

Deliverable D5.1

IaC execution platform prototype - v1– v1

Editor(s): Josu Díaz de Arcaya

Responsible Partner: TECNALIA
Status-Version: V1.0

Date: 26.11.2021
Distribution level (CO, PU): PU

DRAFT

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 33

www.piacere-project.eu

Project Number: 101000162
Project Title: PIACERE

Title of Deliverable: IaC Execution Manager Prototype
Due Date of Delivery to the EC 30.11.2021

Workpackage responsible for the
Deliverable:

WP5 - Package, release and configure IaC

Editor(s): Josu Díaz de Arcaya (TECNALIA)
Contributor(s): Josu Díaz de Arcaya (TECNALIA)

Reviewer(s): Giuseppe Celozzi (Ericsson)
Approved by: All partners

Recommended/mandatory
readers:

WP3, WP5, WP6

Abstract: The main outcomes of Task 5.1 - PIACERE IaC Execution
Manager Prototype are presented in this deliverable.
This deliverable corresponds to Key Result 10.

Keyword List: IaC Execution Manager
Licensing information: This work is licensed under Creative Commons

Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein.

 DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 33

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 02.03.2021 First draft version TECNALIA

V0.2 09.11.2021 Version delivered for internal review All

V0.9 26.11.2021 Final version after internal review TECNALIA

V1.0 29.11.2021 Ready for submission TECNALIA

V1.1 02.11.2022 Error in references TECNALIA

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 33

www.piacere-project.eu

Table of contents

Terms and abbreviations.. 6

Executive Summary... 7

1 Introduction.. 8

1.1 About this deliverable.. 8

1.2 Document structure .. 8

2 Tools aiding in the operationalization life cycle .. 9

2.1 Technologies needed by the use cases ... 9

2.2 Current state of art ... 9

2.2.1 Related existing technologies... 9

2.2.2 Orchestration in H2020 projects... 14

2.2.3 Analysis of shortcomings ... 15

2.2.4 Applicability in the current project.. 15

2.3 PIACERE IaC Execution Manager goals .. 16

2.4 PIACERE IaC Execution Manager’s relevance to use cases.................................... 16

3 Implementation... 17

3.1 Requirements covered by this prototype .. 17

3.2 Functional description ... 18

3.2.1 Fitting into overall PIACERE Architecture ... 18

3.3 Technical description ... 19

3.3.1 Prototype architecture.. 19

3.3.2 Components description ... 20

3.3.3 Component interactions ... 20

3.3.4 Technical specifications... 22

4 Delivery and usage ... 23

4.1 Package information.. 23

4.2 Installation instructions.. 24

4.3 User Manual... 27

4.4 Licensing information .. 29

4.5 Download .. 29

5 Conclusions... 31

6 References.. 32

 List of tables

TABLE 1 - COMPARISON OF CONFIGURATION MANAGEMENT TOOLS. ... 9
TABLE 2 - COMPARISON OF CONTAINER ORCHESTRATION TOOLS. .. 12
TABLE 3 - REQUIREMENTS THAT NEED TO BE ADDRESSED BY THE IEM AND ITS CURRENT FULFILMENT STATUS. 17
TABLE 4 - EXCERPT SHOWING THE BUILT AND EXECUTION OF THE IEM CONTAINER 27
TABLE 5 - EXCERPT SHOWING THE RELEVANT URL'S OF THE IEM ... 29

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 33

www.piacere-project.eu

List of figures

No se encuentran elementos de tabla de ilustraciones.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 33

www.piacere-project.eu

Terms and abbreviations

CE Canary Environment

CLI Command Line Interface
CSE Canary Sandbox Environment: term used in DoA instead of CE

CSP Cloud Service Provider
DevOps Development and Operations
DevSecOps Development, Security and Operations

DoA Description of Action
EC European Commission

GA Grant Agreement to the project
HW Hardware
IaC Infrastructure as Code

IEP IaC Execution Platform
IOP IaC Optimizer

KPI Key Performance Indicator
KR Key Result
SW Software

SaaS Software as a Service
IEM IaC Execution Manager

IaC Infrastructure as Code

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 33

www.piacere-project.eu

Executive Summary

This document contains the technical description of the IaC Execution Platform prototype,
renamed as IaC Execution Manager prototype (IEM), that is being developed within the context
of work package 5 - Package, release and configure Infrastructure as Code - of the PIACERE
project. The IEM is the central piece that handles the execution of the IaC code being generated
in the early stages of the PIACERE framework. It supports different IaC technologies present in
the market and provides a common interface to execute the deployments of the different
elements present in the PIACERE project. In addition, the current prototype handles the
redeployment and tearing down of existing deployments.

A state of the art of the different technologies that can be used for the provisioning,
configuration, and orchestration of the different infrastructural devices that can be found in a
production deployment is offered. This has served us to provide evidence and reasoning for the
selection of the technologies that the IEM prototype is going to utilize. In addition, the PIACERE
requirements for the IEM are presented, including which ones are currently covered and which
ones will be covered in future releases of this prototype. Regarding these requirements, 66% of
them are already partially implemented. Next, the software component is explained, sequence
diagrams are provided for a better understanding, and the installation process and how to use
it is also clarified in depth.

At its current stage, this prototype is viable for the deployment of different IaC technologies that
cover the provisioning and the configuration of the infrastructural devices required for the
projects utilizing the PIACERE framework. It provides a unified interface for other components
so they can interact with the IEM in a unified manner. It can also be deployed in production
utilizing container-based technologies which makes this prototype viable to be operationalized
in public and private cloud provides, and on premises. For this prototype, the IEM supports two
well established technologies (i.e. Ansible and Terraform) that are able to provision the different
infrastructural devices required by the use cases, and the configuration of each of these
infrastructural devices so they can accommodate the applications to be allocated.

As for the future steps, this prototype will be hardened with authentication technologies so that
its services cannot be misused by malicious third parties. Next, a persistence layer is going to be
used to provide other components with metrics and data regarding past and present
deployments. Finally, integration efforts will be conducted with other PIACERE components to
interact successfully. DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 33

www.piacere-project.eu

1 Introduction

This section offers a brief summary about the content of this document and showcases the
document structure in detail.

1.1 About this deliverable

This document revolves around the IEM prototype which is part of the wider PIACERE
framework. The IEM servers the purpose of deployment and redeployment of the different
scenarios that are developed by the PIACERE use cases. Being at month M12 of the project, the
prototype described here is the first version, that is going to be integrated in the PIACERE
framework version 1 at M15. In this document, we elaborate on the different technologies and
alternatives that can be used for the development of this prototype. The purpose of this
software deliverable is addressing PIACERE’s Key Result (KR) 10. In addition, detailed
information on the software component is provided alongside its functionalities. Finally, future
goals and conclusions are presented.

1.2 Document structure

This document is structured in the following way. Section 2 contains a description of the
different technologies in the industry that can be utilized to implement Infrastructure as Code
technologies, it also showcases the technologies utilized by the use cases and the relevance of
this IEM prototype for the different use cases. Section 3 revolves around the actual
implementation of the IEM prototype. In it, the requirements currently covered by this
prototype are shown. Requirements that will be covered during future developments of this
project are also showcased and marked as such. In addition, a functional and technical
description is offered for a better understanding of the prototype. Section 4 offers detailed
information about the installation of the prototype and how to use it from scratch. Finally, the
conclusions are presented in Section 5.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 33

www.piacere-project.eu

2 Tools aiding in the operationalization life cycle

2.1 Technologies needed by the use cases

It is of paramount importance to learn what technologies the use cases to be implemented
within the PIACERE framework are using. Only this way it is possible to select the necessary
technologies that will cover all the use case’s requirements. The list below has been extracted
from a careful examination of the Use Cases definition deliverable [1].

Technologies required:

• Virtualization technology including VMware vSphere, VMware vCenter, VMware
vRealize (vOrchestration, vAutomation, vOperations, vBilling).

• DNS (bind).
• Certificate Authority for issuing SSL server certificates.

• Oracle Linux 8 based virtual machines.
• Docker + Swarm (within already configured virtual machines).

• Traefik (Cloud-Native Application Proxy).
• (Shared) object store CEPH (as container).

• SVN, GitLab (for sharing developed code and/or packages).
• Zabbix or another monitoring tool.

• AWS, Azure cloud providers.

2.2 Current state of art

In this section, a state of the art about the different IaC technologies that can be found in
industry is offered. In addition, the applicability of these tools in the context of the PIACERE
project alongside their shortcomings is offered.

2.2.1 Related existing technologies

2.2.1.1 Configuration Management

Configuration management is a process that ensures the consistency of a system over a period.
It facilitates the automation of the life cycle of the configuration of the different infrastructural
elements of an ecosystem and ensures concepts such as the maintainability, reproducibility, and
traceability of the changes. In Table 1 a comparison of the most popular configuration
management tools is offered.

Table 1 - Comparison of Configuration Management Tools.

Tool First Release Configuration

Language

Language Style Stars on GitHub

Ansible 2012 YAML Procedural 47.2k

Chef 2009 Ruby DSL Procedural 6.5k

Puppet 2005 Puppet DSL Declarative 6.1k

SaltStack 2011 YAML Declarative 11.6k

CFEngine 1993 DSL Declarative 377

In terms of their first release, CFEngine [2] was the first to be conceived back in 1993 by Mark
Burguess, and it was meant to be a tool to automate the management of a small group of
workstations. The very first version was published as an internal report at the CERN computing
conference, and it gained a lot of traction since it was able to abstract the different operative
system flavors by using a common domain specific language (DSL). On the other hand, Ansible
[3] was first released in 2012 by Michael DeHann, and it included a lot of the lessons learned

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 33

www.piacere-project.eu

from other projects like Puppet [4]. It aspired to be a system that was easy to learn, consistent,
and imposed minimum dependencies on the managed systems. All the tools being analyzed
offer their respective configuration language. While Ansible and SaltStack [5] promote the use
of YAML, CFEngine, Puppet and Chef [6] require the use of their respective DSL. In terms of the
language style there are two different styles that are utilized by the tools under analysis:
procedural and declarative. Procedural languages promote the definition of the whole process
as a series of steps that will be executed, how the process will be executed is defined in detail.
On the other hand, declarative languages define what needs to be done, and how the system
will look at the end of the process, but how to reach that point is up to the tool itself. In this
sense, Ansible and Chef adopted a procedural language style, whereas Puppet, SaltStack and
CFEngine adopted a declarative language style. Finally, in order to measure the popularity of
each of the tools, we have opted for an objective metric which is the number of stars on GitHub.
According to this, Ansible is the most popular one in this site by a large margin, more than three
times the number of stars of the second one, SaltStack. Chef and Puppet are the third and fourth
in this metric with 6.5k and 6.1k stars respectively.

Figure 1 - Popularity of Configuration Management Tools according to Google Trends over time.

Yet another way of evaluating the popularity of these tools is with Google Trends, which shows
the frequency of search terms in google in a given period. The results (see Figure 1) are somehow
related with the popularity on GitHub. In this sense, Ansible keeps being the most popular tool
by a generous margin and has been so for the last five years. The second most popular tool
according to Google Trends is Puppet, which differs from the previous approach, in which
SaltStack was the second most popular tool. The rest of the tools seem consistent with the
analysis made before.

2.2.1.2 Infrastructure Provisioning

The Infrastructure provisioning is the process of setting up and IT infrastructure, referring to the
steps required to manage access to data and resources and make them available to users and
systems.

When the term “provisioning” is used, it can mean many different types of provisioning, such as
server provisioning, network provisioning, user provisioning, service provisioning, and more.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 33

www.piacere-project.eu

The following products provide the required functionalities to implement this and to monitor
this process:

CloudFormation [7] is an infrastructure templating, or Infrastructure as Code (IaC) service
provided free of charge exclusively by AWS. It employs an active management strategy,
performing automated scaling and healing. As it might be expected, it has extensive support for
not only EC2 infrastructure, but a wide variety of AWS services. It is provided free of charge. It
is a closed source.

Terraform [8] is an infrastructure as code (IaC) tool that allows to build, change, and version
infrastructure safely and efficiently. This includes low-level components such as compute
instances, storage, and networking, as well as high-level components such as DNS entries, SaaS
features, etc. It has historically been a Command Line Interface (CLI) only tool, targeting all major
public clouds. Recently, it has been offered as a SaaS product as well. It employs a passive
management strategy, performing tasks based on user requests. The enterprise version has
support for multi-tenancy and deployment policies. It is an open-source product, governed by
HashiCorp.

Openstack – Heat [9] (the main project in the OpenStack Orchestration program) implements
an orchestration engine to launch multiple composite cloud applications based on templates in
the form of text files that can be treated like code. A native Heat template format is evolving but
Heat also aspires to provide compatibility with the AWS CloudFormation template format, so
that many existing CloudFormation templates can be launched on OpenStack. Heat provides
both an OpenStack-native REST API and a CloudFormation-compatible Query API.

A Heat template describes the infrastructure for a cloud application in a text file that is readable
and writable by humans and can be checked into version control. That file must be enabled for
writing and it should be possible to check the difference between the versions. The keyword is
the resource group where the user can define infrastructure: volumes, servers, floating IP
addresses, volumes, security groups, users etc.

The relationship between the resources in the template can be specified and it is enabled to call
out any of OpenStack API to create your whole infrastructure in one run. The Heats architecture
comprises several Python applications listed below:

• heat: this tool is a CLI which communicates with the heat-api to execute AWS

CloudFormation APIs. Of course, this is not required, developers could also use the Heat
APIs directly.

• heat-api: this component provides an OpenStack-native REST API that processes API
requests by sending them to the heat-engine over RPC.

• heat-api-cfn: this component provides an AWS-style Query API that is compatible with
AWS CloudFormation and processes API requests by sending them to the heat-engine
over RPC.

• heat-engine: it does the main work of orchestrating the launch of templates and
providing events back to the API consumer.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 33

www.piacere-project.eu

Figure 2 – Popularity of Provisioning Tools according to Google Trends over the last 5 years.

Figure 2 provides and overview of the evolution of the popularity of these tools over the last five
years. It can be seen that Terraform is significantly more popular than its counterparts.

2.2.1.3 Container Orchestration

Container based virtualization is a method in which a virtualization layer operates on top of the
operative system enabling the coexistence of several user space instances. These instances are
what it is called containers. It differs from other methods of virtualization - such as the
traditional based on hypervisors - in which the full set of hardware components is not virtualized.
The first attempt to such methods of virtualization dates back to 1982, when Bill Joy developed
chroot. In chroot a security zone is created from which the jailed user cannot escape. More
recently, in 2008 the first version of Linux Containers was released based on the cgroups
functionality.

However, it was not until 2013 that docker containers were launched and became the de facto
technology for containerizing applications in Linux, Windows, and macOS. It utilized kernel
facilities (mainly cgroups and namespaces) for providing resource isolation (e.g. CPU, memory,
I/O) and provides means for the operationalization of software applications in production
environments, while minimizing the difficulties arising from deploying applications in different
environments. In 2014 the CoreOS team launched rkt as an alternative to docker containers.
Later in 2018 CoreOS was acquired by Red Hat and released Podman, which is the main
container virtualization tool in Red Hat 8.

Table 2 - Comparison of container orchestration tools.

Tool First Release Stars on GitHub Language Container
Runtime

Docker Swarm 2013 - YAML docker

Kubernetes 2014 27.4K YAML Containerd,

docker, CRI-O

Marathon 2014 4k JSON UCR, docker

YARN - 11.5k1 JSON runC, docker

The table above offers an overview of some of the most popular container orchestration tools
that can be utilized nowadays. The very same company that released the docker
containerization technology released docker swarm in 2013. Docker swarm [10] offers the most
common characteristics that can be expected of a container orchestration tool such as cluster
management, scaling, service discovery, load balancing, rolling updates, among others. It has

1 It is shared with the wider project Apache HADOOP.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 33

www.piacere-project.eu

become an extremely popular alternative to other container orchestration tools in on premise
deployments due to being very easy to setup and maintain. However, its functionality is more
limited than other alternatives such as Kubernetes.

Kubernetes [11] is probably the most popular and feature rich container orchestration available,
the project was developed from the Google’s Borg [12] project. The main benefits of Kubernetes
are that is backed up by a huge community, is very feature rich, and has been accepted as the
de facto container orchestration of the major cloud providers. This makes Kubernetes an
excellent choice for the containerization of applications, since it diminishes the chance of
suffering vendor lock-in due to its wide adoption in the market. Its main drawbacks are that the
installation on premises is quite complex and not particularly easy to manage, and the learning
curve required is more steep than other options such as docker swarm. It is common to find
private companies that help with the management of Kubernetes. For instance, Rancher [13] is
a technology for organizing and managing Kubernetes clusters. Major cloud providers such as
AWS, GCP, and Azure also facilitate the use of Kubernetes as a Service.

Next, Marathon [14] is the container orchestration tool for the Mesos based ecosystems. It is
the built-in container orchestration of the Datacenter Operating System (DC/OS), which is an
open-source operative system that can manage multiple machines both in the cloud and on-
premises. It offers networking, service discovery and resource management.

Finally, the HADOOP ecosystem, which introduced the HDFS distributed file system and allowed
exploiting distributed datasets using YARN due to its data locality features. YARN [15] introduced
the ability to orchestrate containers, and it has become particularly useful for organizations
already familiar with the HADOOP ecosystem that already have clusters using it. It provides a
straightforward way to incorporate container based microservice architectures and offers a
single point to manage the resource of the cluster in YARN.

In terms of popularity, the number of stars on GitHub is a common approach to measure it.
Using this metric, Kubernetes is the most popular tool with over 27k stars, followed by Apache
YARN with 11.5k. However, given that the term YARN refers to a wider ecosystem, this metric
does not reflect accurately the popularity of the container orchestrator.

Figure 3 – Popularity of Container Orchestrator Tools according to Google Trends over the last 5 years.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 33

www.piacere-project.eu

Secondly, Google Trends is a common tool for evaluating the popularity of a tool based on its
searches. Using this metric (see Figure 3 above), YARN is the most popular of the tools
mentioned above. However, it is a very general term and does not only refer to the container
orchestration part. Kubernetes is second, even though its popularity has slightly declined in
2021, it is by far the most widely adopted option. Finally, docker swarm and DC/OS’ Marathon
are the third and last.

2.2.1.4 Deployment Orchestration

This term refers to different to the execution of full workflows of low-level operations such as
the provisioning of resources, the configuration and installation of components, the connection
between the components and the management of the dependencies, amongst others. These
tools are able to utilize some of the different tools described above from a common interface.
In particular, they approach the problem in hand as a whole, leveraging the benefits of
configuration management tools, infrastructure provisioning, and application orchestration,
while minimizing the drawbacks of them when possible. Summarizing, they offer a unified point
to manage the ecosystem.

In this sense, Apache Brooklyn’s [16] initial release dates back to 2012, it defines itself as a
framework for modeling, monitoring, and managing applications through autonomic blueprints.
It builds on the foundations established by other tools such as configuration management tools,
and infrastructure provisioning tools and provides an integration framework to reconcile their
use. Its main benefit is providing a single tool to manage provisioning, application deployment,
and monitoring, which understands the dependencies between the components. It is built with
the focus of application agility, including portability across non-cloud, cloud, and PaaS.

Next, Spinnaker [17] is a cloud agnostic continuous delivery platform that focuses on the
operationalization of software components with high velocity and confidence. It utilizes
pipelines comprised of a series of stages. These pipelines aspire to be flexible, consistent and
repeatable.

Another interesting orchestrator is xOpera [18], which derives from the Opera orchestrator
available as a Python library, which is a light-weight, open-source and state-aware orchestrator
based on Ansible and TOSCA Simple Profile in YAML v1.3. Initially, this orchestrator was only CLI
based, but in later versions it was expanded with API accessibility and, simultaneously, an
orchestrator as a service edition called xOpera SaaS [19] has emerged. The latter enables
integration with other authorization tools, handling secrets, providing multi-tenancy (sharing
deployment projects with co-workers), accessibility through a GUI and more.

Finally, Cloudify [20] is an opensource cloud orchestration tool, that focuses on the automation
of the operationalization life cycle of applications. Its key features are the following: Everything-
as-a-Code, Orchestrator of Orchestrators, Native CI/CD support, and Operability, amongst
others.

2.2.2 Orchestration in H2020 projects

There are a few Horizon 2020 projects that dive into the concept of orchestration, the SERRANO
[21] project introduces an abstraction layer that reshapes edge, cloud and high performance
computing resources into a unified infrastructure, as well as facilitating its automated and
cognitive orchestration. Next, the CHARITY [22] project tackles the underlying issues of
technological developments in the field of virtual reality, augmented realty and holography by
utilizing new cloud computing architectures and the continuous and autonomous orchestration
of computing and network resources. The RADON [23] project has the goal of delivering
software faster, easier and cheaper, by broadening the adoption of serverless computing

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 33

www.piacere-project.eu

technologies. Towards this end, it applies function-level scaling and billing, and automated
orchestration and reuse of microservices and data pipelines. The ELEGANT [24] project tackles
the underlying problems of utilizing IoT and Big Data technologies such as interoperability,
reliability, safety and security. It proposes to alleviate these hurdles with a framework that offers
lightweight virtualization, automatic code extraction compatible with the utilized technologies,
intelligent orchestration, and cybersecurity mechanisms, amongst others. In DICE [25], a Dicer
deployment engine was developed and is the origin of the xOpera project. In this sense, the IEM
component of PIACERE operates in the field of the deployment orchestration. On one hand,
declarative technologies such as Terraform provides a definition of the final state of a
deployment. On the other hand, imperative languages such as Ansible define a set of actions
that need to be executed sequentially. The IEM is able to utilize these technologies that operate
different stages of the application's deployment life cycle into a single component. These stages
have been defined in previous steps of the PIACERE framework.

2.2.3 Analysis of shortcomings

In the field of configuration management, there are two different approaches the tools propose
for tackling this stage. The first one is to use an agent-based approach, in which each of the
infrastructural devices holds an agent which communicates with an orchestrator and manages
the configuration of the device. The second one is more decentralized, where the infrastructural
devices are left as they are, and the configuration is made through standard methods such as
secure shell connections. The second approach is the one used by Ansible, which is the selected
tool for the configuration within the PIACERE framework. It is less intrusive, straightforward and
require less configuration at the beginning. This is a big advantage, since the PIACERE
deployments are performed from scratch.

The infrastructure provisioning is another important field of technologies for the IEM. In it , some
of the tools focus exclusively on a single cloud provider. This becomes a big issue, given that the
PIACERE framework aspires to interact with multiple providers, depending on the use case. For
this reason, Terraform is more flexible since it can interact with multiple public and private cloud
providers and is comprised of a myriad of plugins to perform different tasks in the field of the
infrastructure provisioning.

Finally, the operationalization of a given deployment can be accomplished with container and
deployment orchestration solutions. The first ones are focused on the deployment, monitoring
and orchestration of container-based applications. They have undergone a rapid adoption in
industry, and in major cloud providers. On the other hand, the latter specializes in the
operationalization of generic applications. However, these set of tools have not reached the
same level of maturity of their container-based counterparts.

2.2.4 Applicability in the current project

The different tools and technologies analysed in this project are of paramount importance for
the development of the IaC Execution Manager. Given that the IEM aspires to provide a common
interface for other components of the PIACERE framework to execute their deployments, some
of the tools analysed in this chapter have been selected to fulfil PIACERE’s goals. The
provisioning and configuration of infrastructural elements is one of the key values of the IEM,
and this provisioning of these infrastructural elements is going to be done with Terraform. The
selection of this tool has been done due to its extreme popularity, which carries a large
community, and it is expected to be production ready. In addition, it can be used to orchestrate
deployments in the most popular private and public cloud providers.

Next, the configuration of the afore mentioned infrastructural elements will be accomplished
using Ansible. Similar to Terraform, Ansible provides a large community and a wide catalogue of

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 33

www.piacere-project.eu

plugins that can be used to accomplish all the needs that will arise within the PIACERE project.
These two tools are considered to be extremely trustworthy, while also providing excellent
flexibility to reach the project’s goals.

2.3 PIACERE IaC Execution Manager goals

The PIACERE IaC Execution Environment is an important part of the PIACERE effort. The provided
component – IEM (Infrastructure Execution Manager) – plays a central role in all workflows
supported by PIACERE: it enables the IaC code to actually run. The primary goal of IEM is to
provide a tooling around chosen, supported IaC execution tools , such as Ansible or Terraform.
This tooling would understand and handle the differences between the different execution tools
and would be able to extract information relevant to the PIACERE framework. This information
includes the details on the IaC run process itself as well as its results (e.g., the created cloud
resources (such as VMs), time taken to be created, among others) and all the relevant
modifications made in the infrastructure layer.

A non-goal for IEM is to provide a new tool to run IaC – only known, existing, open-source tools
will be used with IEM. IEM will not replace any of these tools, nor is its goal to directly enhance
their capabilities.

2.4 PIACERE IaC Execution Manager’s relevance to use cases

The IEM is fundamental for reaching PIACERE’s goals, and so it is for the use cases. The IEM’s
overarching goal is to provide a common interface for the deployment of different Infrastructure
as Code technologies in a unified way. In addition, it will offer metrics and metadata regarding
these deployments to other components within the PIACERE framework. The use cases ’ needs
in terms of technology have been elicited in deliverable D7.1 [1] and the IEM has been designed
and implemented with those needs in mind. Hence, this component serves as main point for
managing the different deployment scenarios that will be implemented within the PIACERE
framework, and it incorporates all the required technologies to interact with the different public
and private cloud providers required by the use cases.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 33

www.piacere-project.eu

3 Implementation

This section is devoted to the details regarding the implementation of the IaC Execution
Manager. In Section 3.1 the requirements that have been identified by the project for the IEM
to address are presented. Next, Section 3.2 showcases the functional description and how the
IEM fits in the overall PIACERE architecture. Section 3.3 explains the technical description of the
project, including the architecture of the prototype, a description of each of the components
within the IEM, and the technical specifications of the project.

3.1 Requirements covered by this prototype

The following table shows all the requirements that need to be addressed by the IEM throughout
the PIACERE project, extracted from WP2 deliverable D2.1 [26] However, not all of them need
to be necessarily completed at this stage of the project, as they might include interaction with
other components or might have not been classified as high priority to be included in the first
year of the project.

Table 3 - Requirements that need to be addressed by the IEM and its current fulfilment status.

Req ID Description Status Requirement Coverage

WP5.1-REQ1 The IEM shall allow redeployment and

reconfiguration, both full and partial,

as allowed by the used IaC technology.

Satisfied The IEM covers this requirement in its

current development status. However, it

relies on the IaC code being idempotent
so this must remain the case.

WP5.1-REQ2 The IEM will log the whole IaC

execution run, making metadata and
metrics (time it took to run) about the

creation of resources available to the

rest of the PIACERE components.

Not yet

covered

The IEM will cover this requirement with

a relation database in which the related
metrics for past and present executions of

the given deployments will be registered.

WP5.1-REQ3 IEM should be able to execute IaC

generated by ICG for selected IaC

languages (e.g., Ansible/Terraform)

Satisfied The IEM covers in its current form the

execution of two different IaC

technologies: Terraform and Ansible.

WP5.1-REQ4 IEM shall register the status of past

and present executions and enable an
appropriate way to query it.

Not yet

covered

The IEM will cover this requirement with

a relation database in which the related
metrics for past and present executions of

the given deployments will be registered.

WP5.1-REQ5 IEM should be able to communicate

with the relevant actors

(orchestrators, infrastructural

elements) in a secure way.

Partially

Satisfied

The IEM communicates with the relevant

actors by utilizing the secrets provided by

the PRC. However, this effort will

continue throughout the second year of
the project in order to guarantee that

these secrets are used correctly.

WP5.1-REQ6 IEM should be able to utilize the

required credentials in a secure way.

Partially

Satisfied

The IEM stores is able to utilize the

credentials in a secure way. However,

further efforts in this direction will be

undergone during the second year of the
project.

WP5.1-REQ7 IEM should be able to clean up the

resources being allocated.

Satisfied This component is able to clean up the

resources being allocated by the different
deployments.

WP5.1-REQ8 IEM shall work against the production
environment and the canary

environment.

Partially
Satisfied

The IEM is able to utilize the production
environment, mainly private and public

providers. The integration with the canary

environment will be tested during this

year of the project.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 33

www.piacere-project.eu

3.2 Functional description

The IaC Execution Manager is the component in charge of kicking off the different deployments
taking place within the PIACERE framework. In addition, it oversees the subsequent
redeployments and the finalization of the given deployments. In summary, the IEM is able to
prepare and provision the infrastructure and install the corresponding software elements
required by the deployment to run seamlessly.

One of its key features is its ability to execute different Infrastructure as Code technologies
together, so the whole process of deployment and redeployment of the infrastructural elements
is controlled in a centralized manner. For this prototype, the IEM can understand and execute
two technologies covering different stages of the infrastructure deployment: Terraform for the
provisioning of the different infrastructural elements required by the deployments in the
different public and private cloud providers, and Ansible for the configuration of such
infrastructural elements. In addition, the IEM has been designed so that additional IaC
technologies that have not been considered as part of this prototype can be integrated in
advance without cumbersome adjustments in its overall architecture.

Further releases of this component will include the ability to retrieve metrics about the status
of past and present deployments. These metrics can be utilized by the different components
that coexist in the PIACERE infrastructure to fulfil their goals.

3.2.1 Fitting into overall PIACERE Architecture

The IEM is the component of the PIACERE architecture that executes the DevOps modelling
Language (DOML) and the IaC code being created on previous stages of the PIACERE workflow.
The component which interacts the most with the IEM is the Runtime Controller (PRC), as can
be seen in Figure 4. The main interactions are as follows:

• The PRC communicates with the IEM to trigger a deployment. In order to do so, it hands
over the following information:

o The location of the deployment that is going to be executed by the IEM.
o The commit id referencing the version of the deployment that needs to be

executed.
o The secrets that are necessary for the execution of the given deployment. These

secrets will be treated and stored appropriately.
• The IEM communicates with the IaC Repository to get the deployment referenced by

the PRC. This deployment is the one that will be triggered by the IEM.

• The IEM will be able to store metadata and metrics about past and present deployments
for the rest of the elements in the architecture to query and utilize for their goals.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 33

www.piacere-project.eu

Figure 4 – PIACERE Runtime Diagram (version 1.5)

3.3 Technical description

This subsection contains the details regarding the technical description of the IEM component.
First, the overall architecture of the IEM component is showcased. Then, each component in the
IEM is described in detail. Finally, the technical specifications of each of the components are
described in detail.

3.3.1 Prototype architecture

The architecture components that comprise the entirety of the IEM component are depicted in
the following Figure 5. This is a REST API that is in charge of managing the interaction with the
IEM. The Core of the system where the business logic resided and is able to forward the different
actions appropriately. The Persistence component which is in charge of storing the metrics and
metadata related with past and present deployments. Finally, the executors are able to
understand the IaC code being forwarded to the IEM and execute it against the different public

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 33

www.piacere-project.eu

and private cloud providers. In the next subsection each of these components are explained in
further detail.

Figure 5 - Architecture of the different elements comprising the IEM Execution Manager

3.3.2 Components description

The first prototype of the IEM component is comprised of the subcomponents described above.
In this section, we take a closer look at each and explain their functionality in further detail.

• REST API: this subcomponent is the entry point of all the requests that the IEM need to
process. The interaction with this component is through this technology, and a OpenAPI
specification file is provided so the interaction with it becomes as seamless as possible.

• Core: this subcomponent contains the business logic of the IEM component. It oversees
forwarding the different calls of other PIACERE components appropriately. In addition,
it is able to interact with other PIACERE components such as the IaC Repository, which
is the component where the different deployments are stored for the IEM to utilize.

• Persistence: this subcomponent contains the persistence logic that the IEM component
is going to utilize. It is a relational database that will provide the data required for the
requests for information by other components. This is information and metadata for
past and present executions of the different components. Most of the development for
this subcomponent will be undergone during the second year of the project.

• Executors: the executors are the subcomponents in charge of the execution of the
different technologies that the IEM supports. For this very first prototype, two different
IaC technologies are supported: i) Ansible for the configuration of the different
dependencies that the deployment requires, and ii) Terraform for the provisioning of
the infrastructural elements required for the deployments to be executed successfully.

3.3.3 Component interactions

In this section the interaction of the IEM for two important PIACERE workflows are depicted and
explained in detail. These are the start of a deployment and the request of the status of a given
deployment. The former has been implemented for this very first prototype of the IEM
component, with the exception of the persistence layer. The latter will be undergone during the
coming year of the project but is depicted in this deliverable for a better understanding of the
component duties.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 33

www.piacere-project.eu

Figure 6 - Sequence Diagram for the process of kicking off a deployment

The Figure 6 above oversees the process of kicking off a deployment within the PIACERE
ecosystem. A deployment is started by the Runtime Controller. Given that a deployment might
take a long time to finalize, this has been identified as an asynchronous task and an immediate
response is sent back to the PRC. For all it knows, the PRC will only have the information about
the deployment being properly initialized, but it will not know how that given deployment has
gone (this process is depicted and explained in further detail in the following Figure 7). The
security of this communication will be developed during the coming year of the project. The
request is forwarded to the Core subsystem, which will immediately be recorded in the
persistence subcomponent (to be implemented in year two). Next, the Core subcomponent
retrieves the appropriate deployment for the DOML & IaC Repository, only to execute it against
the resource provider. This deployment is expected to be in a mixture of the two technologies
currently supported by the PIACERE framework (Ansible and Terraform). Once the deployment
is finalized, which might take a long time, the result of this deployment is persisted so it can be
queried by other components.

Figure 7 – Sequence diagram of the process of requesting the status of a given deployment

The Figure 7 above exemplifies the process of querying the status of a given deployment. This
functionality is not yet implemented as part of the prototype and will be undergone in the

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 33

www.piacere-project.eu

second year of the project. In this diagram, the PRC initiates the process of requesting the status
of a past or present deployment. This petition is received by the REST API and forwarded to the
core subcomponent. Then, the core subcomponent will retrieve this information from the
persistence layer and return it to the Rest API, so the PRC can get an immediate response to its
petition.

3.3.4 Technical specifications

The prototype has been developed in the Python programming language, specifically version
3.9.5. It has been selected because python is very proficient at interacting with the currently
used IaC technologies (Terraform, Ansible), and provides an easy manner to add additional
technologies in the future.

The input and output interactions of this component are supported by FastAPI, which provides
a myriad of functionalities for the implementation of REST interfaces, which is the primary way
of interacting with the IEM component. In addition, it provides functionalities for providing an
OpenAPI implementation that can be used by other components in the PIACERE infrastructure,
as it not only provides an easy way to understand the inputs and outputs required by this
component, but also an automatic way to generate the server and client sides if desired.

The persistence layer is in essence a relation database. This piece of the component will be
undergone during the second year of the project. The persistence layer will be implemented
using PostgreSQL, and it will contain a set of relational tables that will store the metrics,
metadata, and information related to past and presents deployments.

The IaC code that have been selected to use within the PIACERE framework have been Terraform
and Ansible. The former is a well-known technology utilized in the field of infrastructural device
provisioning and can interact with a large variety of public and private cloud providers (e.g. AWS,
Azure, Google Cloud). The latter, on the other hand, is an established tool in industry that is
commonly used for the configuration of the infrastructural devices required for the deployment.
It has a myriad of modules that can be used for the different nuances that comprise a software
project deployment such as dependency management, services configuration, and configuration
management.

Finally, the actual delivery of the component in a containerized manner, with the docker
technology.

 DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 33

www.piacere-project.eu

4 Delivery and usage

This section offers information on the package itself. First, information about the structure of
the repository is provided. Then, instructions on how to install the package are offered. Thirdly,
a manual on how to utilize the IEM component is explained in detail. Finally, licensing
information and downloading instructions are provided.

4.1 Package information

This section gives an overview on the structure of the IEM component. The root structure for
the component is showcased in the following image, information about the most relevant files
and folders are then explained.

Figure 8 – Root folder for PIACERE's IEM component

The “doc” folder contains the documentation regarding the IEM component implementation. In
particular the sequence diagram that explain the interaction of the IEM with the rest of the
components resided under this folder.

Figure 9 – Continuous Integration and Deployment pipeline for the IEM project

Next, the “.gitlab-ci.yml” file provides continuous integration and deployment details about the
project. In this file three main stages are defined.

• The “package” stage is in charge of assuring that the IEM is able to be containerized
following the instructions in the “Dockerfile” file, which resides under this very same
root folder.

• Next, the “test” stage executes all the test files that have been defined in the project,
should a test fail the entire pipeline would stop and the developer should address the
issue immediately.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 33

www.piacere-project.eu

• Finally, the “scan” stage will utilize the sonarqube tool to scan the source code for issues
and provide an integrated dashboard with all the information regarding the project. This
dashboard is showcased in the following image (Figure 10).

Figure 10 – SonarQube dashboard of the IEM component

As it can be seen the project is healthy and the coverage is up to 77.9% which is appropriate for
this stage of the development phase. However, further efforts will be done in order to raise the
coverage threshold further.

Next, the “openapi.json” file provides information about how to interact with the IEM, this file
will be utilized by other components in order to assure the communication is as seamless as
possible. Further information about this file is explained in Section 4.3.

Finally, the “iem” folder contains the whole source code for the IEM component alongside the
tests that make sure the code works correctly. The central code file is the “main.py” file located
under this folder and is the one in charge of importing and calling the necessary modules for
running the IEM.

4.2 Installation instructions

The IEM prototype can be found in Tecnalia’s GitLab repository (download instructions at the
end), and it is also provided as a compressed folder. There are a few files that are of paramount
importance for getting the IEM prototype up and running. The first one is the “requirements.txt”
file, which offers an up-to-date list of the IEM dependencies alongside their specific version. It
would be better to install these requirements in a virtual environment in order not to mess with
the local installation of similar packages. There are many different ways to start a virtual
environment, and specific instructions are out of the scope of this deliverable. Hence, in this
document brief instructions towards the installation and use of a tool for creating virtual
environments (virtualenv) are provided. The installation of the virtualenv can be accomplished
with the following command. DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 33

www.piacere-project.eu

Figure 11 - Excerpt showing the installation steps for virtualenv in a linux box

Now, with the virtualenv executable, a virtualenv can be created by running the following
command.

Figure 12 - Excerpt showing the creation of a virtual environment

Then, in order to start this freshly created environment, the following snippet shows how to do
this and start working with the new environment.

Figure 13 - Excerpt showing the activation of the freshly created virtual environment

It becomes useful to know to get out of the environment which is called deactivate. Next, an
example on how to accomplish this is shown.

Figure 14 - Excerpt showing how to finalize or deactivate a virtual environment

Now that a proper virtual environment has been created and it is ready to be used, the
“requirements.txt” becomes handy. In the following image it can be seen the content of it, which
the precise libraries alongside their version that need to be installed in order to run the IEM

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 33

www.piacere-project.eu

prototype. It also showcases how to install these requirements with the python package
manager.

Figure 15 - Excerpt showing the content of the requirements.txt file and how to install them

Unfortunately, not all the requirements can be centralized in this manner since the Terraform
client needs to be installed separately. Please refer to the official documentation2 to get this
done. At the time of writing this document, the IEM component makes use of the local AWS
credentials. Similarly, please refer to the official documentation to let the IEM use these local
credentials.

At this stage, all the IEM dependencies should be installed and ready to be used. In order to
make sure that this is in fact the case, the following image shows how to run the different tests
that make sure the prototype is properly working.

Figure 16 - Excerpt showing a successful execution of the test of the IEM

After checking that all the tests have run successfully, the IEM is ready to be executed with the
uvicorn server. The following excerpt shows how to perform this. If everything goes right, this
should open a web server in port 8000 of the local computer.

Figure 17 - Excerpt showing how to kick off the IEM

At this stage, the IEM development environment should be up and running. However, the IEM
component will be deployed containerized with the docker framework. There is a Dockerfile that
helps in making this happen. The following excerpt shows the content of this file. For this

2 https://learn.hashicorp.com/tutorials/Terraform/install-cli

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 33

www.piacere-project.eu

prototype, Terraform is not yet covered within the containerized version. It will be covered in
future versions.

Figure 18 - Excerpt showing the Dockerfile that will be used to generate the containerized image of the
IEM

From this point, the docker image can be generated with the build command, and it gets tagged
with the IEM name. Next, an instance of that image is run exposing port 8000 on the local
computer.

Table 4 - Excerpt showing the built and execution of the IEM container

$ docker build . -t iem

$ docker run -p 8000:8000 iem

4.3 User Manual

This subsection gives an overview on how the communication with the IEM should take place.
In particular, this is detailed in an OpenAPI specification file which different components can
adhere to, in order to utilize the different functionalities provided by the IEM.

Figure 19 - OpenAPI specification for the interaction with the IEM component

The Figure 19 above showcases a screenshot of the OpenAPI specification file that resides in the
IEM’s GitLab repository. For the first prototype, four endpoints have been defined for the
interaction of PIACERE components with the IEM. The details on how these endpoints provide
to the components is detailed below:

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 33

www.piacere-project.eu

• GET /deployments/: it provides information about all the deployments that are currently
taking place within the PIACERE framework.

• PUT /deployments/: kick off a deployment, if the deployment has already been started
in a previous iteration, it updates the given deployment with the new configuration. The
figure below showcases the request body to be used within this deployment.

Figure 20 - Request Body for the PUT /deployments/ endpoint

• GET /deployments/{deployment_id}: it yields detailed information about the status of a
given deployment. The deployment to be retrieved should be passed as a path
paremeter.

• DELETE /deployments/{deployment_id}: the deployment specified in the deployment_id
path parameter will be torn down.

Please keep in mind that for the first prototype only the PUT /deployments/ endpoint is fully
functional. The rest of the endpoints are usable but provide no real functionality. The reasoning
behind their existence at this early stage is to provide other components with connection
information with the IEM from early on the project.

In terms of the source code, the central point for the IEM is the “main.py” file. There, all the
endpoints necessary to interact with this component are defined. The following excerpt
showcases how this is obtained using the FastAPI framework.

Figure 21 - Excerpt showing the main.py file in which the different endpoints for the IEM reside

This very same file also contains the definition for the inputs and outputs that will be necessary
to provide the different endpoints. This way the OpenAPI is able to provide accurate information
for other components to use the IEM interfaces. This information can be found in further detail
in the “utils.py” file, in which the different responses are specified, as can be seen in the
following excerpt.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 33

www.piacere-project.eu

Figure 22 - Excerpt showing the class holding the models used for the communication with the REST API

Finally, the prototype can be invoked using uvicorn, which is a ASGI (Asynchronous Server
Gateway Interface) server implementation, as can be seen in the following excerpt.

Figure 23 - Excerpt showing how to initialize the IEM with the uvicorn server

This command will open a web server, the OpenAPI specification, and the documentation in the
following addresses respectively.

Table 5 - Excerpt showing the relevant url's of the IEM

http://127.0.0.1:8000

http://127.0.0.1:8000/docs

http://127.0.0.1:8000/redoc

4.4 Licensing information

Licensing information not yet included.

4.5 Download

The source code for the IEM prototype is available Tecnalia’s GitLab repository. In order to get
all the necessary files to utilize it, use the following link:

https://git.code.tecnalia.com/piacere/private/t51-iem/iem

DRAFT

http://www.medina-project.eu/
http://127.0.0.1:8000/
http://127.0.0.1:8000/redoc
http://127.0.0.1:8000/redoc
https://git.code.tecnalia.com/piacere/private/t51-iem/iem

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 33

www.piacere-project.eu

The source code will be available on the public git repository and accessible through the project’s
website https://www.piacere-project.eu/. At the time of writing this deliverable, the source
code is provided under request through an email to the address appearing on the website
(https://www.piacere-project.eu/) in the footer under “Contact Us”.

DRAFT

http://www.medina-project.eu/
https://www.piacere-project.eu/
https://www.piacere-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 33

www.piacere-project.eu

5 Conclusions

This document revolves around the first prototype of the IaC Execution Manager (IEM). The goal
of this platform is to plan, prepare, and provision the infrastructural and software elements for
an application to seamlessly run.

In this first prototype the IEM is able to utilize heterogeneous Infrastructure as Code
technologies, as Ansible and Terraform, comprised in a common interface, to successfully
operationalize the different use cases in the PIACERE framework. The IEM is a key piece of the
PIACERE framework, since it is the component in charge of interacting with different private and
public cloud providers, with the orchestrator and with heterogeneous infrastructural elements.
This way, the Infrastructure as Code being generated in previous stages of the PIACERE workflow
is executed within this component.

The innovation of the IEM lies on unifying the provisioning, configuration, deployment, and
orchestration stages of the application life cycle in a single component, and with a common
interface. Hence, PIACERE is able to singlehandedly manage the application life cycle utilizing
multiple technologies for the operationalization of applications in a common way.

Future iterations of this prototype will include the securitization of the different endpoints to be
used by the IEM with token-based technologies. In addition, a persistence layer will be
implemented to provide other components in the PIACERE framework with information and
data about past and present deployments. At the moment, this prototype has focused on two
well-known technologies (i.e., Terrraform and Ansible) that have been identified as key by the
use cases, but it is designed so that other relevant technologies can be easily integrated in future
releases (e.g. TOSCA) if desired.

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 33

www.piacere-project.eu

References

[1] P. Consortium, “D7.1 PIACERE use case definition,” 2021.

[2] CFEngine, “CFEngine,” [Online]. Available: https://cfengine.com/.

[3] Red Hat, “Red Hat Ansible,” [Online]. Available: https://www.ansible.com/.

[4] puppet, “puppet,” [Online]. Available: https://puppet.com/.

[5] SaltStack Enterprise, “Salt Project,” [Online]. Available: https://saltproject.io/.

[6] CHEF, “CHEF,” [Online]. Available: https://www.chef.io/products/chef-infra.

[7] AWS, “AWS CloudFormation,” [Online]. Available:
https://aws.amazon.com/es/cloudformation/. [Accessed 8 11 2021].

[8] HashiCorp, [Online]. Available: https://www.terraform.io/. [Accessed 8 11 2021].

[9] OpenStack, “OpenStack,” [Online]. Available: https://www.openstack.org/. [Accessed 8 11
2021].

[10] Docker Inc, “Swarm mode overview,” [Online]. Available:
https://docs.docker.com/engine/swarm/. [Accessed 8 11 2021].

[11] The Linux Foundation, “Production-Grade Container Orchestration,” [Online]. Available:
https://kubernetes.io/. [Accessed 8 11 2021].

[12] A. a. P. L. a. K. M. a. O. D. a. T. E. a. W. J. Verma, “Large-scale cluster management at Google
with Borg,” in Proceedings of the Tenth European Conference on Computer Systems, 2012.

[13] Rancher Labs, “Rancher,” [Online]. Available: https://rancher.com/. [Accessed 26 11
2021].

[14] Mesosphere Inc., “Marathon - A container orchestration platform form Mesos and
DC/OS,” [Online]. Available: https://mesosphere.github.io/marathon/. [Accessed 8 11
2021].

[15] Apache Hadoop, “Apache Hadoop YARN,” [Online]. Available:
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html.
[Accessed 8 11 2021].

[16] Apache Brooklyn, [Online]. Available: https://brooklyn.apache.org/. [Accessed 8 11 2021].

[17] Spinnaker, “Spinnaker,” [Online]. Available: https://spinnaker.io/. [Accessed 8 11 2021].

[18] XLAB, [Online]. Available: https://github.com/xlab-si/xopera-opera. [Accessed 26 11
2021].

[19] XLAB, “xOpera SaaS,” [Online]. Available: https://saas-xopera.xlab.si/ui/. [Accessed 26 11
2021].

DRAFT

http://www.medina-project.eu/

D5.1 – IaC execution platform prototype - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 33

www.piacere-project.eu

[20] Cloudify Platform Ltd., “Multi Cloud Orchestration: Turn Glue Code Into Certified
Environments,” [Online]. Available: https://cloudify.co/. [Accessed 8 11 2021].

[21] SERRANO, “TRANSPARENT APPLICATION DEPLOYMENT IN A SECURE, ACCELERATED AND
COGNITIVE CLOUD CONTINUUM,” [Online]. Available:
https://cordis.europa.eu/project/id/101017168. [Accessed 9 11 2021].

[22] CHARITY, “Cloud for Holography and Cross Reality,” [Online]. Available:
https://cordis.europa.eu/project/id/101016509. [Accessed 9 11 2021].

[23] RADON, “Rational decomposition and orchestration for serverless computing,” [Online].
Available: https://cordis.europa.eu/project/id/825040. [Accessed 9 11 2021].

[24] ELEGANT, “Secure and Seamless Edge-to-Cloud Analytics,” [Online]. Available:
https://cordis.europa.eu/project/id/957286. [Accessed 9 11 2021].

[25] DICE, “Data Infrastructure Capacity for EOSC,” [Online]. Available:
https://cordis.europa.eu/project/id/101017207. [Accessed 26 11 2021].

[26] P. Consortium, «D2.1 PIACERE DevSecOps Framework Requirements specification,
architecture and integration strategy,» 2021.

DRAFT

http://www.medina-project.eu/

