the rule-based 
method in ES. 

iv.	 Rules are the universal knowledge representation technique that are 
applied in ES development (Tripathi, 2011).

The key contribution of this paper is the development of a virtual system 
that implements the current asthma guidelines to initiate early treatment 
procedures on patient’s asthma condition. The proposed approach is applied 
during the triage process when there are usually no medical doctors allocated 
at this stage. Thus, the system would assist medical assistants to manage the 
asthmatic patients correctly based on the guidelines embedded in this expert 
system. Hence, this would improve the system management, mainly on time 
management and the handling of uncertain issues.

METHODOLOGY

This section discusses the research framework that was adapted from the Expert 
System Development Life Cycle (ESDLC) (Liebowitz, 1997). This section is 
structured as follows: definition of knowledge acquisition and representation, 
procedures carried out for model development, and model evaluation. 

Knowledge Acquisition and Representation 

Knowledge Acquisition (KA) is a process of extracting, structuring and 
synchronising knowledge that were gathered from various sources such as 
by experts in the domain of interest, textbooks, technical papers, databases, 
reports and the environment. The process of KA on acute asthma information 
began with self-reading on the issues of asthma by researching information 



Journal of ICT, 18, No. 4 (October) 2019, pp: 415-438

422

from the internet, as well as referring to medical books and journals. The 
objective of self-reading is to identify key areas and examine case studies on 
the acute asthma cases, and to obtain a basic understanding of the medical 
terms used in asthma cases. 

Subsequently, a semi-structured interview method was applied with multiple 
interview sessions with three academicians that specialised in mathematics 
and expert system field, one respiratory specialist, one clinical researcher and 
the Head of Emergency Department from one of the hospitals in Northern 
Malaysia. This group of people are called domain experts. The semi-
structured interview questions were designed based on the information gained 
through self-reading, that included an open-ended question regarding asthma 
diagnosis and management. The first meeting was conducted to identify the 
common practices in handling acute asthma cases in local ED and determine 
the most significant assessment used in the classification of asthma severity. 
Several local association and guideline in managing acute asthma have 
been introduced such as the Global Initiative for Asthma (GINA), Asthma 
Council Malaysia (ACM) and Clinical Practice Guideline (CPG) for asthma 
management. The information gathered from the first meeting was analysed 
extensively to determine its correlation with the self-reading information. This 
process is conducted to ensure the originality and validity of the knowledge 
that are implemented into the expert system. Further meetings were organised 
to refine the case problem and reexamine the rules that were briefly constructed 
at the first meeting. After a lengthy discussion, a list of eight input parameters 
were decided to be used in the model development for Fuzzy Rule-based 
Expert System for Asthma Severity determination (FRESAS) based on the 
main GINA guidelines, whereby the output parameter diagnoses the severity 
of acute asthma as either moderate or severe acute asthma. 

On the other hand, Knowledge Representation (KR) is the process of 
knowledge transformation that have been verified and gained through 
knowledge acquisition, which produces information that are computable. The 
knowledge gathered is presented in the form of a mathematical formulation. 
The mathematical formulation for this FRESAS model consists of fuzzy sets, 
membership function (MF), and fuzzy rule-based engine. A fuzzy set is a pair 
that are denoted as                where A  is a set of all input variables. 

Model Development 

Model development is a significant part of this study. FRESAS is developed 
based on two integrated techniques, which are fuzzy set theory and rule-
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based ES. In the fuzzy-based approach, Figure 1 shows the components 
of the proposed FRESAS method that consists of a fuzzy knowledge base, 
an inference engine that includes fuzzification, fuzzy inference rule, and 
defuzzification (working memory and user interface). Each of the FRESAS 
component development are elaborated in the next section. 

System Inputs Variable

Based on the knowledge acquisition process, there are a total of 13 inputs, 
where eight main input parameters were considered for the fuzzy system and 
five additional compulsory inputs were assessed to fulfil the final value of 
Peak Expiratory Flow (PEF). Through the inclusion of the PEF variable, in 
common medical practice, the normal PEF value was analysed from the current 
EU standard (EN 13826) PEF graph, and the resulting value obtained was 
compared to the measured peak flow meter. In current practice, the percentage 
of PEF is calculated manually however, FRESAS provides a support system 
that calculates the PEF value automatically based on the individual patient 
criteria. Figure 2 shows the relationship of input variables between fuzzy 
model inputs and the necessity for additional system inputs.

Fuzzy Knowledge Base

The fuzzy knowledge base of FRESAS is developed with the help of the 
medical experts’ past experiences as well as references to the current asthma 
guideline. The preliminary rules were formed and verified by the expert, and if 
there were any conflicts, it was resolved by a consensus. The final rules were 
written in the format of <IF (antecedent) THEN (consequent)>. An example 
of the resulting rule statement is as follows:

Figure 1. The components of FRESAS.
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If (Alertness is Absent) and (Talk is Phrases) and (Auscultation is Audible 
Wheeze) and (Sit is Sits Up) and (Accessory Muscle is No) and (PEF is 
>50(low risk)) and (PR is 100-120(medium)) and (SpO2 is >90) and (RR is 
Increased) then (Asthma Severity is Mild) (1) 

When the previous condition is satisfied, then the rule is triggered and the 
action of the consequent is performed. A total of 216 rules statement for 
FRESAS were constructed. 

 Figure 2. Distribution of system’s inputs variable. 
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are transformed into a membership grade of the fuzzy sets. The input parameters 
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A linguistic variable is the value determined on the words or sentences uttered 
naturally. In general, the linguistic variable is of proportional nature, whereas 
fuzzy set constitutes the linguistic variables in fractional values, between the 
ranges of 0 to 1. In this study, the linguistic variables for each fuzzy variables 
are shown below. 
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Conscious level ξ {Not agitated,Agitated} 
Talk ξ {Phrases,Words} 
Sit ξ {Prefer to sit,Sits hunched forwards} 
Accessory muscle ξ {Not used,Being used} 
PEF ξ {Low risk,High risk} 
Pulse rate ξ {Low risk,High risk} 
Oxygen saturation level ξ {Low risk,High risk} 
Respiratory rate ξ {Increased,High risk}

The domain expert defines these linguistic variables to coincide with the 
medical terms used. Each fuzzy variable has its universe of discourse presented 
in various interval range value. Among the various membership function, 
the trapezoidal membership function was employed in this system due to its 
generality and capacity to contain more fuzzy information. Furthermore, due 
to the natural description of certain fuzzy variables such as oxygen saturation 
levels for which the values are read in a range, the trapezoidal graph was 
determined to be the most suitable representation for oxygen saturation levels 
in the fuzzy model. The identification of the memberships of each linguistic 
variable for each input variables were then transferred into the Fuzzy Logic 
Designer toolbox in Matlab. Figure 3 to Figure 10 depict the membership 
function graphs for the eight (8) inputs. 

Figure 3. Graph of the membership 
function for conscious level.

Figure 4. Graph of the 
membership function for talk.
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝜉𝜉 {𝐿𝐿𝐿𝐿𝐿𝐿 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟} 

𝑂𝑂𝑂𝑂𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜉𝜉 {𝐿𝐿𝐿𝐿𝐿𝐿 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟} 
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The domain expert defines these linguistic variables to coincide with the medical terms used. Each fuzzy 

variable has its universe of discourse presented in various interval range value. Among the various 

membership function, the trapezoidal membership function was employed in this system due to its 

generality and capacity to contain more fuzzy information. Furthermore, due to the natural description of 

certain fuzzy variables such as oxygen saturation levels for which the values are read in a range, the 

trapezoidal graph was determined to be the most suitable representation for oxygen saturation levels in 

the fuzzy model. The identification of the memberships of each linguistic variable for each input variables 

were then transferred into the Fuzzy Logic Designer toolbox in Matlab. Figure 3 to Figure 10 depict the 

membership function graphs for the eight (8) inputs.  
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Figure 5. Graph of the membership 
function for sit.

  Figure 6. Graph of the 
membership function for   
accessory muscle.

Figure 7.  Graph of the membership 
function for PEF.

Figure 8. Graph of the 
membership function for pulse 
rate (PR)

 

 

 

 

 

Figure 5. Graph of the Membership Function for Sit. 

 

   Figure 6. Graph of the Membership Function for   

Accessory Muscle. 

 

 

Figure 7.  Graph of the Membership Function for 

PEF. 

 

Figure 8. Graph of the Membership Function 

for Pulse Rate (PR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graph of the Membership Function for Sit. 

 

   Figure 6. Graph of the Membership Function for   

Accessory Muscle. 

 

 

Figure 7.  Graph of the Membership Function for 

PEF. 

 

Figure 8. Graph of the Membership Function 

for Pulse Rate (PR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graph of the Membership Function for Sit. 

 

   Figure 6. Graph of the Membership Function for   

Accessory Muscle. 

 

 

Figure 7.  Graph of the Membership Function for 

PEF. 

 

Figure 8. Graph of the Membership Function 

for Pulse Rate (PR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graph of the Membership Function for Sit. 

 

   Figure 6. Graph of the Membership Function for   

Accessory Muscle. 

 

 

Figure 7.  Graph of the Membership Function for 

PEF. 

 

Figure 8. Graph of the Membership Function 

for Pulse Rate (PR) 

 

 

 

 

 

 

 

 



427

Journal of ICT, 18, No. 4 (October) 2019, pp: 415-438

Figure 9. Graph of the membership 
function for blood oxygen 
saturation levels (SpO2).

Figure 10. Graph of the 
membership function for 
respiratory rate (RR)

An example of the fuzzy membership expression for conscious level is 
represented in Equation 1.

Conscious level input; 

(1)

At this stage, the system identifies the linguistic variable selected in the user 
interface and matches it with the x-axis of the membership function graph 
of the fuzzy inference system. The value from the x-axis of the membership 
function graph is then mapped on the y-axis to obtain the fuzzification value, 
i.e. the confident level of the linguistic variable chosen. The results of the 
fuzzification outputs will then undergo the fuzzy logic operation process. 

Fuzzy Inference Engine

In general, the inference engine is used to make an inference or reasoning. This 
method determines the rules that are needed for selection, by matching the 
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1, 𝑥𝑥 < 2

4 − 𝑥𝑥
2 , 2 ≤ 𝑥𝑥 < 4  

𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) =  {
𝑥𝑥 − 2

2 , 2 < 𝑥𝑥 < 4
1, 𝑥𝑥 ≥ 4
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facts from the fuzzification process output and fuzzy knowledge base which 
are organized based on priority, and then executed. The Mamdani-style was 
implemented due to its ability to present humanistic experiences thoroughly 
and illustrates the knowledge from a broader perspective. 

In a part of the inference engine, there is a fuzzy operator which is responsible 
for combining the input of the fuzzy system. There is more than one input 
to be combined with the antecedent part of IF-Then rules. Hence, the fuzzy 
operator applied is based on the multivalued logic specifically focusing on min 
operation where it will present only one value that represents the antecedent 
part of the rule. The intersection of the fuzzy set min operation for FRESAS 
is presented in equation (2).

Let                    be the membership functions that define the fuzzy sets  A until H, 
respectively on the universe X. A until H denotes the eight fuzzy inputs. The 
intersection of fuzzy sets  A until H is a fuzzy set defined by the membership 
function below:

(2)

The result of the fuzzy operation determines the single output for antecedent, 
and continues to evaluate the consequent part of the overall rule statement.

The implication is a process to obtain an output from the following IF-THEN 
rule, after receiving outputs from the antecedent part as an implication input. 
Min method is used for the implication of the latter part which decreases 
the fuzzy set output. The implication is also applied to each of the rules in 
FRESAS. Therefore, in the process to defuzzify the results of FRESAS, the 
aggregation process is assigned to combine each output of the fuzzy set rule 
into a single fuzzy set. The input for the aggregation process is the list of the 
decreased output functions that are returned from the implication process for 
each of the rules. Subsequently, FRESAS implemented a sum built-up method 
for the aggregation procedure. 

Defuzzification Process 

As the aggregation output is defined within a range value, the defuzzification 
process is required to resolve the single number into a model output. FRESAS 
applied a widely utilized defuzzification method known as centroid, which 

Fuzzy Inference Engine 

In general, the inference engine is used to make an inference or reasoning. This method determines the 

rules that are needed for selection, by matching the facts from the fuzzification process output and fuzzy 

knowledge base which are organized based on priority, and then executed. The Mamdani-style was 

implemented due to its ability to present humanistic experiences thoroughly and illustrates the knowledge 

from a broader perspective.  

With regards to the inference engine, the fuzzy operator is responsible for combining the inputs in the 

fuzzy system. More than one inputs are used in combination with the antecedent part of IF-THEN rules. 

Hence, the fuzzy operator applied in this approach is based on the multivalued logic that is specifically 

focused on min operation, where it will present only one value that would serve as the antecedent part of 

the rule. The intersection of the fuzzy set min operation for FRESAS is presented in Equation (1.9).  

Let 𝜇𝜇𝐴𝐴 … 𝜇𝜇𝐻𝐻 be the membership functions that define the fuzzy sets 𝐴𝐴 until 𝐻𝐻, respectively on the 

universe X. 𝐴𝐴 until 𝐻𝐻 denotes the eight fuzzy inputs. The intersection of fuzzy sets 𝐴𝐴 until 𝐻𝐻 is a fuzzy set 

defined by the membership function below: 

𝜇𝜇𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶 ∩ 𝐷𝐷 ∩ 𝐸𝐸 ∩ 𝐹𝐹 ∩ 𝐺𝐺 ∩  𝐻𝐻(𝑥𝑥)
= 𝑀𝑀𝑀𝑀𝑀𝑀(𝜇𝜇𝐴𝐴(𝑥𝑥),𝜇𝜇𝐵𝐵(𝑥𝑥), 𝜇𝜇𝐶𝐶(𝑥𝑥),𝜇𝜇𝐷𝐷(𝑥𝑥),𝜇𝜇𝐸𝐸(𝑥𝑥),𝜇𝜇𝐹𝐹(𝑥𝑥),𝜇𝜇𝐺𝐺(𝑥𝑥), 𝜇𝜇𝐻𝐻(𝑥𝑥)) 
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computes the centre of the area under the curve into a single number. 
Mathematically, this centre of gravity (COG) is expressed as follows:

(3)

Let A  be the point representing the COG of the fuzzy set, and ab is the interval 
of the graph. The end output is represented in real value and is used to present 
the user output. Figure 11 shows the graph of fuzzy output, where the real 
value extracted from the graph and the COG formula is applied. 

The linguistic variable and equation that represent the FRESAS output are as 
follow:

(4)

 
Figure 11. Graph of the Membership Function for Asthma Severity.

Defuzzification Process  

As the aggregation output is defined within a range value, the defuzzification process is required to 

resolve the single number into a model output. FRESAS applied a widely utilized defuzzification method 

known as centroid, which computes the centre of the area under the curve into a single number. 

Mathematically, this centre of gravity (COG) is expressed as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
∫ 𝜇𝜇𝐴𝐴(𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏
𝑎𝑎

∫ 𝜇𝜇𝐴𝐴(𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏
𝑎𝑎
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Let 𝐴𝐴 be the point representing the COG of the fuzzy set, and 𝑎𝑎𝑎𝑎 is the interval of the graph. The end 
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1, 0 < 𝑥𝑥 < 4

5 − 𝑥𝑥
1 , 4 ≤ 𝑥𝑥 ≤ 5

0, 5 < 𝑥𝑥 < 10
 

𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) = {
0, 𝑥𝑥 < 4

𝑥𝑥 − 4
1 , 4 ≤ 𝑥𝑥 < 5

1, 𝑥𝑥 > 5
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fuzzy output, where the real value extracted from the graph and the COG formula is applied.  

The linguistic variable and equation that represent the FRESAS output are as follow: 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜉𝜉 {𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆} 

𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = {
1, 0 < 𝑥𝑥 < 4

5 − 𝑥𝑥
1 , 4 ≤ 𝑥𝑥 ≤ 5

0, 5 < 𝑥𝑥 < 10
 

𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) = {
0, 𝑥𝑥 < 4

𝑥𝑥 − 4
1 , 4 ≤ 𝑥𝑥 < 5

1, 𝑥𝑥 > 5
 

(1.4)  

 

 

 

 

 

 

 

Figure 11. Graph of the Membership Function for Asthma Severity. 
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To ensure the model is comprehensive and useful, a visual interface was 
developed. The visual interface system was programmed with App designer 
2.0 tool in Matlab. Figure 12 shows the user interface of FRESAS used for 
the proposed approach. After consultation with the experts, the patients are 
required to fill up all the items in the interface to obtain a valid result. The 
constructed interface is composed of three zones; Zone 1 shows the input 
variable for patients personal information, Zone 2 shows the input variable for 
the patient symptoms and health data, and Zone 3 yields the asthma severity 
diagnosis output.

 

Figure 12. The User Interface of FRESAS.

Model Evaluation

To evaluate the applicability of FRESAS,  model verification and validation 
was performed. For model verification, a series of expert consultation sessions 
were conducted to ensure that the knowledge inputted into the model would 
accurately represent the problem domain. On the other hand, for the model 
validation, 30 real cases were collected within a month, and used as evaluation 
data to validate the application and functionality of the model. This study is 
registered with the National Medical Research Registry, Malaysia (NMRR-
16-2729-32879) and was given approval by the Medical Research Ethics 
Committee (MREC), Malaysia. 
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RESULTS AND DISCUSSIONS

All 30 data were used to determine the performance of FRESAS. From the 
data collected, 57% of the subjects are female while 43% are male. Figure 
13 shows the number of male subjects based on the acute asthma severity 
with different diagnosis task. Both FRESAS and doctors’ diagnosis were 
compared to the GINA guideline. The results indicated that FRESAS was 
able to diagnose the same number of subjects, in line with the guideline. On 
the contrary, the doctors’ diagnosis task revealed over-diagnosis on moderate 
acute, and under-diagnosis on severe acute asthma severity. With the female 
subjects, FRESAS had prescribed the same diagnosis that are in line with 
the guidelines. However, the doctors’ diagnosis resulted in over-diagnosis on 
moderate acute asthma severity, and under-diagnosis on severe acute asthma 
severity (Figure 14). 

Figure 13. The Number of Male 
Subjects According to Acute 
Asthma Severity with Different 
Diagnosis Task.

Figure 14. The Number of Female 
Subjects According to Acute 
Asthma Severity with Different 
Diagnosis Task.

In this study, Cohen’s kappa was used to test the agreement between the two 
groups, which are:

1.	 Group 1: Between the FRESAS diagnosis and GINA guideline 
diagnosis. 

2.	 Group 2: Between the doctor’s diagnosis and GINA guideline diagnosis.

GINA guideline is the gold standard for asthma severity diagnosis, and was 
established as the principal guideline for asthma management in ED. For 
Group 1, the kappa result is 1.0, which indicates that the level of agreement 
between FRESAS and GINA guideline to identify asthma severity cases is 
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in perfect agreement. In Group 2, the kappa analysis output is 0.143, which 
indicates that there is no level of agreement between the doctor’s diagnosis 
and GINA guideline. Hence, the kappa analysis suggests that, with regards to 
the GINA guidelines, FRESAS has a system reliability of 100% as compared 
to doctor’s diagnosis which only has a reliability of 14%. The kappa results of 
Group 1 and Group 2 are shown in Table 2 and Table 3 respectively. 

Table 2 
 
The kappa result for group 1

Value Approximate Significance
Measure of Agreement  Kappa 1.000 .000
N of Valid Cases 30

Table 3 

The kappa result for group 2

Value Approximate Significance
Measure of Agreement Kappa .143 .129
N of Valid Cases 30

The aim of this study study is to design an expert system for acute asthma 
severity determination according to GINA 2017 guideline in the emergency 
department. The accurate evaluation in acute asthma severity has played a 
major role in medicine prescription accuracy that has subsequently led 
to more controllable asthma cases. The disregard of  some variables in 
estimating asthma severity by doctors, inherent uncertainty of variables, and 
prescription based on restrictive categories are the main reasons for the under-
evaluation of asthma. The developed FRESAS was evaluated with real data of 
acute asthma obtained from the emergency department’s medical records to 
measure the performance and effectiveness of the system. The results of the 
developed approach suggests that the built expert system of FRESAS is able 
to provide reliable and accurate diagnosis and hence, acceptable for real-time 
implementation. 

The performance of FRESAS are consistent with other asthma ES based on 
GINA guideline such as CIADSA (Chakraborty et al., 2009). The findings 
obtained in this study are similar to previous studies that have examined the 
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sensitivity and specificity of the expert system reported by Zarandi et al. 
(2010). The result of this research also matches those observed in an earlier 
study by Zolnoori et al. (2012) where the kappa result is one (1), indicating 
the agreement between the two comparison groups. In addition, a study 
suggested that the use of a computer decision support system for asthma 
was ineffective in improving patient outcomes, as the systems was rarely 
implemented by doctors and the low compliance to the advise generated by 
the system. Furthermore, the study further suggested that if the system was 
utilised comprehensively, the clinical outcomes may have improved (Matui, 
Wyatt, Pinnock, Sheikh & McLean, 2014). 

This study did not investigate the effectiveness of the FRESAS used for 
doctors to improve patient outcomes. Additionally, this study focused on the 
ability of FRESAS in determining acute asthma severity classification, instead 
of doctors compliance to utilise this expert system. Further research is required 
to investigate the behaviour and compliance of doctors to use computerized 
decision support systems, with regards to disease management.  

Furthermore, the developed expert system was not intended to replace 
doctors, but was proposed to aid and support doctors, especially junior 
doctors to determine the severity of asthma and forecasting patient’s health 
status. Based on the analysis done, doctors were reported to be less accurate 
in diagnosing acute asthma based on GINA guidelines and indicated that the 
adherence to asthma guideline is low among doctors, leading to discrepancies 
in diagnosis (Wisnivesky et al., 2008; Wahabi & Alziedan, 2012). However, 
the low adherence of the GINA guidelines may be due to the changes made 
based on clinical experiences of the patient’s current condition. In addition, 
the misleading diagnosis of doctors from GINA guidelines may not represent 
the competency of doctors, but rather the different practices that are not 
parallel to global guidelines, such as those employed in the Malaysian ED. 
The obtained results is subjected to the discretion of hospital ED management 
to initiate a suitable action for system improvements in determining asthma 
severity. Moreover, the introduction of the FRESAS diagnostic system is 
highly recommended for real-time application due to its ability to determine 
the severity of acute asthma in ED that strictly adheres to the GINA guidelines. 
This system can be applied in primary care settings, and in the general hospital 
practices as a standalone system or alongside other clinical systems. This 
approach can be used in medical research for assessing the effect of various 
risk factors on acute asthma severity levels and comparing the control statuses 
for asthmatic patients. 
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CONCLUSION

The application of an expert system in diagnosing diseases in the ED is essential 
due to the special characteristic of ED that deals with time-sensitive and broad 
spectrum of life threatening cases. This study proposed an uncertainty model 
framework, known as a fuzzy rule-based ES. A total of 30 adult asthmatic 
patients in ED participated in this study to evaluate the fuzzy rule-based expert 
system for asthma severity identification (FRESAS). The system performance 
was analyzed by using Cohen’s Kappa analysis. From the analysis, it was 
interpreted that FRESAS obtained a 100% system reliability, while doctors’ 
diagnosis obtained a 14% diagnosis reliability based on the GINA guidelines. 
Hence, FRESAS system diagnosis is successful in differentiating moderate 
and severe acute asthma severity in adherence to the GINA guidelines, as 
compared to the doctors’ diagnosis. Several limitations were identified and 
would require further study before the system can be fully utilized in the real 
world. Further experimentation of the system is still required to determine the 
validity of the system, and to obtain precise and fast outputs that ensure time 
management and system acceptance among medical practitioners.
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