Center for Space and Remote Sensing Research, National Central University

GNSS and HF radar measurements for detecting F-region irregularities in the Taiwan-Philippines sector

Prof. Dr. Lung-Chih Tsai^{1,2}

- 1) Center for Space and Remote Sensing Research, National Central University (NCU), Taiwan
- 2) GPS Application and Research Center, NCU, Taiwan

Ref 1: Tsai, L.-C., S.-Y. Su, J.-X. Lv, T. Bullett, and C.-H. Liu (2022), Multi-station and multi-instrument observations of F-region irregularities in the Taiwan-Philippines sector, *Remote Sens.*, 14, 2293, <u>https://doi.org/10.3390/rs14102293</u>

Ref 2: Tsai, L.-C., S.-Y. Su, C.-H. Liu, H. Schuh, J. Wickert, and M. M. Alizadeh (2021), Diagnostics of Es layer scintillation observations using FS3/COSMIC data: Dependence on sampling spatial scale, *Remote Sens.*, 13, 3732, <u>https://doi.org/10.3390/rs13183732</u>

ARC

The 2nd IAG Commission 4: Positioning and Applications, Potsdam, Germany, September 5~8, 2022

Contents:

- Introduction
- System Description: FS7/COSMIC2, ground-based GPS receiver, softwaredefined GPS receiver, & VIPIR (HF radar)
- Scintillation index S4 determination: dependence on sampling spatial scale / sampling rate
- Results: scintillation & ESF specifications in the Taiwan-Philippine sector
- Discussions & Conclusions

Sounding Frequency (MHz)

Corses Center for Space and Remote Sensing Research, National Central University

	First Phase Launch (no 2 nd phase mission)	
Mission Constellation	6 satellites (low inclination 24 deg, mission altitude ~550 km, & separation 60 deg)	
Mission Payload	GPS & Glonass Rx	
Science Payload	•2-band beacon •plasma drift/fluctuation sensor (~10kg, 22W)	
Launch Schedule	June 25, 2019	
Mission Duration	10 years	

FormoSat7/COSMIC2 radio occultation (RO) observations

CERSER Center for Space and Remote Sensing Research, National Central University

Yearly global occurrence distributions of scint. events (undersampling 1-Hz S4L1max > 0.1) in FS7/COSMIC2

The numbers of RO observations (in black) and scint. events (blue & red: 1-Hz S4L1 & S4L2 data, green: on-board 50-Hz data)

Five identified scintillation areas are :

A. Central Pacific Area: -20°~20° dip latitude, 160° E~130° W B. South American Area: -20°~20° dip latitude, 100° W~30° W C. African Area: -20° ~20° dip latitude, 30° W~50° E D. European Area: 30° ~55° N, 0° ~55° E;

E. Japan Sea Area: 35°~55° N, 120° ~150° E

CERSE Center for Space and Remote Sensing Research, National Central University

Yearly global occurrence distributions of scint. events (onboard 50-Hz S4L1max > 0.25) in FS7/COSMIC2

The numbers of RO observations (in black) and scint. events (blue & red: 1-Hz S4L1 & S4L2 data, green: on-board 50-Hz data)

Five identified scintillation areas are :

A. Central Pacific Area: -20°~20° dip latitude, 160° E~130° W B. South American Area: -20°~20° dip latitude, 100° W~30° W C. African Area: -20° ~20° dip latitude, 30° W~50° E D. European Area: 30° ~55° N, 0° ~55° E;

E. Japan Sea Area: 35°~55° N, 120° ~150° E

GNSS RO scintillation observation: Limb-viewing SNR, undersampling S4, & N_e profiles from FS7/COSMIC2 GPS/GLONASS RO ob. On Oct. 26, 2021

CESRSR Center for Space and Remote Sensing Research, National Central University

Scintillation index S4 determination: dependence on sampling spatial scale / sampling rate

A parabolic wave equation for field $E = u(x, \rho_t) \exp(-ikx)$ $-2jk \frac{\partial u}{\partial x} + \nabla_t^2 u = -k^2 \varepsilon_1(x, \rho_t) u,$ where -L/2 < x < L/2, and $\nabla_t^2 = \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. $-2jk \frac{\partial u}{\partial x} + \nabla_t^2 u = 0, \text{ where } x > L/2.$

The fluctuating part of dielectric permittivity and a power-law irregularity spectrum:

$$\begin{split} \varepsilon_{1}(x,\rho_{t}) &= -\frac{\left(f_{p0}/f\right)^{2} \left[\Delta N(x,\rho_{t})/N_{0}\right]}{1 - \left(f_{p0}/f\right)^{2}} \approx -\frac{e^{2}}{4\pi^{2} \varepsilon_{0} m f^{2}} \Delta N(x,\rho_{t}) \,. \\ \Phi_{\Delta N}(\kappa) &= \frac{\sigma_{N}^{2} \Gamma\left(\frac{p}{2}\right) \kappa_{0}^{p-3}}{\pi^{3/2} \Gamma\left(\frac{p-3}{2}\right)} \left(\kappa^{2} + \kappa_{0}^{2}\right)^{-p/2} \propto \kappa^{-p} \,, \text{where } p \text{ is spatial index.} \end{split}$$

Scintillation index S4 determination using the Ryton approximation

 $u(x, \rho_t) = u_0 \exp[\psi(x, \rho_t)] = u_0 \exp[\chi(x, \rho_t) - jS_1(x, \rho_t)],$

$$\begin{split} \Phi_{\chi}(0,\kappa_{t}) &= \frac{\pi k^{2}L}{4} \left[1 - \frac{2k}{\kappa_{t}^{2}L} \sin\left(\frac{\kappa_{t}^{2}L}{2k}\right) \cos\left(\frac{\kappa_{t}^{2}(x-L/2)}{k}\right) \right] \Phi_{\varepsilon_{1}}(0,\kappa_{t}). \\ \left\langle \chi^{2} \right\rangle &= B_{\chi}(0) = \iint \Phi_{\chi}(0,\kappa_{t}) d^{2}\kappa_{t} \\ &= \frac{\sigma_{N}^{2} \Gamma\left(\frac{p}{2}\right)L}{2^{\frac{p}{2}} \pi^{\frac{p+1}{2}} \Gamma\left(\frac{p-3}{2}\right)} \times \\ \iint \left[1 - \frac{1}{\pi} \frac{\kappa_{F}^{2}}{\kappa_{t}^{2}} \frac{x}{L} \sin\left(\pi \frac{\kappa_{t}^{2}}{\kappa_{F}^{2}} \frac{L}{x}\right) \cos\left(2\pi \frac{\kappa_{t}^{2}}{\kappa_{F}^{2}} \frac{(x-\frac{L}{2})}{x}\right) \right] \frac{\kappa_{0}^{p-3} k^{2-p/2} x^{p/2}}{\left(\frac{\kappa_{t}^{2}}{\kappa_{F}^{2}} + \frac{\kappa_{0}^{2}}{\kappa_{F}^{2}}\right)^{p/2}} d^{2}\kappa_{t}, \end{split}$$

The scintillation index S4: $S_4^2 = \frac{\langle (I - \langle I \rangle)^2 \rangle}{\langle I \rangle^2} \approx \frac{4 \langle \chi^2 \rangle + 24 \langle \chi^2 \rangle^2}{1 + 4 \langle \chi^2 \rangle + 8 \langle \chi^2 \rangle^2}$. $S_4^2 \approx 4 \langle \chi^2 \rangle$ for small S4.

The normalized amp standard deviation S2: $S_2^2 = \frac{\langle (u_a - \langle u_a \rangle)^2 \rangle}{\langle u_a \rangle^2} = \frac{\langle u_0^2 \exp(2\chi) \rangle}{\langle u_0 \exp(\chi) \rangle^2} - 1 \approx \frac{\langle \chi^2 \rangle + \frac{3}{2} \langle \chi^2 \rangle^2}{1 + \langle \chi^2 \rangle + \frac{1}{2} \langle \chi^2 \rangle^2} \sim \langle \chi^2 \rangle$ for small S4.

CERSER Center for Space and Remote Sensing Research, National Central University

Scintillation index S4 determination: complete $(\kappa_t > \kappa_F)$, i.e. $f_s > f_F$ or underestimated $(\kappa_t < \kappa_F)$, i.e. $f_s < f_F$

Theoretic simulations on S4 and S2 v.s. normalized wave number (κ_t / κ_F) , and the wave number of FFZ: $\kappa_F = 2\pi/D_F$

Note:
$$\langle \chi^2 \rangle = \iint \Phi_{\chi}(0,\kappa_t) d^2 \kappa_t$$

Experimental results from FS3/COSMIC Es observations on S4 (in black) and S2 (in red) v.s. κ_t / κ_F

CERSE Center for Space and Remote Sensing Research, National Central University

135 ground-based GPS receivers (left panel) from the CWB, Taiwan, and software-defined GPS receivers (right panel, green labels)

Center for Space and Remote Sensing Research, National Central University

Two-dimensional scintillation index VS_4 maps ($v_E > 0$) derived by the CWB GPS data (133 Rxs & 1-Hz) on Oct. 26,

Spectrum analyses of GPS #27 (upper), #8 (middle), & #21 (bottom) signals from the Chungli software-defined GPS receiver

the Fresnel freq
$$f_F = \frac{v}{\sqrt{2 \lambda L}}$$

	р	f _B (breaking f)	f _F (v _I =0)	V _N
GPS#27	3.59	0.1 Hz	~0.2 Hz	>0
GPS#8	3.57	0.07 Hz	~0.2 Hz	>0
GPS#21	4.36	0.15 Hz	~0.2 Hz	>0

Note: the targeted plasma irregularities moved eastward and northward, and smaller irregularity scale higher the spectral index and stronger scintillation intensity.

Correction of the sensing Research, National Central University

HF radar observations: the Hualien and Lonquan Vertical Incidence Pulsed Ionospheric Radars (VIPIRs) in Taiwan

lonogram

MF/HF RF surveillance

Cosses Center for Space and Remote Sensing Research, National Central University

ESF ionograms recorded by the Hualien VIPIR on Oct. 26, 2021

Phase 1: similar *foF2*, $h'F \downarrow =>$ PRE phase Phase 2: spread features => ESF phase Phase 3: *foF2* \downarrow , $h'F \uparrow =>$ nighttime ionosphere

nd Remote Sensing Research, National Central University

Conclusions and Final Remarks

- Fresnel frequency is an important parameter for scintillation index S4 or S2 determination to be complete or underestimated.
- A multi-station and multi-instrument system, organized and proposed for ionospheric scintillation and equatorial spread-F (ESF) specification and their associated motions in the Taiwan-Philippines sector, is ready.
- The irregularities (observed on Oct. 26, 2021) at higher latitudes should be the latitudinal mapping-out facts from lower latitudes, and there are stronger irregularities around F-layer peak because of greater conductivities.
- The targeted plasma irregularities (observed on Oct. 26, 2021) moved eastward and northward, and smaller irregularity scale higher the spectral index and stronger scintillation intensity.
- A post sunset decrement on the virtual heights of fixed-frequency ionospheric echoes could be good precursors for post sunset scintillation and ESF events caused by pre-reverse enhanced (PRE) field.

Cosses Center for Space and Remote Sensing Research, National Central University

Future works: the east-Asia VIPIR network

Cooperations:

NCU/Taiwan, KSWC/Korea, NICT/Japan, NOAA/NCEI/CIRES/USA

VIPIR sites :

- 1. Wakkanai/Sarobetsu (45.16 $^{\circ}$ N , 141.75 $^{\circ}$ E) ,
- 2. Kokubunji (35.71° N , 139.49° E) ,
- 3. Yamagawa (31.20° N , 130.62° E) ,
- 4. Okinawa/Ogimi (26.68° N , 128.15° E) , 5. Geosan (36.77° N , 127.82° E) ,
- 6. Jeju (33.50° N , 126.53° E) ,
- 7. Hualien (23.89° N , 121.55° E) ,
- 8. Longquan (22.67 $^{\circ}$ N , 120.60 $^{\circ}$ E) $\,^{\text{,}}$ and
- 9. Malina(14.61° N , 120.96°

Potential site :

Pratas island (20.7 ° N , 116.71 ° E)

Working/studying topics:

Oblique sounding observations, regional ionospheric N_e or parameter map, ionospheric irregularity and scintillation prediction, ray tracing and/or wave propagation analyses.

Thanks for your attention !

Center for Space and Remote Sensing Research, National Central University