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A COMBINATORS
Filter. The filter combinator𝑀 |𝜎 𝑀 ′ ≜ (𝑆filter × 𝑆𝑀 × 𝑆𝑀′,→filter, (𝜎, 𝜎0

𝑀
, 𝜎0

𝑀′)) takes in a module

𝑀 ∈ Module(𝐸1) and a filter 𝑀 ′ ∈ Module(FilterEvents(𝐸1, 𝐸2)) and then produces a module

with events drawn from 𝐸2. The states of the filter combinator are given by 𝑆filter ≜ {P, F} ∪
{P(𝑒) | 𝑒 ∈ 𝐸1} ∪ {F(𝑒) | 𝑒 ∈ 𝐸1} and the transitions are depicted in Fig. 1. The events of the filter

module are drawn from the set

FilterEvents(𝐸1, 𝐸2)≜{Receive(𝑒1) | 𝑒1 ∈ 𝐸1}∪{Emit(𝑒2) | 𝑒2 ∈ 𝐸2}∪{Return(𝑒1) | 𝑒1 ∈ option(𝐸1)}
where Receive(𝑒1) is for accepting an incoming event, Emit(𝑒2) is for emitting an outgoing event,

and Return(𝑒1) is for returning control to the inner module. In the last case, the event 𝑒1 is optional

to allow us to force the inner module to emit the event 𝑒1 next (i.e., all visible transitions of the
inner module except ones emitting event 𝑒1 are blocked).

Linking. The linking operator 𝑀1 ⊕𝑋 𝑀2 is defined on modules𝑀1, 𝑀1 ∈ Module(𝐸?!) where
𝐸?! is (an event type that is isomorphic to) 𝐸 × {?, !}. The parameter 𝑋 = (𝑆,⇝, 𝑠0) determines

how the events are linked. It consists of a set of linking-interal states 𝑆 , an initial state 𝑠0 ∈ 𝑆 , and
a relation⇝ ⊆ (D × 𝑆 × 𝐸) × ((D × 𝑆 × 𝐸) ∪ { }) describing how events should be translated.

Formally, linking can be defined as𝑀1 ⊕𝑋 𝑀2 ≜ 𝑀1 ×𝑀2 |P link𝑋 .1 The module link𝑋 is defined as

link𝑋 ≜ (𝑆link ×𝑆𝑋 ,→link, (Wait, 𝑠0
𝑋
)) where 𝑆link ≜ ({Wait,Ub} ∪ {Emit(𝑒, 𝜎) | 𝑒 ∈ 𝐸?!, 𝜎 ∈ 𝑆link} ∪

{Return(𝑒) | 𝑒 ∈ option(𝐸?!)}) and→link is defined in Fig. 2.

(Kripke) wrappers. The combinator ⌈𝑀⌉𝑋 translates a modules with events 𝐸1 to a module with

events 𝐸2. This combinator is parametrized by 𝑋 = (𝑆, 𝑅,↽,⇀, 𝑠0, 𝐹 0) where 𝑆 is a set of states and

𝑠0 is an initial state. These states were omitted in the main paper for simplicity. They don’t give

additional expressive power but make writing the wrapper ⌈·⌉r⇌a more pleasant. ↽ and ⇀ are

relations that describe how the wrapper transforms the incoming and outgoing events. Concretely,

↽ describes how to translate an event 𝑒2 ∈ 𝐸2 to an event 𝑒1 ∈ 𝐸1 and ⇀ describes the translation

from 𝑒 ′
1
∈ 𝐸1 to 𝑒 ′2 ∈ 𝐸2.

1
The Coq development defines linking via more low-level combinators that we omit from the presentation here. Also the

Coq development allows undefined behavior via a Boolean on the right side of⇝ instead of a separate  result.
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filter-step-prog-none

𝜎 = P ∨ 𝜎 = P(𝑒) 𝜎1
𝜏−→ Σ

(𝜎, 𝜎1, 𝜎2)
𝜏−→filter

{
(𝜎, 𝜎 ′

1
, 𝜎2)

�� 𝜎 ′
1
∈ Σ

}
filter-step-filter-none

𝜎 = F ∨ 𝜎 = F(𝑒) 𝜎2
𝜏−→ Σ

(𝜎, 𝜎1, 𝜎2)
𝜏−→filter

{
(𝜎, 𝜎1, 𝜎 ′2)

�� 𝜎 ′
2
∈ Σ

}
filter-step-prog-recv

𝜎1
𝑒−→ Σ

(P(𝑒), 𝜎1, 𝜎2)
𝜏−→filter

{
(P, 𝜎 ′

1
, 𝜎2)

�� 𝜎 ′
1
∈ Σ

}
filter-step-prog

𝜎1
𝑒−→ Σ

(P, 𝜎1, 𝜎2)
𝜏−→filter

{
(F(𝑒), 𝜎 ′

1
, 𝜎2)

�� 𝜎 ′
1
∈ Σ

}
filter-step-filter-recv

𝜎2
Receive(𝑒)
−−−−−−−−→ Σ

(F(𝑒), 𝜎1, 𝜎2)
𝜏−→filter

{
(F, 𝜎1, 𝜎 ′2)

�� 𝜎 ′
2
∈ Σ

}
filter-step-filter-emit

𝜎2
Emit(𝑒)
−−−−−−→ Σ

(F, 𝜎1, 𝜎2)
𝑒−→filter

{
(F, 𝜎1, 𝜎 ′2)

�� 𝜎 ′
2
∈ Σ

}
filter-step-filter-return

𝜎2
Return(𝑒)
−−−−−−−→ Σ

(F, 𝜎1, 𝜎2)
𝜏−→filter

{
(if 𝑒 = Some(𝑒 ′) then P(𝑒 ′) else P, 𝜎1, 𝜎 ′2)

�� 𝜎 ′
2
∈ Σ

}
Fig. 1. Definition of→filter.

to(𝑑, 𝑒) =


Return(left(𝑒?, L)) if 𝑑 = L
Return(right(𝑒?,R)) else if 𝑑 = R
Emit(𝑒!,Return(None)) else if 𝑑 = E

link-step-wait-l

(L, 𝑠, 𝑒) ⇝ (𝑑, 𝑠 ′, 𝑒 ′)

(Wait, 𝑠)
Receive(left(𝑒!,𝑑))
−−−−−−−−−−−−−→link {(to(𝑑, 𝑒 ′), 𝑠 ′)}

link-step-wait-l-ub

(L, 𝑠, 𝑒) ⇝  

(Wait, 𝑠)
Receive(left(𝑒!,𝑑))
−−−−−−−−−−−−−→link {(Ub, 𝑠)}

link-step-wait-r

(R, 𝑠, 𝑒) ⇝ (𝑑, 𝑠 ′, 𝑒 ′)

(Wait, 𝑠)
Receive(right(𝑒!,𝑑))
−−−−−−−−−−−−−−−→link {(to(𝑑, 𝑒 ′), 𝑠 ′)}

link-step-wait-r-ub

(R, 𝑠, 𝑒) ⇝  

(Wait, 𝑠)
Receive(right(𝑒!,𝑑))
−−−−−−−−−−−−−−−→link {(Ub, 𝑠)}

link-step-wait-n

(E, 𝑠, 𝑒) ⇝ (𝑑, 𝑠 ′, 𝑒 ′)

(Wait, 𝑠)
Receive(env(𝑑))
−−−−−−−−−−−−→link {(Emit(𝑒 ′?, to(𝑑, 𝑒 ′)), 𝑠 ′)}

link-step-wait-n-ub

(E, 𝑠, 𝑒) ⇝  

(Wait, 𝑠)
Receive(env(𝑑))
−−−−−−−−−−−−→link {(Ub, 𝑠)}

link-step-emit

(Emit(𝑒, 𝜎), 𝑠)
Emit(𝑒)
−−−−−−→link {(𝜎, 𝑠)}

link-step-return

(Return(𝑒), 𝑠)
Return(𝑒)
−−−−−−−→link {(Wait, 𝑠)}

link-step-ub

(Ub, 𝑠) 𝜏−→link ∅

Fig. 2. Definition of→link.

As mentioned in the paper, these relations are separation logic relations. As such, they are of type

𝐸1 × 𝑆 × 𝐸2 × 𝑆 → UPred(𝑅). The second component of 𝑋 is a resource algebra 𝑅 [Jung et al. 2018]

that determines a separation logic of uniform predicates over the resource algebra UPred(𝑅). 𝐹 0
denotes the initial set of resources owned by the wrapper. We define ⌈𝑀⌉𝑋 ≜ 𝑀 |FJstate(𝑠0, 𝐹 0)Ks
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Appendix of DimSum: A Decentralized Approach to Multi-language Semantics and Verification 1:3

Instr ∋ c ≜ syscall; c | upd(x, r. v); c | ldr(x1, x2, v. v′); c | str(x1, x2, v. v′); c | jump

Fig. 3. Micro-Instructions of Asm

where the filter module is given by the following Spec program:
2

state(𝑠2, 𝐹2) ≜coind
∃𝑒2; vis(Emit(𝑒2));∀𝑒1, 𝑠1, 𝐹1; assume(sat(𝐹1 ∗ 𝐹2 ∗ (𝑒1, 𝑠1) ↽ (𝑒2, 𝑠2))); vis(Return(𝑒1));
∃𝑒 ′

1
; vis(Receive(𝑒 ′

1
));∃𝑒 ′

2
, 𝑠 ′

2
, 𝐹 ′

2
; assert(sat(𝐹1 ∗ 𝐹 ′2 ∗ (𝑒 ′1, 𝑠1) ⇀ (𝑒 ′2, 𝑠 ′2))); vis(Emit(𝑒 ′

2
));

state(𝑠 ′
2
, 𝐹 ′

2
)

Intuitively, state(𝑠2, 𝐹2) works as follows: Given an initial state 𝑠2 and a proposition describing

resource ownership of the translation 𝐹2, state synchronizes with the environment on an event 𝑒2.

Then it angelically chooses an event 𝑒1 for the inner module, a new state 𝑠1, ownership of the

environment 𝐹1, and a proof that the ownership of the translation together with the ownership of

the environment and the precondition (𝑒1, 𝑠1) ↽ (𝑒2, 𝑠2) is satisfiable. Then state sends 𝑒1 to the

inner module 𝑀 . Next, it receives an event 𝑒 ′
1
from 𝑀 and (demonically) chooses an event 𝑒 ′

2
to

emit to the environment, a new state 𝑠 ′
2
, new ownership of the translation 𝐹 ′

2
, and a proof that the

ownership of the translation together with the ownership of the environment and the postcondition

(𝑒 ′
1
, 𝑠1) ⇀ (𝑒 ′2, 𝑠 ′2) is satisfiable. After emitting 𝑒 ′

2
, the process repeats with state 𝑠 ′

2
and 𝐹 ′

2
.

B MICRO-INSTRUCTIONS OF Asm
Inspired by Sammler et al. [2022a], instructions c in Asm are sequences of micro instructions (i.e.,
simple instructions that, when composed together, form an actual instruction), depicted in Fig. 3.

The instruction syscall; c does a syscall and then executes c. The instruction upd(x, r. v); c updates
the register x according to the map r ↦→ v applied to the current register values r and then executes c.
The instruction ldr(x1, x2, v. v′); c takes the value stored in x2, applies the transformation v ↦→ v′

to it to obtain an address, loads from the memory at that address, stores the result in x1, and then

executes c. The instruction ldr(x1, x2, v. v′); c takes the value stored in x2, applies the transformation

v ↦→ v′ to it to obtain an address, stores in the memory at that address the value in x1, and then

executes c. The instruction jump reads the pc register and then jumps to the address stored there.

The reason for the micro instruction representation is that we can represent a large instruction

set by chaining few primitives. For example, the instructions used in print are derived as follows:

ret ≜ upd(pc, r. r(x30)); jump syscall ≜ syscall; next mov x, v ≜ upd(x, r. v); next

sle x1, x2, x3 ≜ upd(x1, r. if r(x2) ≤ r(x3) then 1 else 0); next
where we abbreviate next ≜ upd(pc, r. r(pc) + 1); jump.

C SEMANTIC LINKING FOR Asm
The full definition of the semantic linking relation⇝ for Asm can be found in Fig. 4. Compared to

the excerpt shown in the paper, it contains two additional cases, asm-link-syscall and asm-link-

syscall-return. The rule asm-link-syscall makes sure syscalls are passed on to the environment

(and never come from the environment). When a syscall is triggered, we store the current turn 𝑑 in

2
The Coq development defines an equivalent module directly using a step relation, but we give the definition here using

Spec for readability.
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asm-link-jump

(𝑑 ′ = L ∧ r(pc) ∈ d1) ∨ (𝑑 ′ = R ∧ r(pc) ∈ d2) ∨ (𝑑 ′ = E ∧ r(pc) ∉ d1 ∪ d2) 𝑑 ≠ 𝑑 ′

(𝑑,None, Jump(r,m))⇝d1,d2 (𝑑 ′,None, Jump(r,m))

asm-link-syscall

𝑑 ≠ E

(𝑑,None, Syscall(v1, v2,m))⇝d1,d2 (E, Some(𝑑), Syscall(v1, v2,m))

asm-link-syscall-return

𝑑 ′ ≠ E

(E, Some(𝑑 ′), SyscallRet(v,m))⇝d1,d2 (𝑑 ′,None, SyscallRet(v,m))

Fig. 4. Definition of semantic linking relation⇝ for Asm.

Library ∋ R ≜ (fn f (𝑥) ≜ local 𝑦 [𝑛]; e),R | ∅
Expr ∋ e ≜ v | 𝑥 | e1 ⊕ e2 | let 𝑥 := e1 in e2 | if e1 then e2 else e3 | e1 (e2) | !e | e1 ← e2

BinOp ∋ ⊕ ≜ + | < | == | ≤

Runtime Expr ∋ E ≜ · · · | alloc_frame (𝑥, 𝑛) E | free_frame (ℓ, 𝑛) E | Ret(𝑏, E) | Wait(𝑏)

Fig. 5. Grammar of Rec.

the private state of the linking operator. This way, we can make sure that when we return from

a syscall (asm-link-syscall-return), the execution continues with the module that triggered the

syscall.

D Rec

The language Rec is a simple, high-level language with arithmetic operations, let bindings, memory

operations, conditionals, and (potentially recursive) function calls (depicted in Fig. 5). The libraries

R of Rec are lists of function declarations. Each function declaration contains the name of the

function f, the argument names 𝑥 , local variables 𝑦 which are allocated in the memory, and a

function body e. The set of function names |R| of a library R is defined as the names of the functions

in the list R.

Module semantics. The semantics of a Rec library R is the module JRKr. The states of the

module are of the from 𝜎 = (E,m,R) where E is the current runtime expression (explained below).

We write (→r) for the transition system (shown in Fig. 6) and the initial state is (Wait(false), ∅,R).
To define the transition relation→r, we extend the static expressions e to runtime expressions

E, which have operations for allocating and deallocating stack frames as well as two distinguished

expressions Ret(𝑏, E) andWait(𝑏). These expressions are used to control when the module emits

call and return events: Initially, the module is waiting and willing to accept any incoming call to the

functions of the library (see rec-start). Once it starts, the function call is wrapped in the Ret(𝑏, ·)
expression to ensure an event is emitted after the function finishes executing (see rec-ret-return).

A call to functions of the library (see rec-call-internal), will trigger the allocation of the local

variables and, subsequently, the execution of the function body. A call to an external function

(see rec-call-external) will emit a Call!(f, v,m) and proceed to the waiting state. The flag for the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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rec-binop

(v1 ⊕ v2,m,R) 𝜏−→r {(v,m,R) | eval⊕ (v1, v2, v)}

rec-load

(!v1,m,R) 𝜏−→r {(v2,m,R) | ∃ℓ . v1 = ℓ ∧m(ℓ) = v2}

rec-store

(v1 ← v2,m,R) 𝜏−→r {(v2,m[ℓ ↦→ v2],R) | ∃ℓ . v1 = ℓ ∧ heap_alive(m, ℓ)}

rec-if

(if v then e1 else e2,m,R) 𝜏−→r {(e,m,R) | ∃𝑏. v = 𝑏 ∧ if 𝑏 then e = e1 else e = e2}

rec-let

(let 𝑥 := v ine,m,R) 𝜏−→r {(e[v/𝑥],m,R)}
rec-var

(𝑥,m,R) 𝜏−→r ∅

rec-alloc

heap_alloc_list(𝑛, ℓ,m1,m2)

(alloc (𝑦, 𝑛) e,m1,R)
𝜏−→r

{
(free_frame (ℓ, 𝑛) (e[ℓ/𝑦]),m2,R)

��� ∀𝑚 ∈ 𝑛.𝑚 > 0

}
rec-free

(free_frame (ℓ, 𝑛) v,m1,R)
𝜏−→r

{
(v,m2,R)

��� heap_free_list((ℓ, 𝑛),m1,m2)
}

rec-start

f ∈ R

(Wait(𝑏),m,R)
Call?(f,v,m′)
−−−−−−−−−→r {(Ret(𝑏, f (v)),m′,R)}

rec-call-internal

(fn f (𝑥) ≜ local 𝑦 [𝑛]; e) ∈ R

(f (v),m,R) 𝜏−→r

{
(alloc (𝑦, 𝑛) (e[v/𝑥]),m,R)

��� |𝑥 | = |v|}
rec-call-external

f ∉ R

(f (v),m,R)
Call!(f,v,m)
−−−−−−−−→r {(Wait(true),m,R)}

rec-ret-incoming

(Wait(true),m,R)
Return?(v,m′)
−−−−−−−−−−→r {(v,m′,R)}

rec-ret-return

(Ret(𝑏, v),m,R)
Return!(v,m)
−−−−−−−−−→r {(Wait(𝑏),m,R)}

rec-eval-ctx

(E,m,R) 𝑒−→r Σ

(K[E],m,R) 𝑒−→r {(K[E′],m′,R′) | (E′,m′,R′) ∈ Σ}

Fig. 6. Operational semantics of Rec.

waiting becomes true, because the module is now willing to accept a return to the function call that

was just issued (see rec-ret-incoming). The language Rec is an evaluation-context based language,
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rec-link-call

(𝑑 ′ = L ∧ f ∈ d1) ∨ (𝑑 ′ = R ∧ f ∈ d2) ∨ (𝑑 ′ = E ∧ f ∉ d1 ∪ d2) 𝑑 ≠ 𝑑 ′

(𝑑, 𝑑𝑠 ,Call(f, v,m))⇝d1,d2 (𝑑 ′, 𝑑 ::𝑑𝑠 ,Call(f, v,m))

rec-link-ret

𝑑 ≠ 𝑑 ′

(𝑑,𝑑 ′ ::𝑑𝑠 ,Return(v,m))⇝d1,d2 (𝑑 ′, 𝑑𝑠 ,Return(v,m))

Fig. 7. Definition of semantic linking relation⇝d1,d2 for Rec.

(e1, 𝑠1) ⇀ (e2, 𝑠2) ≜∃r m v. e2 = Jump!(r,m) ∗ inv(r(sp),m,mem(e1))∗
(∃f v m. e1 = Call!(f, v,m) ∗ f ∉ d ∗ r(x30) ∈ d ∗ 𝑎f = r(pc) ∗

𝑠2 = r :: 𝑠1 ∗ ∗
v,v∈v,take( |v |,r(x0...x8))

v↔ v

∨ ∃v m r′. e1 = Return!(v,m) ∗ r′ :: 𝑠2 = 𝑠1 ∗ r(pc) = r′(x30) ∗
r(x19 . . . x29, sp) = r′(x19 . . . x29, sp) ∗ v↔ r(x0))

(e1, 𝑠1) ↽ (e2, 𝑠2) ≜∃r m v. e2 = Jump?(r,m) ∗ inv(r(sp),m,mem(e1))∗
(∃f v m. e1 = Call?(f, v,m) ∗ f ∈ d ∗ r(x30) ∉ d ∗ 𝑎f = r(pc) ∗

𝑠1 = r :: 𝑠2 ∗ ∗
v,v∈v,take( |v |,r(x0...x8))

v↔ v

∨ ∃v m r′. e1 = Return?(v,m) ∗ r′ :: 𝑠1 = 𝑠2 ∗ r(pc) = r′(x30) ∗
r(x19 . . . x29, sp) = r′(x19 . . . x29, sp) ∗ v↔ r(x0))

Fig. 8. Definition of (↽) and (⇀) for ⌈·⌉r⇌a.

meaning reductions can happen inside of an arbitrary evaluation context (see rec-eval-ctx). The

definition of the evaluation contexts K can be found in the Coq development [Sammler et al. 2022b].

Linking. Syntactically, linking of two Rec libraries (i.e., R1 ∪r R2) denotes merging the function

definitions in R1 and R2. In case of overlapping function names, the function declaration of the

left library is chosen. (This choice is arbitrary.) If we semantically link two Rec modules (i.e.,
M1

d1⊕d2r M2), then we have to synchronize based on the function call and return events. To define

the linking M1
d1⊕d2r M2, we use the combinator𝑀1 ⊕𝑋 𝑀2. In the case of Rec, we pick the relation

R depicted in Fig. 7. The most interesting difference to Asm is that linking in Rec has to build up

and then wind down a call-stack, which is maintained as the internal state of (⇝).

E ⌈·⌉r⇌a WRAPPER
Before we can give the definition of the wrapper ⌈·⌉r⇌a, we first need to describe its full form:

⌈M⌉𝑎−,d,d,mr⇌a . In particular, the wrapper is parametrized by a mapping 𝑎− from Rec function names
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to Asm addresses, by the instruction address of the Asm code d, by the function names of the Rec
code d, and by a (fragment of) the initial memory m, which can be used for global variables.

To define the wrapper, we pick a suitable flavor of separation logic. Instead of directly presenting

the technical details of the resource algebra that we choose for 𝑅r⇌a, we instead describe the

connectives of the resulting separation logic:

• p↔ v states that the Rec block id p is mapped to Asm address v. We lift this relation to

locations by ℓ↔ v2 ≜ ∃v1. ℓ .blockid↔ v1 ∗ v2 = v1 + ℓ .offset and to values (i.e., v↔ v) by
relating Rec integers with the same integer in Asm and Boolean values with 0 and 1.

• v1 ↦→a v2 asserts ownership of the address v1 in Asm memory m and asserts that it contains

the value v2. The v1 ↦→a v2 connective is useful for asserting private ownership of Asm
memory in assembly libraries (e.g., it is used internally by the coroutine library to manage its

global state).

• p ↦→r V where V is a map from offsets to values asserts that the block with id p contains

exactly V. The p ↦→r V connective is useful for asserting ownership of locations in the Rec
memory, e.g., for locations that are not mapped to the Asm memory.

• inv(v,m,m) asserts that m and m are in an invariant such that all the aforementioned

assertions (i.e., p↔ v, v1 ↦→a v2, and p ↦→r V) have the meaning described above and v
points to a valid stack.

This separation logic is used to define the relations (↽) and (⇀) (depicted in Fig. 8) that are

used in the definition of ⌈·⌉r⇌a. Note that these definitions build on the definition of the Kripke

wrapper in Appendix A as they maintain the state 𝑠 for tracking the call stack in addition to the

separation logic predicates. We define:

⌈M⌉𝑎−,d,d,mr⇌a ≜ ⌈M⌉𝑋 where 𝑋 ≜ (List(Registers), 𝑅r⇌a,↽,⇀, [], ∗
v1 ↦→v2∈m

v1 ↦→a v2)

F COROUTINE LINKING
Formally, M1 ⊕coro M2 is defined using the generic linking operator 𝑀1 ⊕𝑋 𝑀2. Concretely, we

defineM1
d1⊕d2,fcoro M2 ≜ M1 ⊕Xcoro M2 where

Xcoro ≜ ((D × option(FnName)),⇝d1,d2
coro , (E, Some(f)))

Note that this linking operator is parametrized by a function name f of the initial function on the

right side of the linking (stream in the example). The effect of linking is described by⇝coro shown

in Fig. 9. There are many transitions, but most of them are straightforward The rule coro-link-yield

encodes the core idea of ⊕coro : If either the left side or the right side performs a call to yield,
control switches to the other side, and the event is transformed to a Return?(v,m) event. There is
one special case to consider: When M1 calls yield the first time, there is no yield in M2 from which

to return. Instead this first call to yield becomes the invocation of a designated start function f in
M2 (stream in the example), as stated by coro-link-l-yield-init. coro-link-init handles the initial

call from the environment toM1. If the environment tries to call a function in M1, the behavior is

undefined (coro-link-init-ub). coro-link-l-return handles the return from M1 to the environment.

M2 should never return and thus coro-link-r-return states that doing so would lead to undefined

behavior. Finally, coro-link-call and coro-link-e-return allow both M1 and M2 to call external

function (like print). However, M1 and M2 cannot directly call a function in the other module

(without going through yield) (coro-link-call-ub) and the environment may not call them back

recursively (coro-link-call-ub).
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coro-link-yield

(𝑑 = L ∧ 𝑑 ′ = R) ∨ (𝑑 = R ∧ 𝑑 ′ = L)
(𝑑, (𝑑,None),Call(yield, [v],m))⇝d1,d2

coro (𝑑 ′, (𝑑 ′,None),Return(v,m))

coro-link-yield-ub

𝑑 = L ∨ 𝑑 = R |v| ≠ 1

(𝑑, (𝑑,None),Call(yield, v,m))⇝d1,d2
coro  

coro-link-l-yield-init

(L, (L, Some(f)),Call(yield, [v],m))⇝d1,d2
coro (R, (R,None),Call(f, [v],m))

coro-link-l-yield-init-ub

|v| ≠ 1

(L, (L, Some(f)),Call(yield, v,m))⇝d1,d2
coro  

coro-link-init

f ∈ |M1 |
(E, (E, f0),Call(f, v,m))⇝coro (L,Call(f, v,m), (L, f0))

coro-link-init-ub

f ∉ |M1 |
(E, (E, f0),Call(f, v,m))⇝coro  

coro-link-l-return

(L, (L, f0),Return(v,m))⇝coro (E, (E, f0),Return(v,m))
coro-link-r-return

(R,R,Return(v,m))⇝coro  

coro-link-call

f ≠ yield (𝑑 = L ∧ f ∉ |M2 |) ∨ (𝑑 = R ∧ f ∉ |M1 |)
(L, (𝑑, f0),Call(f, v,m))⇝coro (E, (𝑑, f0),Call(f, v,m))

coro-link-call-ub

f ≠ yield (𝑑 = L ∧ f ∈ |M2 |) ∨ (𝑑 = R ∧ f ∈ |M1 |)
(L, (𝑑, f0),Call(f, v,m))⇝coro  

coro-link-e-return

(𝑠 = L ∧ 𝑑 = L) ∨ (𝑠 = R ∧ 𝑑 = R) 𝑒 = Return(_, _)
(E, (𝑑, f0), 𝑒)⇝coro (𝑑, (𝑑, f0), 𝑒)

coro-link-e-call-ub

(𝑠 = L ∧ 𝑑 = L) ∨ (𝑠 = R ∧ 𝑑 = R) 𝑒 = Call(_, _, _)
(E, (𝑑, f0), 𝑒)⇝coro  

Fig. 9. Definition of linking relation⇝d1,d2
coro .
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