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Abstract DeepUrfold Uncovers Distant Relationships

Modern proteins did not arise abruptly, as singular events, but rather over Single-Model Embeddings Cross-Model Communities

the course of at least 3.5 billion years of evolution. Can machine learning e.g. SH3 domain through SH3 VAE  e.g. cluster likelihoods of domain X under

teach us how this occurred? The molecular evolutionary processes that VAE M, and M; for superfamilies 1 and j

yielded the intricate three-dimensional (3D) structures of proteins involve — i

duplication, recombination and mutation of genetic elements, corresponding A s o = T

to short peptide fragments. ldentifying and elucidating these ancestral el | ’ =%

fragments is crucial to deciphering the interrelationships amongst proteins, Y 2 e Rk boame Profsinss

as well as how evolution acts upon protein sequences, structures & P 3 Sk (@omain2)

functions. Traditionally, structural fragments have been found using - 0af = o

sequence and 3D structural alignment, but that becomes challenging when o 0’ S Roicioass inhibtor

proteins have undergone extensive permutations—allowing two proteins to 40 = Ourecuctso

share a common architecture, though their topologies may drastically differ "

(a phenomenon termed the Urfold [1]). We have designed a new D oo m snet

framework  to identify compact, potentially-discontinuous ' peptide UMAP finds SSEs as an Stochastic Block Modelling (SBM) reveals

fragments by combining (i) deep generative models of protein important dimension intermixing between ‘true’ CATH superfamilies

superfamilies [2] with (ii) layer-wise relevance propagation (LRP [3]) to

identify atoms of great relevance in creating the embeddings obtained . . g

via an all,..z.is X ally,..0, @nalysis. Our approach recapitulates known D ee[_) Ul'f OI d'expla'n Ident_lfles

relationships amongst the evolutionarily ancient small B-barrels (e.g. SH3 Functlonally Important Residues

and OB folds [4]) and P-loop—containing proteins (e.g. Rossmann and

P-loop NTPases [5]), previously established via manual analysis. Because Single-ModeI LRP

of the generality of our deep model's approach, we anticipate that it can . . .
enable the discovery of new ancestral peptides. In a sense, our SHS3 Domain Representatives subjected to SH3 VAE Model
framework uses LRP as an ‘explainable Al' approach, in conjunction with a indiidus S Conserved Hyrdophobic Core Conserved Glycine Dimer nterface
recent deep generative model of protein structure (termed DeepUrfold), in ) e g
order to leverage decades worth of structural biology knowledge to decipher

the underlying molecular bases for protein structural relationshipships
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—including those which are exceedingly remote, yet can be discovered perc o 1 el . om0
via deep learning. q
The Urfold: 3D Architectural Similarty Cross-Model LRP
Despite Topological Variability Rossmann <> P-Loop NTPases
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The SH3 & OB superfamilies are part of the small B-barrel urfold [4] while the 23 | Bindingloy
Rossmann and P-loop NTPases are members of the P-Loop Binding Urfold [5]. Most Q_§
members of an Urfold have similar functions (e.g. bind similar ligands). If viewed in 8> |
terms of CATH [6], the Urfold would sit in between the Architecture & Topology strata. z \ \‘
All, vs.All . Methodology | | o |
domains superfamillies LRP scores for representative domains are higher in similar 3D locations
1. Energy-minimize, 2. Subject domain to given 4. Cross-Model: Repeat for important for ligand binding, regardless of which VAE it was subjected to.
featurize, and vox- VAE Model to obtain all representative dom-
elize 3D structures likelihood it came from ains through all super-
of protein domains superfamily VAE family models Concl USiOI‘IS
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Domains (3654)  Models (20) * LRP correctly selects structurally important and conserved atoms

Winged helix showing that the model is learning superfamily-specific features.

a6 « Domains from the same urfold have functionally important residues in

> s . . . .
= Z s S T the same 3D locations, regardless of which VAE it was subject to,
% e o poman T unogobuin suggesting the VAEs are topologically-agnostic and can find Urfolds
. Beta- . .
K P-Loop Domain rnosoma Proeinss~ * [N the future, we plan to identify more common fragments and
7 S o Fossmarn poml Smike omanz  ancestral peptides by aligning and clustering ‘important regions from
Decoder Rossmann Domain - K Homology, type 1 the cross-model fragments.
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