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Abstract—The advent of 5G has been a game-changer in the
Automotive Vertical sector. 5G acts as an enabler of advanced
networking architectures which, in turn, allow the development
of novel services, by attracting and engaging third parties to ex-
periment using available 5G infrastructure and connectivity. 5G-
IANA is a Horizon 2020 ICT-41 project that targets to create such
an advanced open experimentation platform, bringing powerful
novelty to third parties through the integration and provisioning
of far-edge resources for network orchestration purposes, and
through the offering of Machine Learning knowledge as an add-
on service to them. The scope of this paper is, therefore, to present
the 5G-IANA project overall goals, by emphasizing the most
important expected innovations from the project regarding far-
edge resources’ orchestration and ML as a service provisioning.

Index Terms—5G, automotive vertical, edge resources, orches-
tration, distributed machine learning

I. INTRODUCTION

5G-based Automotive-related services (i.e., Connected and
Automated Mobility services) are a broad range of digital
services in and around vehicles including both safety-related
and other commercial services provided, enabled, or supported
by 5G networks. With the roll-out of 5G, mobile networks will
offer a broad range of connectivity performances including
gigabit speeds and mission critical reliability. Most impor-
tantly, 5G will be a unified multi-service platform, serving not
only the traditional mobile broadband market but also enabling
digital transformation in a number of vertical industries, which
will result in the creation of unprecedented opportunities for
innovation and economic growth.

In parallel to these opportunities that 5G brings, there is a
clear momentum both from the European Commission and the
actual market needs to deploy and provide integrated, open and
cooperative experimentation infrastructures (i.e., platforms) on
top of which third party experimenters tailored to specific
vertical sectors will test their applications. Such third parties
mainly entail Small and Medium Enterprises (SMEs), which,
by themselves, do not have the means or the capabilities to
enter the 5G services market without any support from larger

5G players. On top of that, the need to provide predefined
5G open source repositories that include, for instance, already
available Virtual Network Functions (VNFs) or even chains of
such VNFs in the forms of Network Applications (”NetApps”),
is also critical. In this way, SMEs can relatively easily and
quickly deploy their own services, applications or algorithms
on top of reliable and accessible 5G experimentation plat-
forms.

In this context 5G-IANA project’s objective is to create and
offer an open accessible environment in which third party
developers can easily experiment and test their automotive-
related applications. To do so, the project designs the Auto-
motive Open Experimentation Platform (AOEP) as a multi-
layered platform that extends from the end user (applica-
tion) layer to the infrastructure layer and optimally combines
context and network infrastructure-aware functionalities for
supporting the deployment of advanced services represented as
linked chains of virtualised Application Functions (AFs) and
Network Functions (NFs). 5G-IANA offers also a catalogue of
ready-to-use NetApps containing already chained AFs and/or
NFs that a Vertical may want to re-use and eventually mod-
ify/extend to deliver 5G-enabled services. Then, the project
provides a whole set of hardware and software resources
that includes the computation and communication/transport
infrastructure as well as the management and orchestration
components, coupled with a NetApp Catalogue mostly tailored
to the Automotive sector. More specifically, the target is to:

1) deliver an Automotive experimentation platform that
operates on top of a 5G infrastructure (extending to
vehicles) and provides a NetApp Catalogue and an
AFs/NFs Repository open to third parties. In particular,
the NetApp Catalogue will host a set of Starter Kits,
i.e., baseline NetApps grouped per service category (e.g.,
vehicle movement, infotainment etc.), that third parties
can use/include in new service chains to develop and
design their own Automotive service,

2) provide functionalities for easing the design and chain-



ing of new Automotive services as well as their pro-
visioning, validation and and bench-marking. These
functionalities will be exposed to third parties through
an enhanced Graphical User Interface (GUI) that will
enable also the specification of service-related high-level
Quality of Service (QoS) requirements,

3) deploy and orchestrate Automotive services and related
components (i.e., NetApps and AFs) from both the
application and the networking point of view and to
monitor and dynamically adapt them at run-time. Em-
phasis is given to the “lightweight” orchestration on top
of On-board Units (OBUs)/Road-side Units (RSUs) for
offering a more flexible and scalable management of the
related resources,

4) facilitate the definition and re-usability of ML models
by any Vertical service that needs to train models in its
business logic, e.g., Federated Learning iterative process,

5) abstract the infrastructure and technology complexity
and provide uniform domain-agnostic deployments, en-
abling cross-domain and cross-platform interoperability.

The main project novelties lie, therefore, on two main
aspects. The first one concerns the integration and provisioning
of far-edge resources for network management and orches-
tration purposes, which will allow third party developers to
take full advantage of the capabilities offered by even the
far-edge nodes of the infrastructure (i.e., OBUs attached on
vehicles and RSUs deployed on the roads). In this direc-
tion, programmable OBUs/RSUs ready to host containerized
services are envisioned by the platform. The second novel
aspect is the availability of a Distributed Machine Learning
(DML) framework as part of the 5G-IANA platform and of
the correlate collected information as a service to the Over The
Top (OTT)/Original Equipment Manufacturer (OEM) third
party. As an example, network monitoring with respect to
data traffic will yield QoS predictions that support the service
provisioning decisions of such third parties.

The remainder of the paper is structured as follows: Section
II describes main edge-related technical challenges that the
project addresses, which concern the support of the require-
ments of automotive-related services facilitated by the intro-
duction of edge computing, as well as the challenges to support
the Life Cycle Management of far-edge devices. Then, Sec-
tions III and IV present the two main project novelties, which
concern respectively the orchestration of far-edge resources
and the support of Machine Learning (ML) as a service.
Next, Section V presents the design overview (in terms of
components and functions) of the 5G-IANA platform, which
will enable the deployment of both innovations previously
described, followed by the Conclusions section.

II. TECHNICAL CHALLENGES

A. Automotive-related

Edge computing is one of the most important technical as-
pects to be considered when rolling out Vehicle-to-Everything
(V2X) use cases and services, especially considering strict

performance requirements in terms of low latency and high re-
liability. The goal is to move computing and storage out of the
central cloud and closer to end-users and data sources to meet
the desired QoS requirements, e.g., latency in case of ultra Re-
liable Low Latency Communication (uRLLC) services. Multi-
access Edge Computing (MEC) is considered as a fundamental
enabler for supporting the roll-out of new Automotive use
cases and services while leveraging network slicing for tailored
network deployments that fulfil customers’ requirements and
demands. V2X use cases include a variety of services with
different requirements to be considered depending on their
specific scope/objectives, spawning from the vehicle move-
ment and hazard notification service areas, where applications
are usually latency demanding, till infotainment and AR/VR
services which require high Uplink (UL)/Downlink (DL)
throughput. One of the major challenges is related to MEC
applications design for achieving the expected performances
service developers need to identify the functionalities that
require processing at the edge with respect to others that do not
require a near-real-time exchange of information and can be
deployed at the central/remote cloud locations. Therefore, the
design of the desired service-chain should support distributed
processing, synchronisation of contexts, and multi-level load-
balancing [1]. The Automotive market highly influences edge
computing architectures, targeting scenarios with multiple
vehicles, from different manufacturers, and many other devices
(e.g. sensors, actuators, smartphones etc.) connected to the
infrastructure, e.g., RSUs, and the mobile network.

Fig. 1. Example of a service-chain extended to the far edge starting from a
three-tier usual deployment

The introduction of edge computing brings a shift towards
three-tier deployments, where UEs (i.e., client-side compo-
nents) are expected to communicate with service server-side
components potentially distributed across the edge and central
cloud locations. In beyond-5G networks, a further challenge
consists in extending the deployment of server-side compo-
nents to the UE side, which, as depicted in Fig. 1, in the
Automotive segment mostly means relying on orchestration-
enabled OBUs and RSUs. In [2], ETSI analyses MEC-related
requirements in terms of deployments and interoperability
for a set of use cases. With respect to the possibility of
executing service workloads on top of OBUs acting as MEC
hosts, on one hand, the main identified benefits concern an
enhanced contextual awareness by exploiting radio network,
location, and/or other information relevant to the changing



environment during journey time. On the other hand, the
fluctuation of connectivity conditions an in-vehicle MEC host
may experience, together with its possibly limited compute
resources (i.e., processing, memory and storage capabilities)
may impact its efficient management.

B. Applicability of ETSI MEC in far-edge device

The far-edge devices are typically characterized by a limited
amount of storage, memory and computing resources. These
characteristics of the far-edge environment have a deep im-
pact on the most suitable solutions to be adopted for the
virtualization, the life management, and the orchestration of
the applications to be run on far-edge devices. Lightweight
solutions are envisaged so that the limited available resources
are not exhausted.

Mobile far-edges, such as the OBU located on vehicles, can
also experience disruption in the mobile network communica-
tion in geographical areas where network coverage is limited.
In these situations, the far-edge orchestration should be self-
dependent, and it should not be relying on edge or network
support.

Another limitation is the limited availability of information
on the far-edge devices with respect to the MEC server case.
This can limit the ETSI MEC API that can be offered on far-
edge devices. For instance, the ETSI GS MEC 013 “Location
API” provides position information about UE terminals in the
area covered by the MEC server exploiting network-based
information. The far-edge devices are unlikely to have this
information available from the network as they are UE them-
selves. The “Location API” could then be hardly implemented
at the far-edge devices in full compliance with the standards.
Some adaptations should be introduced such as retrieving
UEs position information from the MEC server or from other
sources.

In Section III, the 5G-IANA approach for the dynamic
orchestration of far-edge resources (i.e., OBUs and RSUs)
is presented, while in Section V the AOEP proposed design
is described, introducing the architecture components and
functionalities proposed to address the far-edge orchestration
challenge.

III. ORCHESTRATION OF FAR-EDGE RESOURCES

A. State of the art on orchestration solutions

A thorough analysis of the products offered by the major
players in the V2X arena highlighted that virtualization and
orchestration solutions are not mentioned explicitly when
illustrating the commercially available OBU and RSU devices.
These devices are equipped with an ITS communication stack
software with related APIs. Third party software applications
can be hosted on the OBUs or developed using a Software
Development Kit (SDK).

In the research field, several proposals of virtualization
and orchestration approaches for OBU/RSU devices have
been introduced. In [3], different virtualization technologies
have been evaluated for improving the safety and security
of vehicular EBUs. A similar approach, which focused on

OBU virtualization, was also introduced in [4]. In both studies,
container virtualization was not considered in the analysis. A
container-based approach was considered in [5]. The solution
introduced was considered a self-standing environment where
an internal orchestration is performed. No interaction with a
central orchestrator was devised.

Other scientific works instead focused on a more central-
ized approach for the virtualization of OBU applications.
One approach was to virtualize the entire OBU and have a
virtual OBU at the edge server that is a replica of the real
OBU [6], [7]. This approach can offload the OBU from the
processing, but it would require a continuous exchange of
information between the real OBU and the virtual OBU. This
could prevent the real OBU to be self-sufficient when the
mobile connection is absent. A similar approach has been
proposed in [8]. In this case, it is not considered to have a
complete virtualized copy of the real OBU, but only specific
services in form of docker containers are migrated to the Edge
server.

The most similar approach to the one proposed by 5G-IANA
was introduced by the 5GinFIRE project [9]. In this project,
several vertical industries were targeted, among them, the au-
tomotive one. Indeed, the 5GinFIRE project made available the
IT-Av Automotive Environment where third party developers
can test their application on real OBU and RSU hardware by
deploying them as Virtual Network Functions using virtual
machines and exploiting the orchestration features provided
by a multi-site orchestrator based on OSM MANO. A docker-
based deployment has been also introduced as new function-
ality to the 5GinFIRE platform.

B. Advances in 5G-IANA – strategies

In 5G-IANA, the designed solution for the orchestration of
virtual resources on top of OBUs and RSUs foresee the inte-
gration of Kubernetes as lightweight orchestration framework.
Each OBU/RSU hosts a Kubernetes cluster that may acts as
an independent orchestration platform that executes the Life
Cycle Management (LCM) of the deployed services or can be
coordinated by the upper centralized orchestration layers for
facilitating the deployment of more extensive service-chains
across multiple edge and far-edge locations. As previously
discussed, distributed service-chains, partially deployed on top
of OBUs/RSUs pose an additional challenge related to the
potential discontinuity of mobile connectivity. In 5G-IANA
different mitigation solutions are currently under investigation:
i) the execution of graceful roll-back procedures in case a
LCM operation coordinated by the centralized layers fails due
to a connectivity issue, ii) the possibility of notifying through
the vehicle Human Machine Interface (HMI) the absence
of mobile connectivity and the consequent need of taking
over the control of the vehicle in case of vehicle movement
related applications and iii) depending on the service nature,
the possibility of designing the distributed service-chain in
order to have potentially independent sub-chains running on
top of OBUs/RSUs, for which is not mandatory to exchange
data with service components running at the edge and/or



central cloud. Furthermore, the AOEP performs a tailored
selection of OBUs and RSUs. The platform will provide
a subscription functionality to determine which OBUs and
RSUs are registered and can be potentially used to execute
services, while a continuous resource discovery will allow to
understand which OBUs are currently available when a request
for the provisioning of a specific Automotive service is issued.
The selection of OBUs and RSUs can be performed taking
into account various parameters, including the ones specified
by the Service Provider, e.g., the coverage area, for which
the expected vehicle trajectory should be considered, and/or
host-specific capabilities like the availability of data-sets for
training/profiling, availability of connected sensors/actuators
etc.

IV. ML AS A SERVICE

A. State of the art on distributed ML in 5G

Traditional ML systems require centralized data collection
and processing, consuming network resources and posing a
potential risk regarding the privacy of the collected data. The
wide range of connected nodes especially OBUs and RSUs
in the context of 5G networks leads to new distributed ML
services that leverage the cooperative and distributed data
collection in addition to an unprecedented amount of data
availability leading to improved statistical analysis. Note that
Distributed ML (DML) dispenses with the high bandwidth and
storage requirements of centralized ML architectures as well
as the privacy concern. In combination with the growth of the
processing capabilities of Far Edge nodes such as OBUs and
RSUs this allows ML tasks to be carried out more efficiently
at the Far Edge rather than on a central server [10].

In a nutshell, distributed or specifically federated ML
frameworks [11] dispatch and ML model to the data source
locations, in our case OBUs and RSUs, to be locally trained.
This is achieved using a variation of the Stochastic Gradient
Descent (SGD) algorithm. To obtain one final, coherent model
the locally trained models are collected and averaged at an
aggregation node. This procedure may be repeated until a
certain stopping criterion is achieved. The orchestration and
communication framework of the DML which is based on the
selection of nodes to form a (typically) star topology with the
model aggregation set in the center node (MEC) [12].

The framework above can on the one hand side be consid-
ered as a generic support technology for 5G Core’s Network
data analytic function [13]. However, in this paper we argue
in the next section that this can also be offered as an OTT
service by the 5G network.

The limitations of the state-of-the-art DML methods when
blindly applied in 5G networks arise due to heterogeneity
of the quality and availability of the data as well as the
heterogeneity of the training devices themselves (OBU, RSU)
as well as the network conditions [14]. This is clearly seen
in a 5G mobile scenario where different OBUs observe
qualitatively different data (e.g., network conditions or ve-
hicle trajectories) and the fact that the OBUs themselves
are composed of heterogeneous hardware that might not be

permanently available for DML tasks. Finally, as parameter
consistency can vary from synchronous configurations over
stale-synchronous, asynchronous up to ensemble learning con-
figurations we observe that in fact depending on the number
of OBUs that contribute to a DML task the optimal choice of
the configuration changes [15].

B. Advances in 5G-IANA

Based on the state-of-the-art above, the first direction of
concern in 5G-IANA is the integration of the system design for
DML in 5G and secondly, the optimization of DML training
with federated concepts for 5G automotive services.

The Integration of DML orchestration in the 5G-IANA
architecture is based on, first, DML-specific resource monitor-
ing, and secondly, a 5G-specific distribution of ML models.
The first aspect concerns the assessment and verification of
the underlying ML assumptions with respect to the overall
training resources and data availability in a distributed and
inherently non-uniform environment. DML orchestration in the
context of 5G requires key monitoring information regarding
the overall availability of OBU and RSU resources and data,
as well as the heterogeneous OBU devices. This is reflected in
a continuous DML specific resource discovery and monitoring
such as monitoring the OBU training resource availability or
the OBU training data availability. The second aspect concerns
the coupling of the DML decision-making mechanisms with
the 5G-IANA service orchestration. Based on OBU and RSU
monitoring data, the DML orchestration acts as a filter to
decide on the selection of specific OBUs to run a DML
service on. This filtering information is fed back to the slice
management layer as a constraint for the deployment. Further,
as mentioned in the previous subsection, the choice of an
optimal DML configuration (synchronous, asynchronous, etc.)
depends on the number of OBUs and RSUs selected for
training. As the DML-specific filtering process runs on the
DML orchestrator it also supplies this choice as a configuration
parameter for the DML service.

An instantiation of the DML framework appears in the
description of the following case study, where the focus is
on monitoring the status of the application layer network.

C. Case study: Network Status Monitoring

In this case study, we monitor the application-layer net-
work behavior and provide timely spatial QoS predictions for
automotive verticals. As the quality of communication may
vary spatially and temporally, and autonomous vehicles cannot
afford to suddenly lose communication, having a foresight of
future network behaviour will enhance the decision making
capabilities of autonomous vehicles.

As depicted in Fig. 2, we deploy a network monitoring
NetApp that uses passive probing to obtain network measure-
ments. Here, passive probing means that the regular network
traffic is monitored to study the network patterns for predic-
tion. Results show that this method has less data overhead
compared to active probing from a single host [16].



Here, we train a forecasting ML model with the the fol-
lowing goals: (1) to learn data traffic patterns for data traffic
prediction, (2) to learn network condition models to provide
QoS predictions, and (3) to learn to distinguish between
normal and abnormal network behaviours to detect and predict
faults. The forecasting model to be used here is a Long Short-
Term Memory (LSTM) model which overcomes the vanishing
gradient problem [17] by introducing a linear unit called
Constant Error Carousel [18] and outperforms conventional
benchmark models such as Support vector regression (SVR)
and Autoregressive Distributed Lag Model (ADLM) in fore-
casting tasks [19], [20] and [21].

Fig. 2. Operational Flow of a DML NetApp including (1) client (OBU/RSU)
selection; (2) model dispatch; (3) local training; (4) model delivery; (5) model
aggregation

As the OBU local datasets are non-independent and iden-
tically distributed and unbalanced, since some OBUs might
use certain services (based on their location, requirements and
tasks) more than other OBUs, we explore DML algorithms
beyond distributed averaging such as Federated Averaging
(FedAvg) [11], FedProx [22] or FedOpt [23]. In a nutshell,
to balance heterogeneous data and heterogeneous devices,
random subsets of suitable training nodes (OBUs) are selected
by the DML orchestrator for the individual DML tasks in
combination with asynchronous SGD optimization at the ag-
gregation on the edge.

The specific operational flow is as follow: The initial DML
client (OBU/ RSU) selection by the DML orchestrator is
performed based on node availability, node connectivity, node
battery resources, ML resource availability, node location, data
availability, data volume, and data features. These selection
criteria reflect the required knowledge to perform DML tasks
for automotive applications over a 5G mobile network as to
control data quality and device heterogeneity.

V. 5G-IANA ARCHITECTURE OVERVIEW

The centralized architecture, depicted in Fig. 3, is comprised
by two main orchestration layers that reside on top of multiple
Management and Orchestration (MANO) platforms in charge

of orchestrating compute resources placed in different loca-
tions. In particular, in 5G-IANA, we distinguish among three
possible locations, namely the central cloud, the edge and the
far-edge, where the latest includes orchestration-enabled OBUs
and RSUs. By design, the 5G-IANA platform is suitable for
operating on top of distributed 5G infrastructures, enabling the
deployment of Vertical services across non-federated Network
Function Virtualisation Infrastructure (NFVI) Point of Pres-
ences (PoPs) while supporting the expected QoS depending
on the specific 5G service profile. In addition, with the aim of
facilitating Verticals in the provisioning of the desired services,
the layered approach of the architecture follows the separa-
tion of concerns among the orchestration of the application
components and the required network services that support
them, as well as the modelling and selection of application-
aware 5G Network Slices. The goal is to build an abstraction
layer exposed to Verticals that hides the infrastructure and
technology complexity and can lead to a uniform and optimal
application design and execution, while the procedures for the
selection of the most appropriate 5G Network Slice, along with
the allocation of the compute resources across the distributed
infrastructure are executed in a transparent manner from a
platform end-user point of view.

Fig. 3. 5G-IANA Automotive Open Experimental Platform System Design

The NetApp Orchestration and Development layer rep-
resents the entry point to the overall system for a subset of the
identified stakeholders. This layer provides tailored functional-
ities to fulfil the requirements of Service Providers and NetApp
Developers. The two main building blocks, namely the NetApp
Toolkit and the Application Orchestrator, provide respectively
the functionalities related to modelling/design and provision-
ing/orchestration phases of the Vertical service/NetApp lifecy-
cle. On one hand, the NetApp Toolkit exposes functionalities
for: i) the management of NetApp packages along with the in-
cluded AFs/NFs packages, ii) the composition of NetApps and
AFs in service chains and iii) the specification of high-level
QoS parameters (e.g., number of expected vehicles, coverage
areas, etc.) along with application-specific optimization poli-
cies. On the other hand, the Application Orchestrator handles:
i) the Vertical Service deployment and LCM, ii) the mapping



of the Vertical service provisioning request into a slice intent,
and iii) the Vertical service run-time monitoring in conjunction
with the its profiling and related policies executions.

The Slice Management and Multi-domain Orchestration
layer is responsible for handling the intent-based request
issued by the Application Orchestrator and translating it into
the most appropriate 5G Network Slice profile to be selected
to fulfill the specified high-level QoS requirements. This
layer hosts also functionalities for coordinating a coherent
provisioning of needed compute resources across the target lo-
cations (i.e., far-edge, edge and central cloud) where NetApps
and related AFs/NFs are expected to be executed. Furthermore,
to support the orchestration of service-chains on top of OBUs
and RSUs, this layer provides also functionalities that realize
the far-edge resource subscription as well as their continu-
ous discovery, collecting periodically and/or on-demand the
resources status along with information related to specific
capabilities (e.g., availability of data-sets for training, power
consumption values, etc.). To do so, this block leverages on an
Information Localization service executed at the OBU/RSU
to collect the needed information for properly handling the
resources selection and allocation.

DML Orchestration, Monitoring and Analytics and
distributed data collections are services that run on top of
the previous two.

The DML block hosts the functional components in charge
of handling the selection of the most appropriate resources
(including the OBU and RSU) for supporting the operation of
the desired DML Vertical Service. The telemetry and analytics
functionalities, are coupled with the applications orchestration,
as a software management layer for controlling and monitoring
internal, service-to-service traffic in microservices-based ap-
plications. Both monitoring and analytics are achieved for the
data and control plane by a set of intelligent proxies deployed
alongside the application software components supporting the
provision of support/backing services (e.g., service discovery,
load balancing, health checking). This enables traceability
and logging and reporting for vertical and network slice and
infrastructural metrics.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described the 5G-IANA project platform at
a relatively high-level, with enough detail though to showcase
the potential of its openness, accessibility and adaptability to
enable third party experimenters in the Automotive vertical to
develop, deploy and test their services. This open platform
offers two main innovations to third parties that would be
interested in experimenting on top of it, namely an available
option for orchestration of far-edge resources that lie at
the vehicle- or road-side, and an option for exploiting ML-
awareness for provisioning automotive-related services in a
more efficient and effective way, by utilising network-side
predictions. Future work includes the software deployment
of all architectural components described in this paper, their
integration and validation, as well as the design of a proper
third party engagement planning, service/algorithm/application

integration and experimentation execution that will demon-
strate and highlight the re-usability and potential impact of
the 5G-IANA platform.
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