

Automated Approach to IaC Code Inspection Using

Python-Based DevSecOps Tool

1st Nenad Petrović

XLAB d.o.o.

Ljubljana, Slovenia

 nenad.petrovic@xlab.si

Faculty of Electronic Engineering

University of Niš

Niš, Serbia

nenad.petrovic@elfak.ni.ac.rs

2nd Matija Cankar

XLAB d.o.o

Ljubljana, Slovenia

matija.cankar@xlab.si

3rd Anže Luzar

XLAB d.o.o.

Ljubljana, Slovenia

anze.luzar@xlab.si

Abstract— One of main benefits enabled by DevOps ideology

is to automatize activities and operations related to development,

testing, integration and deployment of software, to fulfill the needs

of relevant organization's goals. On the other side, quality of code,

security, together with compliance according to given standards

represent highly relevant considerations. In this paper, we present

an open-source Python-based tool with web-based graphical

interface which enables automation of static code analysis and

checks when it comes to Infrastructure as Code (IaC) scripts. The

proposed tool is evaluated in several scenarios when it comes to

terraform scripts.

Keywords— DevOps, DevSecOps, IaC, Python

I. INTRODUCTION

DevOps methodology is the trending area in software

engineering which strives to automatize the activities and

operations related to development, deployment, continuous

integration, testing and delivery of fixes, new features and

enhancements to end-users aligned with business and other

goals of the target organization [1]. For that purpose,

numerous novel concepts and workflow automation

techniques have emerged. In that context, various approaches

and auxiliary tools are adopted as means, covering various

relevant aspects, while Infrastructure as Code (IaC) [1, 2] is

one of them.

IaC represents the concept of computing resources

management (either virtual machines or network elements)

leveraging descriptive models defining the structure and

topology of the considered system. In that context, machine-

readable scripts are adopted in order to enable the automation

of related activities, instead of relying on manual

configuration and direct interaction with physical hardware

or even auxiliary interactive tools. Widely adopted industry-

level standards and tools in this area are Ansible [3], TOSCA

[4] and Terraform [5].

However, considering the fact that IaC aims describing

physical deployments, it also implies many concerns related

to security and other potential problems within IaC scripts, as

they can be the cause of potentially damage, even with fatal

consequences, especially in sensitive usage domains and

scenarios. For that reason, IaC script quality and security

inspection are identified among the critical steps of

workflows adopting DevOps principles. Therefore,

integration of security-oriented aspects in DevOps workflows

has emerged into related field, referred to as DevSecOps [6,

7].

In this paper, we introduce a Python-based tool which aims
to automatize IaC archive security inspection by aggregating
various tools in a coherent way. Additionally, in order to
speed-up the process even further, user-defined scan
configurations are adopted, while the tool is accessible via
REST API with basic graphical interface thanks to Swagger
UI. Our tool is open-source and publicly available on Git Hub
[8].

II. BACKGROUND AND RELATED WORK

In our prototype, the following IaC languages are
supported: Terraform, Ansible, Docker and TOSCA YAML.
Additionally, auxiliary syntaxes and languages which are used
to describe those services are also included, such as YAML,
Java, Python, Bash/shell scripts, HTML and JavaScript. Table
I gives an overview of similar tools integrating various IaC
checks.

TABLE I

RELATED WORKS SUMMARY

Tool Description

Checkov

[9]

Static code analysis tool for infrastructure-as-code

targeting Terraform, AWS CloudFormation, Kubernetes,

Serverless and ARM templates.

Super-linter

[10]

Part of GitHub workflow which represents a simple

combination of various linters

Mega-Linter

[11]

Open-Source tool that analyzes consistency and quality

of 47 languages, 22 formats, 18 tooling formats, abusive

copy-pastes and spelling mistakes. Generates various

reports and offers auto-fixes

Snyk

[12]

Service aiming to continuously find and fix

vulnerabilities in dependencies pulled from npm, Maven,

RubyGems, PyPI and others.

Despite the fact that IaC check integration is not entirely
new idea, our tool aims to provide the possibility to execute
combined checks over the IaC and even include checks
provided by other paid services (if the user has bought the
full/premium version of some already available vulnerability
scanner), while providing future-proof extendibility with new
check tools. Apart from the so-called linters that check if code
complies with certain standards with respect to formatting
(like indentations, spaces and similar aspects), our tool also
includes more sophisticated security checks that detect
vulnerabilities within IaC, such as terrascan and tfsec for
Terraform and Steampunk Spotter [13, 14] for Ansible.

mailto:nenad.petriovic@elfak.ni.ac.rs/%20nenad.petrovic@xlab.si
mailto:nenad.petrovic@elfak.ni.ac.rs
mailto:matija.cankar@xlab.si
mailto:anze.luzar@xlab.si

III. IMPLEMENTATION

A. Working Principle Overview

High-level working principle overview of IaC Scan Runner

is depicted in Fig. 1. First, user provides the desired IaC

archive in compressed format which is about to be checked for

vulnerabilities. After that, the archive is pre-processed in order

to check the available file types which are present inside. Once

the IaC content is analyzed, a compatibility matrix is used in

order to filter only the relevant checks for given file types

(avoid execution of irrelevant checks). Optionally, user-

specific information about the preferred checks that are

enabled are individual tool configurations (for paid services)

is retrieved from persistence layer. This way, re-use of custom

settings is enabled, so it is not required to spend time on

configuration for each archive when multiple scans are

performed. The final list of checks that will be actually

executed is determined as intersection of several factors, as

given in formula (1) below. As it can be seen, intersection of

enabled (and properly configured) checks, compatible ones

for the given set of file types detected within IaC archive is

considered.

 final_checks = enabled_checks ∩ compatible_checks(types) ()

Finally, once the scan workflow is finished, the logs of

individual checks are summarized in order to generate output

that is easily understandable by user. There are two

possibilities: 1) JSON file – which is the raw output of scan

tool, suitable for both machines and readable by humans 2)

HTML page – tabular scan result summary visualization.

Additionally, if used in persistent mode, scan results are stored

into database, so they can be browsed and visualized later as

well.

Figure 1. IaC Scan Runner general flow overview: 1 – file upload; 2 – scan

archive to detect file types 3 -compatible check list 4 -final check list 5 –

tool logs 6 – storing results into database

Finally, once the scan workflow is finished, the logs of

individual checks are summarized in order to generate output

that is easily understandable by user. There are two

possibilities: 1) JSON file – which is the raw output of scan

tool, suitable for both machines and readable by humans 2)

HTML page – tabular scan result summary visualization.

Additionally, if used in persistent mode, scan results are stored

into database, so they can be browsed and visualized later as

well.

Once the results are persisted, user is able to browse and

filter them. In order to avoid repeating scan preference by

particular user, it is possible to select the checks that will be

enabled and store project configuration which can be later

used. Additionally, scan results older than given number of

days can be periodically deleted. Use case diagram of the tool

is shown in Fig. 2.

Figure 2. Use case diagram of IaC Scan Runner

B. Scan Tool Compatibility Matrix

Scan tool compatibility matrix is leveraged in order to avoid

overall IaC archive scan time by avoiding non-compatible

checks. It is a 2D array referred to as MTxC, where rows

represent various file types (denoted as t), while columns are

relevant scan checks for that file type (denoted as c). In Table

II, the current state of compatibility matrix used within our

tool is shown. In scenario where certain file does not belong

to any of the categories from the left, than no scans will be

performed. On the other side, there is also a set of common

checks executed for every IaC archive, such as git-leaks and

git-secrets that discover disclosure of sensitive information

inside Git repositories and cloc, which as an informational tool

that counts files and distinguishes the detected file types.

TABLE II

MATRIX OF CURRENTLY SUPPORTED FILE TYPES AND CHECKS

File type

(t)

Check

(c)

Terraform tflint, terrascan, tfsec

Ansible ansible-lint, steampunk-scanner

TOSCA/

YAML

yamllint

Python pylint, bandit pyup-safety

HTML htmlhint

Java checkstyle

JavaScript ts-lint, es-lint

Docker hadolint

Shellscript shellcheck

Common git-leaks, git-secrets, cloc

Other -

C. Data Model

When it comes to data persistence layer, the relevant data

about scan results and projects configurations is stored to a

MongoDB [15] document store. The underlying data model is

depicted in Fig. 3.

User

1

ansible

yamllint

terraform

tflint
2

IaC archive Determine
compatible checks

3

Scan IaC
archive

5

6

Sorted visual
result summary

Scan result
persistence

4

Create/load
configuration

Figure 3. Simplified representation of IaC Scan Runner data model

As it can be seen, the scan results are organized by projects

with common configuration. For each of the project, the

relevant info consists of the following: 1) creatorid – identifier

of a user who created the scan project 2) time – the moment

when the project was created 3) active_config – a reference to

identifier of a configuration, as each project can have a

configuration assigned. At one point in time, project can have

up to one project configuration active. On the other side,

project configuration info consists of the following fields: 1)

parameters – a dictionary of tool-specific parameters, such as

secrets (usernames, passwords, access tokens) for scan checks

that require additional configuration 2) enabled_checks – the

list of checks that are enabled within a scan project.

D. Scan Workflow

Table II shows the sequence of steps representing pseudo-

code of the underlying scan workflow behind IaC Scan

Runner. IaC archive and response type (HTML or JSON) are

obligatory user-provided input parameters, while the list of

preferred checks and identifier of scan project are optional.

TABLE II

SCAN WORKFLOW PSEUDO-CODE

A screenshot of Swagger UI visual interface to REST API

for IaC archive scanning is shown in Fig. 4.

Figure 4. Swagger UI scan interface

E. Result Visualization

The most convenient way of result visualization fromm

user perspective is HTML page. It is generated based on the

JSON file and includes the mentioned fields, represented in

tabular form, as shown in Fig. 5.

Figure 5. HTML scan result summary

As it can be seen, the page consists of the two main parts:

auxiliary information and scan outcomes. The first one

consists of the following fields: 1) archive – name of IaC

archive file 2) run on – timestamp when scan process was

initiated 3) time spent (seconds) – overall duration of IaC

archive scanning 4) final verdict – the overall outcome of the

scan process, returning “passed” if no problems were reported

by any of the scanning tools, while it is “problems” otherwise.

On the other side, the second part deals with scan result

summarization and additionally, it includes the aspects of scan

outcome prioritization, taking into account the actual status of

the performed scans and leveraging them in context of

visualization. Therefore, the scan results will be grouped

according to the outcome in given order and colored the

following way: 1) problems – red color, shown firs 2) passed

– green, second 3) info – yellow 4) no files – grayed out,

fourth.

IV. EVALUATION

This section provides an overview of automated IaC

archive scan experiments and the achieved results. For

evaluation purposes, the execution was performed on a

Lenovo laptop, model ThinkPad P14s Gen 2, equipped with

Input: iac_archive, selected_checks, projected, response_type

Output: HTML or JSON result summary

Steps:
1. Get archive file types list;

 file_types:= get_types(iac_archive)

2. For each ft in file_types
3. Find relevant checks for ft in compatibility matrix;

 compatible_checks.append(compatibility_matrix(ft))

4. End for each

5. Get enabled checks for given scan project;

6. enabled_checks:=get_enabled(projectid)

7. Configure paid services for project;
8. additional_checks:=configure(projecti_id)

9. Disable non-configured additional checks from enabled list

10. enabled_checks:=filter(additional_checks)
11. Determine final check list

 final_checks:= selected_checks ∩ compatible_checks

12. For each check in final_checks
13. Run scan of IaC archive;

14. outcomes[scan][log]:=scan(iac);

15. Summarize outcome logs;
16. JSON_result:=summarize_results(outcomes);

17. Create HTML page;

18. HTML:=generate_html(JSON_result);
19. If(response_type is JSON)

20. Return JSON_result;

21. Else
22. Return HTML_result;

23. persist_result(JSON_result);

24. End

2.30GHz 6-core AMD Ryzen 5 PRO 5650U Processor and

16GB DDR4 RAM, running on Ubuntu 20 Linux-based

operating system.

The proposed approach was evaluated on three realistic

case study IaC archives with various types of files, two of

them provided by PIACERE project partners and the third

one from another project (not publicly available): 1) public

safety applications (Ericsson) [16]; 2) National

Interoperability Framework Portal (Slovenian Ministry of

Public Administration) [17]; 3) deep learning cloud

infrastructure tests. Table III gives the summary of

experiments and obtained experimental results, considering

the following aspects: file types covered, number of scanned

files within IaC archive, scanning duration leveraging

compatibility matrix and without it (in seconds, as average on

10 runs). The estimated time required for manual IaC archive

checks (in case of expert typing tool CLI commands for

individual checks) without using the proposed approach was

put for comparison on the other side. The time spent for IaC

archive check without relying on automated tool was order of

magnitude of minute, while the automated method does not

exceed 10 seconds.

TABLE III
EVALUATION RESULTS

IaC archive Types File

Count

Scan

comp.

[s]

Scan

[s]

Manual

scan

[s]

Public

safety [16]

Terraform

Docker

JavaScript

Shell script

15 1.37 1.64 120

Government

[17]

Ansible

JSON

Terraform

TOSCA

YAML

Shell script

130 5.13 6.69 210

Deep

learning test

Ansible

JSON

Python

YAML

56 3.91 4.93 180

V. CONCLUSION

In this paper, an automated approach to IaC archive quality

and security check using Python-based tool with REST API

is presented. According to the obtained results, it seems quite

effective, as time required for scanning does not exceed 10

seconds, which is much faster than manual approach. On the

other side, in synergy with existing IaC Scan Runner tool, the

proposed methodology is significantly more efficient

compared to manual usage of distinct tools for IaC archive

security checks. Furthermore, the adoption of compatibility

matrix reduces the time necessary for scanning more than

20% in our cases by avoiding the non-compatible checks.

Moreover, it is more beneficial for IaC archives with larger

number of files, leading to greater scan speed-up. In future, it

is planned to extend the presented framework with additional

check relying on machine learning techniques as well and

integrate within PIACERE IDE.

ACKNOWLEDGMENT

This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under Grant Agreement No. 101000162 (PIACERE).

REFERENCES

[1] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero and D. A. Tamburri,
"DevOps: Introducing Infrastructure-as-Code," 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), pp. 497-498, 2017. https://doi.org/10.1109/ICSE-C.2017.162

[2] J. Alonso, C. Joubert, L. Orue-Echevarria, M. Pradella, D. Vladusic,
“Programming trustworthy Infrastructure As Code in a Secure
Framework”, First SWForum workshop on trustworthy software and
open source (SWForum.eu). CEUR-WS.org, vol. 2878., pp. 16-23,
2021. https://doi.org/10.5281/zenodo.6881894

[3] A. Luzar, S. Stanovnik, M. Cankar, “Examination and Comparison of
TOSCA Orchestration Tools”, ECSA 2020, Communications in
Computer and Information Science, vol 1269. Springer, Cham, pp.
247-259, 2020. https://doi.org/10.1007/978-3-030-59155-7_19

[4] Red Hat Ansible [online], available on: https://www.ansible.com/ , last
accessed: 25/10/2022.

[5] Terraform [online], available on: https://www.terraform.io/ , last
accessed: 25/10/2022.

[6] R. Rajapakse et al., “Challenges and solutions when adopting
DevSecOps: A systematic review”, Information and Software
Technology Volume 141, January 2022, 106700.
https://doi.org/10.1016/j.infsof.2021.106700

[7] J. Alonso, R. Piliszek and M. Cankar, “Embracing IaC through the
DevSecOps philosophy: Concepts, challenges, and a reference
framework”, IEEE Software, 2022.
https://doi.org/10.1109/MS.2022.3212194

[8] IaC Scan Runner [online], available on: https://github.com/xlab-si/iac-
scan-runner , last accessed: 25/10/2022.

[9] Checkov [online], available on:
https://github.com/bridgecrewio/checkov, last accessed: 25/10/2022.

[10] SuperLinter [online], available on: https://github.com/github/super-
linter , last accessed: 25/10/2022.

[11] MegaLinter [online], available on: https://nvuillam.github.io/mega-
linter/ , last accessed: 25/10/2022.

[12] Snyk [online], available on: https://snyk.io/ , last accessed: 25/10/2022.

[13] Steampunk Spotter [online], available on: https://steampunk.si/ , last
accessed: 25/10/2022.

[14] XLAB, The importance of high-quality Ansible Collections for your
product [online], available on:
https://steampunk.si/pdf/Importance_of_High_quality_Ansible_Colle
ctions_XLAB_Steampunk_ebook.pdf , last accessed: 25/10/2022.

[15] MongoDB [online], available on: https://www.mongodb.com/ , last
accessed: 25/10/2022.

[16] Public Safety on IoT in 5G [online], available on: https://www.piacere-
project.eu/public-safety-iot-5g, last accessed: 26/10/2022.

[17] The Slovenian Ministry of Public Administration (SI-MPA) [online],
available on: https://www.piacere-project.eu/slovenian-ministry-
public-administration-si-mpa, last accessed: 26/10/2022.

https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.5281/zenodo.6881894
https://doi.org/10.1007/978-3-030-59155-7_19
https://www.ansible.com/
https://www.terraform.io/
https://doi.org/10.1016/j.infsof.2021.106700
https://doi.org/10.1109/MS.2022.3212194
https://github.com/bridgecrewio/checkov
https://github.com/github/super-linter
https://github.com/github/super-linter
https://nvuillam.github.io/mega-linter/
https://nvuillam.github.io/mega-linter/
https://snyk.io/
https://steampunk.si/
https://steampunk.si/pdf/Importance_of_High_quality_Ansible_Collections_XLAB_Steampunk_ebook.pdf
https://steampunk.si/pdf/Importance_of_High_quality_Ansible_Collections_XLAB_Steampunk_ebook.pdf
https://www.mongodb.com/
https://www.piacere-project.eu/public-safety-iot-5g
https://www.piacere-project.eu/public-safety-iot-5g
https://www.piacere-project.eu/slovenian-ministry-public-administration-si-mpa
https://www.piacere-project.eu/slovenian-ministry-public-administration-si-mpa

