
Algorithmic Minimization of Uncertain Continuous-Time Markov Chains
Luca Cardelli1, Radu Grosu2, Kim G. Larsen3, Mirco Tribastone4, Max Tschaikowski5 and Andrea Vandin6

Abstract—The assumption of perfect knowledge of rate param-
eters in continuous-time Markov chains (CTMCs) is undermined
when confronted with reality, where they may be uncertain
due to lack of information or because of measurement noise.
Here we consider uncertain CTMCs (UCTMCs), where rates are
assumed to vary non-deterministically with time from bounded
continuous intervals. An uncertain CTMC can be therefore
seen as a specific type of Markov decision process for which
the analysis is computationally difficult. To tackle this, we
develop a theory of minimization which generalizes the notion
of lumpability for CTMCs. Our first result is a quantitative and
logical characterization of minimization. Specifically, we show
that the reduced UCTMC model has a macro-state for each block
of a partition of the state space, which preserves value functions
and logical formulae whenever rewards are equal within each
block. The second result is an efficient minimization algorithm for
UCTMCs by means of partition refinement. As application, we
show that reductions in a number of CTMC benchmark models
are robust with respect to uncertainties in original rates.

I. INTRODUCTION

Continuous-time Markov chains (CTMCs) play a central
role for the stochastic modeling in a wide range of natural
and engineering disciplines including chemistry [1], queuing
theory [2], epidemiology [3], and biology [4]. A CTMC is
typically characterized by a number of parameters such as
arrival and service rates in a queuing system [2], transmission
and recovery rates in epidemic processes [5], and kinetic rates
in a chemical reaction network [6]. In essentially all practical
situations, however, knowing the values of all parameters
precisely is unlikely. This may be due to measurement noise
when parameters are inferred from observations, as well
as to our inability to accurately observe events at certain
spatio-temporal scales—a well-known problem notably arising
in computational systems biology (e.g., [7]). In addition,
sometimes the modeler may wish to be deliberately imprecise
about the value of certain parameters in order to account for
the disagreement between the real system and its model.

These motivations call for frameworks where parameter
uncertainty is a first-class citizen. In this paper we consider a
model that we call uncertain CTMCs (UCTMCs). It extends
CTMCs by defining bounded intervals for the values of
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the (time-varying) transition rates in order to model partial
knowledge. The UCTMC dynamics depends on a scheduler
that, at any point in time, nondeterministically picks a value
within the interval to define the exponential rate at which
the Markov chain makes a jump. Therefore, for instance, a
time-inhomogeneous CTMC corresponds to the special case
where the scheduler is deterministic but can be time-varying;
a time-homogeneous CTMC corresponds to a deterministic
scheduler that does not depend on time.

Overall, a UCTMC can be seen as a Markov decision process
(MDP). Specifically, it can be alternatively defined as a time-
inhomogeneous continuous-time MDP with an uncountable
action space, which represents all values within the uncertainty
intervals, see [8, Section 2.2]. In light of this connection, the
analysis of a UCTMC corresponds to the optimization of some
reward function. For example, the analogue to the transient
probability distribution in a classic CTMC is the minimal and
maximal probability of being in a state at a given time point
across all schedulers. This can be obtained by optimizing with
respect to a suitable reward. Therefore, it becomes apparent
that, even for such a (relatively) straightforward analysis in the
classic CTMC, its uncertain analogue is more challenging.
Indeed, most existing results either consider finite actions
spaces [9] or time-abstract policies [10].

Minimization, aka lumpability, is a natural way to cope with
the analysis of computationally difficult problems. It seeks to
find a more compact representation which can be related in
some appropriate formal way to the original model for analysis
purposes. For MDPs, the vast majority of minimization results
has been obtained in the case of discrete-time and finite action
spaces, by means of e.g., exact and approximate bisimulation,
MAXQ, stochastic programming and homomorphism, see,
e.g., [11], [12]. Since UCTMCs can be seen as continuous-
time MDPs with infinite action spaces, the aforementioned
approaches cannot be used in our context.

Here we develop a theory and an algorithm for the minimiza-
tion for UCTMCs that extends the related notions of CTMC
lumpability [2], [13] and stochastic bisimulation [14], [15].
Ordinary lumpability identifies a partition of the state space
which induces a reduced (lumped) Markov chain where each
macro-state represents a partition block; the probability of being
in each macro-state at any time point is equal to the sum of
the probabilities of the states of the original CTMC belonging
to that block [13]. Mutatis mutandis, we present UCTMC
lumpability as a partition of the state space which preserves
any value function (whenever the rewards are equal for all
states in each partition block). It turns out to be a conservative
extension of CTMC lumpability, in the sense that it collapses to
the latter when all UCTMC transition rates are constants. For
UCTMC we can prove a characterization result, namely that any
partition of the state space that preserves value functions in the



sense specified above must satisfy the conditions of UCTMC
lumpability. This generalizes classic characterization results for
CTMC lumpability from [13]. Additionally, we also establish
that UCTMC lumpability enjoys a characterization by means
of an extended continuous stochastic logic and thus generalize
the classic logical characterization of lumpability [16], [17].

For a given CTMC, there trivially exists the coarsest
ordinarily lumpable partition where all states collapse into
a single block: this corresponds to the basic property that
the whole probability mass is constant over time. Much
more interestingly, for a given initial partition of states, it
is possible to compute the coarsest refinement of such partition
which satisfies the conditions of ordinarily lumpability. In the
literature of CTMCs, this is a well established result with
algorithms that run in O(plogn) time, where p is the number
of transitions and n is the number of states of the CTMC [18],
[19]. These algorithms are based on partition refinement, i.e.,
they iteratively split the blocks of the initial partition until the
lumpability criteria are met.

Here we provide an efficient partition-refinement algorithm
for UCTMCs. In particular, it uses the CTMC lumpability
algorithm as an inner step: the coarsest UCTMC lumpable
partition that refines a given initial partition of states is the
coarsest refinement of the same initial partition in two time-
homogeneous CTMCs. These are derived by choosing as
rates the lower and upper bounds for all uncertainty intervals,
respectively. The algorithm iterates through these two CTMCs
until a fixed point: we prove that it takes O(pnlogn) time.

As an application, we consider the problem of analyzing
the “robustness” of CTMC lumpability, i.e., to what extent the
minimization depends on the specific choice of the parameters.
Using a prototype implementation, we study whether adding
uncertainty intervals around the constant values of the rates of
several CTMC benchmark models preserves the original CTMC
lumpability, demonstrating the scalability of our algorithm to
models with millions of states.

Further work.: As indicated earlier, a UCTMC can be
seen as a family of time-inhomogeneous CTMCs [8], [20], [17]
which, in turn, can be interpreted as a time-inhomogeneous
continuous-time MDP with an uncountable action space,
representing the values within the uncertainty intervals. This
model of uncertainty is different from the state of the art
concerned with MDPs where the action space is finite and/or
policies are time-independent (alternatively, untimed or time-
invariant), see for instance [21], [22], [9], [10], [23], [24].
Another related model is that of parametric CTMCs and
parametric MDPs [25], [26], [27], [28], [29], where certain
transition probabilities have symbolic parameters. A parametric
model underlies an (infinite) family of Markov models, one
for each possible evaluation of the parameters. However, each
member of this family is time-invariant because the instantiation
of the parameters is assumed fixed throughout the time course
evolution of the process. Parametric CTMCs whose parameters
are subject to stochastic uncertainty have been considered
too [30] but come with statistical rather than deterministic
guarantees. Most notions of lumpability and bisimulation for
the aforementioned models of uncertainty impose constraints
that must hold across all actions (in the case of MDPs [21],

[26], [31]) or, analogously, for all parameter evaluations
(for parametric Markov chains [26]). Instead, our notion
of lumpability can aggregate states even when realizations
of the uncertain transition rates make the resulting time-
inhomogeneous Markov chain not lumpable. In order to clarify
this difference, let us consider the simple graph structure in the
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right inset. If q2,1 and
q3,1 are constant values,
then the graph represents
a continuous-time Markov
chain. In this case, states 2
and 3 can be aggregated by
ordinary lumpability if q2,1 = q3,1. In the case of a parametric
Markov chain, q2,1 and q3,1 can be expressions over parameters;
yet, parametric Markov chain lumpability requires these two
expressions to be equal for all possible assignments of the
parameters [26]—hence, each member of the family of Markov
chains will be ordinarily lumpable. A similar remark applies to
lumpability of parametric MDPs. Indeed, if qi,j(a) denotes the
transition rate from state i into state j in the case of any action
a, the lumpability condition requires that q2,1(a) = q3,1(a).
Instead, a UCTMC has bounded intervals as transitions. Applied
to this simple example, our proposed notion of lumpability will
require that the intervals of both transitions be equal; however,
according to the semantic interpretation of a UCTMC, this
model underlies behavior in the form of (time-varying) CTMCs
which have different transition rates when the uncertainty
is resolved. The closest notion to UCTMC lumpability is
the alternating probabilistic bisimulation considered in [32]
for discrete-time interval MDPs. Similarly to us, alternating
probabilistic bisimulation: (i) does not require that realizations
of the uncertain transition probabilities make the discrete-time
Markov chain lumpable; (ii) can be computed in polynomial
time; (iii) preserves quantitative and logical properties; however,
in [32] it is not proved that the bisimulation is indeed necessary
for the preservation of such properties.

A UCTMC can be seen as a family of time-inhomogeneous
CTMCs where each time-inhomogeneous CTMC corresponds
to a concrete realization of the nondeterminism. This closely
aligns to open-loop control, allowing one to interpret a UCTMC
as a bilinear control system (e.g., [33], [34]) with bounded con-
trols accounting for uncertainties/disturbances [35], [36], [37],
[38]. Due to this, UCTMC lumpability can be related to the
bisimulation/abstraction of nonlinear dynamical systems [39],
[33], [40], [41] where, for a given observation map and two
copies of the same system, the largest abstraction gives rise to
a reduced dynamical system which coincides with the original
one up to the chosen observation map. Indeed, any UCTMC
lumpability determines a linear observation map such that the
lumped UCTMC is a (so-called consistent implementable)
abstraction of the original one [42]. To the best of our
knowledge, the computation of a (in a certain sense) minimal
observation map has been investigated for linear dynamics
with additive controls only [42]. Instead, UCTMC lumpability
considers the computation for a subclass of linear dynamics
with multiplicative controls. As less closely related reduction
approaches in control theory can be named [43] and [44] which
consider the verification of quantitative and logical properties,



respectively. Similarly to [32], a characterization is however
not addressed and the time setting is discrete.

The present work extends [45] by characterizing the preser-
vation of cost functionals rather than reachable probability sets.
Moreover, we provide a closed-form solution for the value
function and optimal control of a UCTMC by invoking Pon-
tryagin’s principle [46], allowing us in particular to avoid the
computationally demanding DTMDP approximation from [45].
Moreover, using the closed-form solution, we demonstrate the
speed-up due to UCTMC lumpability on benchmark models.
All proofs are provided.

II. UNCERTAIN CONTINUOUS-TIME MARKOV CHAINS

Notation. We use ∂t to denote the derivative with respect
to time t, while xT is the transpose of a vector x (in the
following, we consider column vectors and use the transpose
for row vectors). Pointwise equivalence of functions is denoted
by ≡, while := signifies a definition. Given two partitions H1

and H2 of a set S, we say that H1 is a refinement of H2 if
for any H1 ∈ H1 there exists a (unique) H2 ∈ H2 such that
H1 ⊆ H2. We shall not distinguish among an equivalence
relation and the partition induced by it.

We first introduce time-inhomogeneous (alternatively, time-
varying) CTMCs.

Definition 1 (CTMC). A (time-varying) CTMC is a pair (S, Q)
where S is a set of states S = {1, . . . , n} and Q = (qi,j)i,j
is the transition rate matrix such that every transition rate
function qi,j : R≥0 → R≥0 is a piecewise continuous function
with right limits when i 6= j and qi,i = −

∑
j 6=i qi,j for any i.

In what follows, quantities such as Q and π are time-
dependent unless otherwise stated. To enhance readability, we
will often suppress the explicit time dependence and write,
for instance, π and Q instead of π(t) and Q(t), respectively.
Explicit time dependence will be usually used in presence of
different time points like π(t) and π(0). Abusing notation, we
shall also write Q ∈ [m;M ] instead of Q ∈ [m;M ]R≥0 for
any m,M ∈ RS≥0 with m ≤M .

The following result relates the (transient) probability distri-
butions of (S, Q) to the Kolmogorov equations for time-varying
transition rates [8, Section 2.2].

Theorem 1. Given a CTMC (S, Q) and an initial probability
distribution π[0], the probability distributions π(t) exist and
satisfy, for all t ∈ R≥0, the Kolmogorov equations

∂tπ(t)T = π(t)TQ(t), where π(0) = π[0]. (1)

For time-homogeneous CTMCs, ordinary lumpability re-
quires a partition of the state space such that, for any two
states in the same block, the total cumulative rate into any
block is equal. The lumped CTMC has one state for each
block, with transitions given by such cumulative rates. The
Kolmogorov equations of the lumped CTMC preserve the sum
of the probabilities in each block; the characterization result
states that if a partition preserves such probabilities for any
initial condition, then it must satisfy the criteria for ordinary
lumpability (e.g., [13]).

By Theorem 1, ordinary lumpability for time-varying
CTMCs is a straightforward generalization which requires
pointwise equivalence between cumulative rate functions.

Theorem 2 (Ordinary Lumpability). Given a CTMC (S, Q), a
partition H of the set of states S is an ordinary lumpability if∑
j∈H′

qi1,j ≡
∑
j∈H′

qi2,j , for all H,H ′ ∈ H and i1, i2 ∈ H.

The lumped CTMC (Ŝ, Q̂) is given by:

• states Ŝ := {iH | H ∈ H}, where iH ∈ H is an arbitrary
representative of H;

• transition rate matrix Q̂ = (q̂iH ,iH′ )H,H′ , where

q̂iH ,iH′ :=
∑
j∈H′

qiH ,j for all H,H ′ ∈ H.

If the initial probability distribution of (Ŝ, Q̂) is defined by
π̂[0]iH =

∑
i∈H π[0]i for all H ∈ H and the transient

probability distributions of (Ŝ, Q̂) are denoted by π̂, the
following holds.

• If H is an ordinary lumpability, then π̂iH ≡
∑
i∈H πi for

all H ∈ H and π[0].
• If H is such that π̂iH ≡

∑
i∈H πi for all H ∈ H and

π[0], then H is an ordinary lumpability.

Proof. Follows from the discrete-time case [13].

We can now formally define a UCTMC. It allows transition
rates to vary non-deterministically with time within bounded
continuous intervals.

Definition 2 (Uncertain CTMC). An uncertain CTMC
(S,m,M, r, φ) is the following family of time-varying CTMCs:

• a set of states S = {1, . . . , n};
• lower bounds of transition rates 0 ≤ m = (mi,j)i6=j;
• uppers bounds of transition rates m ≤M = (Mi,j)i 6=j;
• final reward function φ : S → R;
• running reward function r : R≥0 × S → R.

The lower and upper bounds are numbers, while reward
functions r and φ are assumed to be measurable. Any
family member of a UCTMC is called a realization (of its
nondeterminism).

A UCTMC (S,m,M, r, φ) induces two extremal (time-
homogeneous) CTMCs (S,m) and (S,M) by fixing all lower
and upper bounds, respectively, for each transition rate. We
call a UCTMC deterministic if m = M because this yields a
CTMC.

The value function of a UCTMC is essentially defined as
the maximal (minimal) reward across all Q ≡ (Q(t))t≥0 ∈
[m;M ]. It intuitively accounts for the uncertainty across all
possible realizations. Reward functions are part of the UCTMC
definition because, in general, they influence the extent to which
the optimization problem induced by a family of CTMCs can
be simplified.
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Fig. 1: The M/M/1/2 queue with background- (b) and user-
level (u) jobs as running example.

Definition 3 (UCTMC value function). Fix a UCTMC U =
(S,m,M, r, φ) and a finite time horizon T ≥ 0. The maximal
value obtainable at T ≥ 0 if starting in i ∈ S is

V sup(i, T ) = sup
Q∈[m;M ]

V Q(i, T )

= sup
Q∈[m;M ]

E
[ ∫ T

0

rU(t)(t)dt+ φU(T )

]
= sup
Q∈[m;M ]

[ ∫ T

0

∑
j∈S

rj(t)π
Q
j (t)dt+

∑
j∈S

φjπ
Q
j (T )

]
,

where πQj (0) = 1i and πQj (t) denote the solution of (1) using
the transition rate matrix Q = (qi,j)i,j . The minimal value is
defined in a similar way, that is

V inf(i, T ) = inf
Q∈[m;M ]

V Q(i, T ).

Remark 1. The probabilities with which the realizations of
UCTMC (S,m,M, r, φ) can reach a set S ⊆ S at T ≥ 0
comprise the set of reachability probabilities {

∑
i∈S π

Q
i (T ) |

Q ∈ [m;M ]}. The reachability probability can be expressed by
the rewards r = 0 and φ = 1S , where 1S is the characteristic
function of S.

Example. We will use as queuing system as a running example.
This is essentially a birth/death process, a fundamental type of
CTMCs (e.g., [47]). When used to model real systems such as
computer applications, the assumptions made in a classical time-
homogeneous setting may be restrictive [48]. Here we consider
an M/M/1/2 queue: it has exponentially distributed arrival
and service times, 1 server, and processes jobs of two classes
according to a first-come first-served scheduling (FCFS). For
illustrative purposes, we show the case of a buffer of size 2, i.e.,
the service facility can accept at most two jobs, e.g., background
processes b and user-level processes u. Each state of the Markov
chain tracks the current configuration of the queue. Real-world
phenomena may lead to time- or class-dependent behaviors.
For example, time-dependent arrival rates account for peak/off-
peak variations (e.g., [49]); service rates may degrade as the

queue length increases, as would be identified by state-of-the-
art learning methods for CTMCs [48]. If one wishes to account
more precisely for these effects, arrival and service rates can
be assumed to be contained in some intervals [λ;λ] and [µ;µ],
respectively. The system can thus be modeled by the UCTMC
depicted using standard notation in Figure 1. State ε denotes
an empty queue; the other states show the queue configuration,
e.g., state ub is the full queue where a user job is at the head,
followed by a background job.

One of the most interesting performance metrics is the
utilization, i.e., the probability that the queue is not empty [47].
In light of Remark 1, one can consider the final reward
φ = 1S\{ε} which describes the probability of not being
in state ε. Likewise, one could use the discounted reward
r = e−at1S\{ε} with discount factor a > 0. In the time-
homogeneous deterministic case when λ = λ and µ = µ, the
resulting CTMC admits the ordinary lumpability consisting
of blocks {ε}, {b, u}, and {bb, bu, ub, uu}; in the lumped
CTMC neither the job order nor the job class has to be
tracked, and the model becomes the textbook M/M/1/2
single-class queue [47]. Notice that in the lumped CTMC
the utilization can be recovered exactly because the state ε is
not aggregated. Instead, we remark that, for nontrivial intervals
of rates, the UCTMC admits time-varying behaviors that break
the symmetries for CTMC ordinary lumpability by Theorem 2.

A. Closed-form Solutions of UCTMCs

Akin to the derivation of the famous LQR formula for
linear control systems [46], we use Pontryagin’s principle,
a cornerstone of optimal control theory [46], to derive a closed-
form solution for UCTMCs. To this end, we generalize the
result from [50] which considered UCTMCs with final rewards
only. In contrast to [50], we do not rely on the sufficient version
of Pontryagin’s principle [51] but use a direct argument.

Theorem 3. Assume that we are given a UCTMC U =
(S,m,M, r, φ). Then, for a given finite time horizon T ≥ 0,
a minimizing Q∗ ∈ [m;M ] can be obtained by solving the
adjoint system of equations

∂tpi(t) = −
∑
j 6=i

(pj − pi)q∗i,j(t) + ri(t), i ∈ S, (2)

where for all i, j ∈ S with i 6= j:

q∗i,j(t) =

{
mi,j , pj(t)− pi(t) < 0

Mi,j , pj(t)− pi(t) ≥ 0

and pi(T ) = −φi. That is, Q∗ yields

V inf(i, T ) = inf
Q∈[m;M ]

V Q(i, T ) = V Q
∗
(i, T ), i ∈ S.

Instead, V sup is obtained if pi(T ) = φi and ri(t) is replaced
with −ri(t) in (2) for all i ∈ S.

Proof. See Appendix A.

Theorem 3 ensures that the value function of a UCTMC can
be computed by solving a system of differential equations of
size 2|S|.



B. UCTMCs as MDPs

We end the section by relating UCTMCs to MDPs. We begin
by showing that a UCTMC can be interpreted as an instance
of a time-inhomogeneous continuous-time MDP (CTMDP).
To see this, we consider a CTMDP with the scheduler model
as in [8, Section 2.2], which can be intuitively described as
follows. For a sufficiently small time step h > 0, a CTMDP
that is in state i ∈ S at some time kh ≥ 0, where k ≥ 0
is an integer, may choose an action ai from A(i), the set of
available actions in state i. With this, the CTMDP remains in
state i on [kh; kh+ h), while at time kh+ h the state is:
• j 6= i, with probability qi,j(kh, ai)h+ o(h), where o(h)

refers to the standard small-o notation, while qi,j(kh, ai)
denotes the transition rate from state i into state j at time
kh under action ai;

• i, with probability 1 + qi,i(kh, ai)h+ o(h).
Note that qi,j(kh, ai)h+ o(h) and 1 + qi,i(kh, ai)h+ o(h)

can be interpreted as transition probabilities of the embedded
discrete-time Markov chain [52] under action ai at step
k. Indeed, in the special case when the transition rates
are time-invariant, the time-homogeneous CTMDP admits a
characterization in terms of sojourn times and an embedded
chain. According to this characterization, the choice of action
ai ∈ A(i) upon entering state i ∈ S gives a sojourn time in
state i that is exponentially distributed with rate −qi,i(ai),
and the probability to move into a state j 6= i equal to
−qi,j(ai)/qi,i(ai) (see Theorem 2.8.2 in [52]).

Under this model, the discussion in [8, Section 2.2] yields
the following relationship between a UCTMC and a CTMDP,
where, essentially the uncountable many actions of the latter
encode the uncertainty intervals of the former.

Theorem 4. For a given UCTMC (S,m,M, r, φ), consider
the CTMDP (S,A,M, r, φ) where an action taken at time t
in state i, denoted by ai(t), is a row vector such that each
component ai,j(t) determines the transition rate from i into j
at time t. More formally:
• the set of actions in state i ∈ S be given by A(i) =∏

j 6=i[mi,j ;Mi,j ];
• the transition rate from state i to state j at time t under

action ai ∈ A(i) is denoted by qi,j(t, ai) and is given by
ai,j ∈ [mi,j ;Mi,j ], where ai,j is the j-th entry of ai;

• the policies form the set M and are given by piecewise
continuous a : [0;∞)→

∏
i∈S A(i).

If the value of CTMDP (S,A,M, r, φ) arises by replacing V
with W and (qi,j)i,j with (ai,j)i,j in Definition 3, then

V ∗(i, T ) = W ∗(i, T )

for all i ∈ S, T ≥ 0 and ∗ ∈ {inf, sup}.

Proof. Follows from [8, Section 2.2].

Thanks to Theorem 4, it is in principle possible to approxi-
mate UCTMCs by means of DTMDPs. While the corresponding
approximation is computationally challenging compared to the
closed-form solution of Theorem 3, it allows one to relate
UCTMC lumpability to alternating probabilistic bisimulation,
see Appendix B.
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Fig. 2: Lumped UCTMC from Figure 1.

III. UCTMC LUMPABILITY

We define UCTMC lumpability in terms of lumpability of
the two extremal CTMCs. Additionally we require that states
within each block have the same rewards.

Definition 4 (UCTMC Lumpability). A partition H of S is a
UCTMC lumpability of UCTMC (S,m,M, r, φ) if
• H is an ordinary lumpability of both CTMCs (S,m) and

(S,M);
• r and φ are constant on H, that is, ri1(t) = ri2(t) and
φi1 = φi2 for all H ∈ H, i1, i2 ∈ H , t ≥ 0.

The lumped UCTMC is obtained as follows.

Definition 5 (Lumped UCTMC). Let H be a UCTMC
lumpability of (S,m,M, r, φ) and fix, for each H ∈ H, some
representative iH ∈ H . The lumped UCTMC has:
• set of states Ŝ := {iH | H ∈ H},
• lower bounds m̂iH ,iH′ :=

∑
j∈H′ miH ,j ,

• upper bounds M̂iH ,iH′ :=
∑
j∈H′MiH ,j ,

• rewards r̂iH (t) := riH (t) and φ̂iH := φiH ,
where iH , iH′ ∈ Ŝ.

Example. For the UCTMC from Figure 1, the UCTMC
lumpability H =

{
{ε}, {b, u}, {bb, bu, ub, uu}

}
induces the

lumped UCTMC in Figure 2 for all rewards that are constant
on H. Each state is labeled with a representative of the
corresponding partition block. We remark that the lumped
UCTMC corresponds to an M/M/1/2 queue with FCFS
scheduling and uncertain arrival and service rates where the
identity of the jobs and their order is not tracked.

A. Characterization via Value Functions

The next result states that the value function of a UCTMC
coincides with the value function of its lumped UCTMC.
Moreover, it allows to retrieve from an optimal control of the
lumped UCTMC an optimal control of the original UCTMC,
thus circumventing the solution of the original optimization
problem altogether.

Theorem 5 (Value preservation). Assume that H is a UCTMC
lumpability of U = (S,m,M, r, φ). Then, for any H ∈ H,
i ∈ H and T ≥ 0, it holds that

V sup

Û
(iH , T ) = V sup

U (i, T ) and V inf
Û (iH , T ) = V inf

U (i, T ),

where Û refers to the lumped UCTMC induced by H. Addi-
tionally, if Q̂ ∈ [m̂; M̂ ] is minimizing the cost, that is

V inf
Û (iH , T ) = inf

Q̂∈[m̂;M̂ ]
V Q̂
Û

(iH , T ), H ∈ H,



then the minimal cost of the original UCTMC is attained via

qi,j(t) = mi,j +
Mi,j −mi,j∑

j′∈H′
(Mi,j′ −mi,j′)

(
q̂iH ,iH′ (t)− m̂iH ,iH′

)
,

where H,H ′ ∈ H satisfy i ∈ H and j ∈ H ′. The statement
remains true when minimization is replaced with maximization.

Proof. See Appendix C.

Example. Applied to the running example, this result states
that the minimum and maximum utilization is preserved in the
lumped UCTMC.

The next result is a converse of Theorem 5. Together, both
results provide a characterization of UCTMC lumpability in
terms of value functions.

Theorem 6 (Characterization). Fix a triple (S,m,M), some
partition H of S and a triple (Ŝ, m̂, M̂) such that Ŝ = {iH |
H ∈ H}. Assume that for all reward functions r : R≥0×S →
R and φ : S → R that are constant on H, it holds that

V ∗Û (iH , T ) = V ∗U (i, T ), for all H ∈ H, T ≥ 0,

where U = (S,m,M, r, φ) and Û = (Ŝ, m̂, M̂ , r̂, φ̂) with
r̂ = r|R≥0×Ŝ and φ̂ = φ|Ŝ . Then
• H is a UCTMC lumpability of (S,m,M, r, φ) for all

rewards r, φ : S → R that are constant on H and;
• (Ŝ, m̂, M̂ , r|R≥0×Ŝ , φ|Ŝ) is its lumped UCTMC.

Proof. See Appendix C.

We next note that UCTMC lumpability is a conservative
generalization of ordinary lumpability.

Lemma 1 (Generalization). Assume that H is a UCTMC
lumpability of a deterministic UCTMC (S,m,M, r, φ). Then,
H is an ordinary lumpability.

Proof. Trivial.

The next two corollaries extend our main results. This first
accounts for uncertain reward functions.

Corollary 1 (Uncertain reward functions). Fix a UCTMC
U = (S,m,M, r, φ), a partition H of S and running rewards
r, r̄ and final rewards φ, φ̄ that are constant on H and that
satisfy r ≤ r ≤ r̄ and φ ≤ φ ≤ φ̄ pointwise. Then, if
a) H is a UCTMC lumpability of Ū = (S,m,M, r̄, φ̄) and;
b) H is a UCTMC lumpability of U = (S,m,M, r, φ),
we obtain for all T ≥ 0, H ∈ H and i ∈ H:

V sup
U (i, T ) ≤ V sup

Ū (i, T ) = V sup
ˆ̄U

(iH , T )

V inf
Û (iH , T ) = V inf

U (i, T ) ≤ V inf
U (i, T ), (3)

where Û and ˆ̄U is the lumped UCTMC of U and Ū , respectively.
Conversely, if (3) holds true for all T ≥ 0, H ∈ H, i ∈ H and
UCTMCs U as described above, then we obtain a)-b).

Proof. Follows readily from Theorem 5, Theorem 6 and the
fact that r ≤ r ≤ r̄ and φ ≤ φ ≤ φ̄.

The second result describes how the optimization over
general CTMC families can be over-approximated.

Corollary 2 (Over-approximation). Fix some family of time-
varying CTMCs U = (S,F , r, φ), where
• S is a set of states;
• F is some family of piecewise continuous transition rate

matrices with range [m;M ] for some m ≤M in RS≥0;
• r and φ are running and final rewards, respectively.

Assume that r ≤ r ≤ r̄ and φ ≤ φ ≤ φ̄ are such that r, r̄, φ, φ̄
are constant on some partition H of S and that conditions
a)-b) from Corollary 1 are true. Then

V inf
Û (iH , T ) ≤ inf

Q∈F
V Q(i, T )

sup
Q∈F

V Q(i, T ) ≤ V sup
¯̂U

(i, T ),

for all T ≥ 0, H ∈ H and i ∈ H .

Proof. Follows from Corollary 1 and the fact that any element
of F is a piecewise continuous function with range [m;M ].

We end the section by noting the following.

Remark 2. One may wonder whether the aforementioned
lumping results can be established by lumping ODE system (2)
in Theorem 3. Specifically, one may apply forward differential
equivalence [53] to (2), hoping that sums

∑
i∈H πi and∑

i∈H pi are preserved and describe a closed-form expression
of a hypothetical lumped UCTMC. Noting that the optimal
transition rates are defined through differences pi−pj , however,
we note that this is not possible.

B. Characterization via Temporal Logics

We next relate UCTMC lumpability to continuous stochastic
logic for time-varying CTMCs [16], [17] (CSL).

Definition 6 (CSL). The CSL syntax is given by

φ ::= a | φ ∧ φ | ¬φ | P./p
(
X[t0;t1]φ

)
| P./p

(
φU[t0;t1]φ

)
,

where a ∈ A and A is the nonempty finite set of atomic
propositions, p ∈ [0; 1] is a probability, ./ ∈ {<,≤,≥, >} and
0 ≤ t0 ≤ t1 <∞. For a time-varying CTMC with piecewise
analytic transition rates (qi,j)i,j , the satisfiability relation is
given by structural induction over φ.
• i, t |= a if and only if a ∈ L(i);
• i, t |= φ1 ∧ φ2 if and only if i, t |= φ1 and i, t |= φ2;
• i, t |= ¬φ if and only if not i, t |= φ;
• i, t |= P./p

(
X[t0;t1]φ

)
if and only if P{σ | σ, t |=

X[t0;t1]φ} ./ p with π(t) = ei;
• i, t |= P./p

(
φ1U[t0;t1]φ2

)
if and only if P{σ | σ, t |=

φ1U[t0;t1]φ2} ./ p with π(t) = ei;
• σ, t |= X[t0;t1]φ if and only if tσ[1] ∈ [t+ t0; t+ t1] and
σ[1], tσ[1] |= φ;

• σ, t |= φ1U[t0;t1]φ2 if and only if there exists a t′ ∈
[t+ t0; t+ t1] such that σ@t′, t′ |= φ2 and σ@t′′, t′′ |= φ1

for all t′′ ∈ [t+ t0; t+ t′),
where L(i) is the set of atomic propositions valid in state i,
P is the probability measure, π(t) the probability distribution
of the CTMC at time t, σ a path of the CTMC, σ@t the state
of the CTMC at time point t, σ[1] the state at the time of the
first jump and tσ[1] the corresponding time point.



The Boolean operators ∧ and → are defined as usual;
likewise, tt := a ∨ ¬a and ff := a ∧ ¬a for some a ∈ A.
As in the case of classic model checking [54], X refers to the
next operator, while U corresponds to the until operator. The
assumption of piecewise analyticity is needed to ensure the
well-definedness, please refer to [17], [55] for details. This
motivates the following.

Definition 7. Given a UCTMC (V,m,M, r, φ), any piecewise
analytic transition rate matrix Q(·) ∈ [m;M ] is called
admissible.

We next extend CSL to UCTMCs by defining a formula to
be true when it is satisfied by all admissible Q. This allows
one to study safety properties in presence of uncertainty.

Definition 8 (CSL for UCTMCs). Given a UCTMC
(V,m,M, r, φ), the CSL syntax is

φ ::= a | φ ∧ φ | ¬φ | P∀./p
(
X[t0;t1]φ

)
| P∀./p

(
φU[t0;t1]φ

)
For an arbitrary small but fixed time step h > 0, let t denote
the smallest grid point in {0, h, 2h, . . .} that minimizes the
distance to t ≥ 0, i.e., t = h · bt/hc, where b·c is the floor
function. For a given labeling function L : V → 2V and
initial probability distribution π[0], the satisfiability operator
is defined by induction for any i ∈ S and t ≥ 0 as:

• i, t |= a iff a ∈ L(i);
• i, t |= φ1 ∧ φ2 iff i, t |= φ1 and i, t |= φ2;
• i, t |= ¬φ iff not i, t |= φ;
• i, t |= P∀./p

(
X[t0;t1]φ1

)
iff i, t |= P./p

(
X[t0;t1]φ

)
for all

Q ∈ [m;M ];
• i, t |= P∀./p

(
φ1U[t0;t1]φ2

)
iff i, t |= P./p

(
φ1U[t0;t1]φ2

)
for all Q ∈ [m;M ].

As usual, existential quantification is given via negation, i.e.,
P∃./p(Φ) := ¬P∀¬./p

(
Φ
)
, where ¬ ./ is defined in the obvious

manner (e.g., ¬ ≤ is >), while ∨, → are defined using ∧, ¬.
Together with the assumption of piecewise analytic transition
rate functions, the usage of t in Definition 8 ensures that the
function t 7→ i, t |= φ has finitely many discontinuity points
on any bounded time interval. Amongst other, this technical
ingredient allows one to prove the following.

Theorem 7 (Preservation of CSL). Let H be a UCTMC
lumpability of UCTMC U and let Û be the underlying lumped
UCTMC. Further, assume that L(i) = L(j) for all H ∈ H
and i, j ∈ H . With this, define Â := A and L̂(iH) := L(iH)
for all H ∈ H. Then

i, t |=U φ⇐⇒ iH , t |=Û φ

for any t ≥ 0, h > 0, block H ∈ H, state i ∈ H , X-operator
free CSL formula φ and initial probability distribution π[0].

Proof. See Appendix D.

The next result is a converse of Theorem 7 and establishes
a logical characterization of UCTMC lumpability.

Theorem 8 (Logical Characterization). Fix a UCTMC
(V,m,M, r, φ), a partition H of V and let L, Â and L̂ be

Algorithm 1 Computation of coarsest UCTMC lumpability.

Require: Uncertain CTMC (S,m,M, r, φ), and initial parti-
tion H respecting r and φ, i.e., r and φ are constant on
each H ∈ H.

1: while true do
2: H′ ←− coarsest ordinary lumpability of CTMC (S,m)

that refines H
3: H′′ ←− coarsest ordinary lumpability of CTMC (S,M)

that refines H′
4: if H′′ = H then
5: return H′′
6: else
7: H ←− H′′
8: end if
9: end while

as in Theorem 7. Assume further that there exists a UCTMC
(V̂, m̂, M̂ , r̂, φ̂) such that V̂ = {iH | H ∈ H} and

i, t |=V,m,M φ⇐⇒ iH , t |=V̂,m̂,M̂ φ

for any t ≥ 0, h > 0, H ∈ H, i ∈ H and X-operator
free CSL formula φ. Then, H is a UCTMC lumpability and
(V̂, m̂, M̂ , r̂, φ̂) the underlying lumped UCTMC.

Proof. See Appendix D.

C. Computation via Partition Refinement

We now present an algorithm for computing the coarsest
UCTMC lumpability that refines a partition of states H. Its
steps are as follows.
1) Compute the coarsest ordinary lumpability H′ of the CTMC

(S,m) that refines the current partition H.
2) Compute the coarsest ordinary lumpabilityH′′ of the CTMC

(S,M) that refines H′.
3) If H′′ = H, return H′′; else, set H := H′′ and go to 1).
Obviously, if 1) does not refine H and 2) does not refine H′,
then H is a UCTMC lumpability of (S,m,M). It terminates
because S is finite. Moreover, it can be shown that the algorithm
indeed computes the coarsest UCTMC partition because each
refinement produces a partition which, itself, is still refined by
the coarsest UCTMC lumpability.

The next result summarizes the above discussion.

Theorem 9. Given a UCTMC (S,m,M, r, φ), let H be a
partition of S. Then, the following can be shown.

1) The coarsest UCTMC lumpability refining H exists and
is computed by Algorithm 1.

2) The time and space complexity required for one while
loop iteration does not exceed O(p log(n)), where p :=
|{(i, j) | mi,j > 0 or Mi,j > 0}| and n := |S|. The
number of while loop iterations, instead, is at most n.

Proof. Since the trivial partition {{i} | i ∈ S} is an ordinary
lumpability of both, (S,m) and (S,M), we observe that the
set of UCTMC lumpable partitions refining some partition H
of S is not empty. Moreover, assume that H′ and H′′ refine
H and are ordinary lumpable partitions of both (S,m) and



(S,M). Then, with the asterisk denoting the transitive closure
of relations and with equivalence relations ∼′ and ∼′′ given
by H′ = S/∼′ and H′′ = S/∼′′, respectively, it holds that
S/(∼′ ∪ ∼′′)∗ refines H and is an ordinary lumpable partition
of both (S,m) and (S,M). This foregoing discussion allows
us to conclude that there exists a coarsest UCTMC lumpability
refining H. The complexity estimation of CTMC lumpability
algorithms like [18], [19] implies the complexity estimation
of Algorithm 1. As for the correctness, let Hω denote the
coarsest UCTMC lumpability refining the given initial partition
H. Then, for any partition H′ of S , the following observations
hold true:
• If H′ refines Hω, then Hω refines the coarsest ordinary

lumpability of (S,m) that refines H′.
• If H′ refines Hω, then Hω refines the coarsest ordinary

lumpability of (S,M) that refines H′.
Since S is finite, the sequence of partitions computed in
Algorithm 1 will eventually reach a fixed point that cannot be
refined. Noting that such a fixed point is an ordinary lumpability
of (S,m) and (S,M), the proof is complete.

The complexity statement follows from the fact that 1) and 2)
can be processed by CTMC lumpability algorithms [18], [19].
We note that Algorithm 1 simplifies to the CTMC lumpability
algorithm if applied to a deterministic UCTMC.

IV. EVALUATION

Using a prototype implemented in the tool ERODE [56], here
we assess UCTMC lumpability in terms of its computational
tractability and reduction power with respect to ordinary
lumpability. After this, we study the advantages offered by
UCTMC lumpability in terms of analysis speedup. In the
latter case, UCTMCs were solved using MATLAB scripts
automatically generated by our prototype. All material is
available at https://www.erode.eu/examples.html for purposes
of replicability. Reported experiments refer to a common laptop
(a Mac with a 2.4 GHz Intel Core i5), where for our reduction
we used 5 GB RAM and did not exploit parallelization.
Set-up. We considered the following benchmark CTMC models
from the model repository of the PRISM probabilistic model
checker [27]: a dependable cluster of workstations [57]; a
protocol for wireless group communication [58], [59]; a model
of the cell cycle control in eukaryotes [60], [61]; and a model
of a cyclic server polling system from [62]. Notably, the first
and the last models belong also to the QComp benchmark
suite https://qcomp.org/benchmarks/. In addition, we created a
CTMC PRISM model from our running example by setting
λ = λ = 2 and µ = µ = 4.

We introduced uncertain relaxations of such CTMCs by
replacing every transition rate with an interval of fixed length
(arbitrarily fixed equal to 20% of the smallest transition
rate in the model) centered at the original value. This re-
laxation is exemplified in the right inset, where the grayed-
out transition rates are those of some given CTMC. The
example given in the inset demonstrates that an ordinary
lumpability of the original CTMC is not necessarily a UCTMC
lumpability of the so-constructed UCTMC, whereas the
converse follows from Lemma 1. Indeed, {{A,B}, {C,D}}

Lumpability

Original model (CTMC) CTMC UCTMC

N p n |H0| Red.(s) |H| RR SR

WORKSTATION CLUSTER

128 2 908 192 597 012 4 2.21E+1 298 893 1.19 1.00
192 6 524 960 1 337 876 4 6.78E+1 669 517 1.19 1.00
256 11 583 520 2 373 652 4 1.55E+2 1 187 597 1.19 1.00
320 18 083 872 3 704 340 4 2.81E+2 1 853 133 1.27 1.00
384 26 026 016 5 329 940 4 out of memory

WIRELESS GROUP COMMUNICATION PROTOCOL

16 686 153 103 173 2 2.26E+0 4 846 1.19 1.00
24 3 183 849 453 125 2 1.34E+1 20 476 1.20 1.00
32 10 954 382 1 329 669 2 4.49E+1 58 906 1.22 1.00
40 22 871 849 3 101 445 2 1.35E+2 135 752 1.22 1.00
48 46 574 793 6 235 397 2 out of memory

CELL CYCLE CONTROL IN EUKARYOTES

2 18 342 4 666 3 1.76E–1 3 514 1.12 1.14
3 305 502 57 667 3 8.21E–1 40 667 1.19 1.18
4 2 742 012 431 101 3 6.45E+0 282 956 1.21 1.20
5 16 778 785 2 326 666 3 4.58E+1 1 424 935 2.00 1.20
6 78 768 799 9 960 861 3 out of memory

POLLING

14 2 695 168 344 064 2 3.64E+0 344 064 1.71 1.00
15 6 144 000 737 280 2 8.64E+0 737 280 1.77 1.00
16 13 893 632 1 572 864 2 1.69E+1 1 572 864 1.80 1.00
17 31 195 136 3 342 336 2 7.16E+1 3 342 336 1.91 1.00
18 69 599 232 7 077 888 2 out of memory

M/M/1/N QUEUE WITH 2 JOB CLASSES

15 131 068 65 535 2 7.48E–1 16 1.41 1.00
17 524 284 262 143 2 1.82E+0 18 1.75 1.00
19 2 097 148 1 048 575 2 6.86E+0 20 1.98 1.00
21 8 388 604 4 194 303 2 3.21E+1 22 2.15 1.00
23 33 554 428 16 777 215 2 out of memory

TABLE I: Robustness of lumpability to uncertainty in the
CTMC parameters. Columns RR and SR give the ratios of the
runtimes and of the state-space sizes, respectively, between the
UCTMC and the CTMC lumpability.

A B

C D

5.0
[4.8; 5.2]

2.0
[1.8; 2.2]

3.0
[2.8; 3.2]

is an ordinary lumpability of the
original CTMC, while it is not
a UCTMC lumpability because
4.8 6= 1.8 + 2.8 and 5.2 6=
2.2 + 3.2. As a result, this setup
indicates how much lumpability partitions of CTMCs are robust
to the presence of uncertainties in transition rates.

Every benchmark can be associated with a parameter N
which allows us to increase the state space size of the UCTMC.
For instance, in our running example we let N denote the
buffer size, i.e., we considered M/M/1/N queues.
UCTMC lumpability vs CTMC lumpability. The results are
provided in Table I. We report the number of transitions and
states of the obtained CTMCs and UCTMCs in the second
and third column, respectively, as a function of the scaling
parameter N . The initial input partition of states, denoted
by H0, was induced by the original model specification by
creating blocks of states characterized by the same atomic
propositions used for the original model checking purposes.
For the M/M/1/N system, the initial partition isolated the
empty state to be able to recover the utilization in the reduction.
For CTMC lumpability we provide the sizes of the computed
partitions (|H|), which required between 0.1 to 281 seconds
across all tests. For UCTMC lumpability we provide the ratios
of the runtimes (RR) and of the obtained state-space sizes (SR)
over the CTMC case.



The comparison of the runtimes of the lumpability algorithms
provides an indication of the increased overhead for the
reduction (which is proportional to the number of states in
the worst case). In all our tests, UCTMC lumpability had,
up to about a factor of two, the same runtime as the CTMC
version. This is because in all models at most two iterations of
our algorithm were necessary. The effectiveness of UCTMC
lumpability can be evaluated by comparing the state-space size
ratio. Notably, the CTMC and UCTMC reductions coincide in
four families of models (workstation cluster, wireless group
communication protocol, polling, and M/M/1/N queue),
while in the cell-cycle model UCTMC lumpability leads to
finer (at most 20% more blocks) partitions than the CTMC
counterpart. In particular, all families of models that admit
CTMC reductions, also admit UCTMC reductions, while the
polling family does not admit any reduction.
Analysis speedup due to UCTMC lumpability. Here we
study the speedups that UCTMC lumpability bring to UCTMC
analysis. We consider the same models as in Table II, but we
omit the polling family because it does not admit reduction,
and thus is not of interest here. The results are provided in
Table II. The table has a structure similar to Table I with the
difference that: column |H| gives the number of states in the
reduced UCTMC, while Red.(s) the time in seconds to obtain it.
Finally, columns Opt.(s) provide the time to solve the original
and reduced UCTMCs according to Section II-A, while column
Opt. contains the computed optimal maximal value (which is
always the same in the original and reduced models). In all
cases we fix an arbitrary time horizon of 1.

PRISM models can be equipped with so-called reward struc-
tures.1 In particular, our notion of running reward coincides
with PRISM’s state rewards. Therefore, when solving the
UCTMCs according to Section II-A, we use (one of) the
actual rewards specified in the models. For example, for the
workstation cluster models we use a reward named percent op
related to the “percentage of operational workstations stations”
in a state, while for the cell cycle control in eukaryotes we use
one named cdc14 related to the “abound of molecules CDC14”.
In the case of queues, we considered instances of our queue
example M/M/1/N with capacity N , arrival rate λ = λ = 2,
and service rate bounds µ = 3 and µ = 5. In other words, we
have no uncertainties on the arrival rates, and uncertainty on
the service rates. Furthermore, we assume that the modeler is
interested in achieving as utilization k = dN/2e. The latter can
be realized by the running reward rs = |k−(|s|u+|s|b)|, where
|s|b and |s|u denote, respectively, the number of background
and user jobs in state s.

The initial partition of states, denoted in the table by H0, was
induced by the rewards assigned to each state, guaranteeing that
lumped states have same reward value. The comparison of the
analysis runtimes for the original and reduced models provides
an indication of the analysis speedup offered by UCTMC
lumpability. For each family of models we provide instances
where the analysis succeeded in both the original and reduced
models, showing speedups of up to 3 orders of magnitude, and

1www.prismmodelchecker.org/manual/ThePRISMLanguage/
CostsAndRewards

Original model (as UCTMC) UCTMC lumpability

N p n Opt.(s) |H0| |H| Red.(s) Opt.(s) Opt.

WORKSTATION CLUSTER (max)

8 12 832 2 772 2.41E+1 17 1 017 2.80E–1 3.75E+0 9.99E+1
16 48 160 10 132 4.12E+2 33 3 621 4.52E–1 4.62E+1 9.99E+1
32 186 400 38 676 timeout 65 13 629 9.00E–1 1.01E+3 9.99E+1

WIRELESS GROUP COMMUNICATION PROTOCOL (max)

4 5 369 1 125 1.62E+0 18 83 4.10E–2 5.10E–2 3.80E–2
8 54 953 9 477 1.32E+2 34 520 1.98E–1 4.60E–1 1.90E–2

16 686 153 103 173 timeout 66 4 894 2.01E+0 2.728+1 9.00E–3

CELL CYCLE CONTROL IN EUKARYOTES (max)

1 300 142 1.01E–1 3 90 2.90E–2 4.90E–2 2.00E+0
2 18 342 4 666 2.60E+1 5 3 714 1.10E–1 1.54E+1 4.00E+0
3 305 502 57 667 timeout 7 46 460 1.49E+0 timeout

M/M/1/N QUEUE WITH 2 JOB CLASSES (min)

11 8 188 4 095 2.82E+1 7 12 9.70E–2 4.00E–2 4.78E+0
13 32 764 16 383 5.62E+2 8 14 2.12E–1 4.00E–2 5.77E+0
15 131 068 65 535 timeout 9 16 8.15E–1 4.00E–2 6.76E+0

TABLE II: Analysis speedup offered by UCTMC lumpability.
Columns Opt.(s) provide the time to solve the original and
reduced UCTMCs according to Section II-A, while column
Opt. provides the obtained optimal value (maximal for the first
three families, minimal for the queue family), which always
coincides in the original and reduced models.

one instance where the analysis failed for the original model
due to an arbitrarily chosen timeout of 90 minutes.

V. CONCLUSION

Uncertain continuous-time Markov chains (UCTMCs) gen-
eralize continuous-time Markov chains (CTMCs) by allowing
transition rates to non-deterministically take values within
given bounded intervals. We presented UCTMC lumpability
as a conservative generalization of ordinary lumpability to
UCTMCs. It enjoys an efficient algorithm for the computation
of the largest UCTMC lumpability that refines a given initial
partition of UCTMC states. Similarly to CTMC lumpability
that characterizes the preservation of sums of probability distri-
butions, UCTMC lumpability characterizes the preservation of
value functions and temporal logical formulae. The applicability
of UCTMC lumpability has been established by presenting
substantial reductions in large benchmark models.

APPENDIX

A. Proof of Theorem 3

Theorem 3. Pontryagin’s principle [46] ensures that any op-
timal transition rate matrix Q∗ of the UCTMC satisfies the
equations

∂tπ(t) = (∂pH)(π(t), Q∗(t), p(t)) = π(t)TQ∗(t)

∂tp(t) = −(∂πH)(π(t), Q∗(t), p(t)) = −Q∗(t)p(t) + r(t)

Q∗(t) = arg max
Q∈[m;M ]

H(π(t), Q, p(t)),

where H(π,Q, p) = πT (Qp− r) is the so-called Hamiltonian
for the running cost

∑
i riπi. To facilitate the proof, we

considered a perturbed Hamiltonian given by Hη(π,Q, p) =
H(π,Q, p)− η

∑
j 6=i q

2
i,j , where η ≥ 0 is an arbitrarily small

regularization constant. Standard continuity results of ODE



systems [63, Chapter 3] ensure that limη→0 V
∗
η = V ∗. A direct

computation yields then

∂tpi − ri = −
∑
j

qi,jpj = −
∑
j 6=i

qi,jpj − qi,ipi

= −
∑
j 6=i

qi,jpj +
∑
j 6=i

qi,jpi

=
∑
j 6=i

qi,j(pi − pj) = −
∑
j 6=i

(pj − pi)qi,j

Moreover, if η > 0, the arg max has a unique solution. Indeed,
using the above expression of Qp and the definition of Hη,
we first infer

Q∗ = max
Q∈[m;M ]

[∑
i

πi
(∑
j 6=i

(pj − pi)qi,j − ri
)
− η

∑
j 6=i

q2
i,j

]
For fixed i 6= j, this in turn implies

q∗i,j = max
qi,j∈[mi,j ;Mi,j ]

[
πi(pj − pi)qi,j − ηq2

i,j

]
Since the convex function qi,j 7→ πi(pj−pi)qi,j−ηq2

i,j attains,
over the entire R, its maximum at q?i,j = πi

2η (pj − pi), we infer

q∗i,j(t) =


mi,j , q?i,j < mi,j

Mi,j , q?i,j > Mi,j

q?i,j , q?i,j ∈ [mi,j ;Mi,j ]

Taking the limit η → 0 yields then the claim.

B. Discrete-time Approximation of UCTMCs

In this appendix we present a DTMDP-approximation of
UCTMCs. Apart from relating UCTMCs to DTMDPs, the
discrete-time approximation can be used to relate UCTMC
lumpability to alternating probabilistic bisimulation [32].

Instrumental to the DTMDP approximation is an alternative
CTMDP encoding which uses finite action spaces, at the
expense of probabilistic (instead of deterministic) policies.
Before giving this encoding, we convey the main underlying
idea on an illustrative example. Let us assume that we are given
a CTMDP that can move from state i only into state j and that
the corresponding time-dependent deterministic transition rate
function is qi,j(t, a(t)) = ai,j(t), where mi,j = 1, Mi,j = 2
and ai,j(t) = 2−e−t. With this, we first replace the continuous
interval [1; 2] with the discrete action set {mi,j ,Mi,j}, where
the symbols mi,j and Mi,j represent the boundary values
mi,j = 1 and Mi,j = 2, respectively. Then, the idea is to
choose suitable probability functions µmi,j (t) and µMi,j

(t) such
that the average transition rate from state i into state j at time
t, given by 1µmi,j (t) + 2µMi,j (t), is identical to ai,j(t). It can
be easily verified that µmi,j (t) = e−t and µMi,j (t) = 1− e−t
induce ai,j . Following [8, Section 2.2], the foregoing discussion
generalizes as follows.

Proposition 1. For a given UCTMC (S,m,M, r, φ), consider
the CTMDP (S,A′,M′, r, φ) where an action in state i at time
t is taken randomly, is denoted by ai(t), and is a row vector
such that each row entry ai,j(t) ∈ {mi,j ; Mi,j} determines the
transition rate from i into j at time t accordingly. Formally,
we have the following.

• The set of actions in state i ∈ S is given by A′(i) =∏
j 6=i{mi,j ,Mi,j}.

• The transition rate of from i into j at time t under action
ai ∈ A′(i) is qi,j(t, ai) = v(ai,j), where v(ai,j) = mi,j

if ai,j = mi,j and v(ai,j) = Mi,j when ai,j = Mi,j .
• The set of policies, M′, constitutes non-negative

uniformly piecewise analytic functions µ satisfying∑
ai∈A′(i) µai(t) = 1 for all i ∈ S and t ≥ 0. In

particular, with D(X) denoting the set of probability
measures on a set X , it holds that M′ is a proper subset
of [0;∞)→

∏
i∈S D(A′(i)).

Then, the policy sets M and M′, where M refers to the
policy set given in Proposition 4, induce the same set of time-
inhomogeneous CTMCs.

Proof. Given some i ∈ S, we first note that A(i) describes
a hypercube. Noting that A′(i) uniquely identifies the edges
of A(i) via the function v, it thus suffices to show that any
zi ∈ A(i) can be expressed as a convex combination of the
edges of A(i). To see this, assume that we are given some
zi ∈ A(i) and consider the system of linear equations∑

ai∈A′(i),
ai,j=Mi,j

ν(ai) =
zi,j −mi,j

Mi,j −mi,j
, j 6= i

∑
ai∈A′(i),
ai,j=mi,j

ν(ai) = 1− zi,j −mi,j

Mi,j −mi,j
, j 6= i.

Noting that

zi,j = Mi,j
zi,j −mi,j

Mi,j −mi,j
+mi,j

(
1− zi,j −mi,j

Mi,j −mi,j

)
,

we observe that a solution of the linear system of equations
yields the claim. This, in turn, can be identified as

ν(ai) =
∏
j∈JM

zi,j −mi,j

Mi,j −mi,j
·
∏
j∈Jm

(
1− zi,j −mi,j

Mi,j −mi,j

)
,

where j ∈ JM if ai,j = Mi,j and j ∈ Jm if ai,j = mi,j .
(Following standard notation, the product over an empty set is
defined to be one).

For a policy µ ∈M′, the Kolmogorov equations ∂tπ(t)T =
π(t)TQ(t, µ(t)) describing the transient probabilities of the
time-inhomogeneous CTMC can be solved numerically by
invoking the Euler method [64], a classic approach for the nu-
meric solution of systems of differential equations. Specifically,
by discretizing time into the set {0, h, 2h, . . .}, the probability
distribution at time kh, denoted by π(kh), is approximated by
π[k], where

π[k + 1]T := π[k]T
(
I + hQ(kh, µ(kh))

)
,

π[0] := π(0) and I is the identity matrix. Additionally to the
known fact that the approximation error is O(h), we note
that the Euler method defines a time-inhomogeneous DTMC.
Indeed, I +hQ(kh, µ(kh)) describes the transition probability
matrix of the embedded time-inhomogeneous DTMC.

The next result relates UCTMCs to DTMDPs.



Proposition 2. Given UCTMC (S,m,Mr, φ), set

Λ = max
i∈S

(∑
j 6=i

Mi,j +
∑
j 6=i

Mj,i

)
and fix h ≤ 1/Λ. Then, I + hQ(kh, µ(kh)) is a stochastic
matrix for all µ ∈ M′ and k ≥ 0. With this, consider the
DTMDP (S,A′,M′h, r, φ) given as:
• The states are S, while the actions in state i ∈ S are

given by A′(i) =
∏
j 6=i{mi,j ; Mi,j}.

• The transition probability from state i into state j at step
k ≥ 0 for ai ∈ A′(i) is

pi,j(k, ai) =

{
hv(ai,j) , j 6= i

1− h
∑
j 6=i v(ai,j) , j = i

• The set of policies is M′h = {ν | ν : N0 →∏
i∈S D

(
A′(i)

)
}. In particular, for a given policy ν, the

transition probability from state i into state j at step k ≥ 0
is given by pi,j(k, ν(k)) =

∑
ai∈A′(i) νai(k)pi,j(k, ai).

Then, for any time T > 0 and policy a ∈ M such that the
modulus of the derivative of each ai,j is bounded by λ ≥ 0
almost everywhere, there exits a policy ν ∈M′h such that

max
i∈S
|πi[k]− πi(T )| ≤ h

[
3Λ

2
+
λ

Λ
max
i∈S

deg(i)

] (
eΛT − 1

)
,

where deg(i) = |{j 6= i | mi,j < Mi,j}| + |{j 6= i |
mj,i < Mj,i}| are the incoming and outgoing non-deterministic
transitions of i, while k ≥ 0 minimizes |kh− T |.

Proof. We first note that maxi∈S |πi[k] − πi(T )| = ‖π[k] −
π(T )‖∞, where ‖·‖∞ denotes the maximum norm. Second, we
recall that the Lipschitz constant with respect to the maximum
norm of a linear ODE system ∂tx

T = xTB is given by the
matrix maximum norm ‖BT ‖∞ = maxi∈S

∑
j∈S |bj,i|. With

this, the error estimation follows from ‖π(t)‖∞ ≤ 1 and by
evaluating the constants L,K and Z in the error term provided
in [64, Eq. 1.14]. More specifically, it holds that L ≤ Λ,
Z ≤ Λ and K = λ ·maxi∈S deg(i). Additionally to that, we
note that [64, Eq. 1.13] carries over to the multi-dimensional
case. Indeed, while different coordinates i may require to use
different values θi ∈ [0; 1] in [64, Eq. 1.13], thanks to the fact
that we use the maximum norm, it suffices to consider the
coordinate with the largest error dn,i.

While theoretically appealing, estimating the approximation
error via Proposition 2 is computationally challenging. This
is because useful estimations require h to be at most of order
1
|S|/e

ΛT . We next relate UCTMC lumpability to alternating
probabilistic bisimulation of DTMDPs [32].

Proposition 3. Fix a UCTMC (S,m,M, r, φ), an equivalence
relation R ⊆ S × S and let H = S/R. Then H is a UCTMC
lumpability of (S,m,M, r, φ) if and only if R is an alternating
probabilistic bisimulation of the DTMDP from Proposition 2.

Proof. By definition, H is a UCTMC lumpability if and only
if for any H ∈ H and i1, i2 ∈ H , it holds that

∑
j∈H′ mi1,j =∑

j∈H′ mi2,j and
∑
j∈H′Mi1,j =

∑
j∈H′Mi2,j for all H ′ ∈

H. This holds true if and only if for any action ai1 ∈ A(i1)
there exists an action ai2 ∈ A(i2) (and vice versa) such

that, for all H ′ ∈ H, it holds that
∑
j∈H′ qi1,j(t, ai1) =∑

j∈H′ qi2,j(t, ai2). Thanks to the proof of Proposition 1, this
holds true if and only if for any distribution µi1 ∈ D(A′(i1))
there exists a distribution µi2 ∈ D(A′(i2)) (and vice versa)
such that, for all H ′ ∈ H, one has∑
j∈H′

∑
a∈A′(i1)

µi1(a)·qi1,j(t, a) =
∑
j∈H′

∑
a∈A′(i2)

µi2(a)·qi2,j(t, a)

Taking into account the definition of the DTMDP in Proposi-
tion 2, the foregoing statement holds true if and only if for
any distribution νi1 ∈ D(A′(i1)) there exists a distribution
νi2 ∈ D(A′(i2)) (and vice versa) such that, for all H ′ ∈ H, it
holds that∑
j∈H′

∑
a∈A′(i1)

νi1(a)·pi1,j(k, a) =
∑
j∈H′

∑
a∈A′(i2)

νi2(a)·pi2,j(k, a)

Observing that the existence of νi1 and νi2 ensures that R is
an alternating probabilistic bisimulation of the DTMDP yields
the claim (indeed, i1, i2, νi1 and νi2 are playing the role of
s, t, ρs and ρt in [32, Definition 3], respectively).

C. Proofs of Theorems 5 and 6

For the proofs of Theorem 5-6, the following auxiliary
notions will be needed.

Definition 9. Let U = (S,m,M, r, φ) be some UCTMC and
H a partition of S. Moreover, let Û = (Ŝ, m̂, M̂ , r̂, φ̂) be a
UCTMC with Ŝ = {iH | H ∈ H}.
• We write U ⊆ Û if for every Q of U there exists a Q̂ of
Û such that

π̂Q̂iH (t) =
∑
i∈H

πQi (t), ∀H ∈ H, t > 0 (4)

provided that (4) is valid at t = 0 .
• We write Û ⊆ U if for every Q̂ of Û there exists a Q of
U such that (4) holds.

Further, RU
(
H,T, π[0]

)
= {

∑
i∈H π

Q
i (T ) | Q ∈ [m;M ]}

denotes for H ∈ H the H-reachability probabilities at T ≥ 0.

Proof of Theorem 5. It suffices to consider H-reachability
probabilities. Specifically, note that U ⊆ Û implies
V inf
Û (iH , T ) ≤ V inf

U (i, T ) and V sup

Û
(iH , T ) ≥ V sup

U (i, T );
likewise, Û ⊆ U implies V inf

Û (iH , T ) ≥ V inf
U (i, T ) and

V sup

Û
(iH , T ) ≤ V sup

U (i, T ) for all H ∈ H, i ∈ H and T ≥ 0.
With this, the claim follows from Proposition 4 given next.

Proposition 4. Fix a UCTMC U = (S,m,M, r, φ) and assume
that H is an ordinary lumpability of CTMCs (S,m) and
(S,M). Then, U ⊆ Û and Û ⊆ U .

Proof. Note that H is an ordinary lumpability of CTMCs
(S,m) and (S,M). Let G be a partition of {(i, j) ∈ S2 | i 6=
j} such that (ik, jk), (il, jl) ∈ G for some G ∈ G if and only
if there is H,H ′ ∈ H such that ik, il ∈ H and jk, jl ∈ H ′.
• GH→H′ ∈ G is the unique block of edges originating in
H and ending in H ′.

• GH→H′ ∈ G is called invariant if H = H ′; the set of
invariant blocks is denoted by Gi.



For arbitrary G ∈ G and (ik, jk) ∈ G, let f ik,jki denote the
change in πi due to qik,jk . More formally, if f(π) := πTQ
for all π ∈ RS , then f ik,jki := ∂qik,jk fi. One can note that

f ik,jki =

{
−πik , i = ik

πik , i = jk

For an arbitrary H ∈ H, we note that

∂t
(∑
i∈H

πi(t)
)

=
∑
i∈H

∑
G∈G

∑
(ik,jk)∈G

qik,jk(t)f ik,jki (π(t))

=
∑
G∈G

∑
(ik,jk)∈G

qik,jk(t)
∑
i∈H

f ik,jki (π(t))

=
∑
G∈G

qG,H(t)
∑

(il,jl)∈G

∑
i∈H

f il,jli (π(t)),

provided that qG,H satisfies

qG,H(t)
∑

(il,jl)∈G

∑
i∈H

f il,jli (π(t))

=
∑

(ik,jk)∈G

qik,jk(t)
∑
i∈H

f ik,jki (π(t))

When
∑

(il,jl)∈G
∑
i∈H f

il,jl
i (π(t)) 6= 0, it must obviously

hold

qG,H(t)=
∑

(ik,jk)∈G

qik,jk(t)

∑
i∈H f

ik,jk
i (π(t))∑

(il,jl)∈G
∑
i∈H f

il,jl
i (π(t))

(5)

If the denominator is zero, instead, the value qG,H(t) can be
chosen arbitrarily. We next show that, setting qG,H := qG,
where G = GH1→H2

for some H1, H2 ∈ H, does the job:

qG(t) =

any value in [m̂iH1
,iH2

; M̂iH1
,iH2

] , G ∈ Gi
any value in [m̂iH1

,iH2
; M̂iH1

,iH2
] ,

∑
(il,jl)∈G

πil(t) = 0

∑
(ik,jk)∈G

qik,jk(t)
πik(t)∑

(il,jl)∈G πil(t)
, otherwise

Key to this is to prove that the value of the fraction term
in (5) is, whenever defined, invariant with respect to H ∈ H. To
see this, fix an arbitrary G ∈ G, (ik, jk) ∈ G and H,H ′ ∈ H
such that H 6= H ′. We consider the following case distinction.
• ik ∈ H ∧ jk ∈ H ′: By the choice of G, it holds that
il ∈ H ∧ jl ∈ H ′ for all (il, jl) ∈ G. Hence∑

i∈H f
ik,jk
i (π(t))∑

(il,jl)∈G
∑
i∈H f

il,jl
i (π(t))

=
−πik(t)

−
∑

(il,jl)∈G πil(t)

and ∑
i∈H′ f

ik,jk
i (π(t))∑

(il,jl)∈G
∑
i∈H′ f

il,jl
i (π(t))

=
πik(t)∑

(il,jl)∈G πil(t)
,

meaning that both fraction terms are either identical or
undefined. In the latter case, neither H nor H ′ constrains
the value of qG.

• ik ∈ H ∧ jk ∈ H: By the choice of G, it holds that
il ∈ H ∧ jl ∈ H for all (il, jl) ∈ G. Hence∑
(il,jl)∈G

∑
i∈H

f il,jli (π(t)) =
∑

(il,jl)∈G

(πil(t)− πil(t)) = 0

for all t ≥ 0, meaning that H does not constrain the value
of qG (note that in this case G is invariant).

• ik /∈ H ∧ jk /∈ H: Let H1, H2 ∈ H be such that
ik ∈ H1 and jk ∈ H2. By the choice of G, it holds
that il ∈ H1 ∧ jl ∈ H2 for all (il, jl) ∈ G. Hence∑

(il,jl)∈G
∑
i∈H f

il,jl
i (π(t)) = 0 for all t ≥ 0, meaning

that H does not constrain the value of qG.

For an arbitrary H ∈ H, the above discussion implies that

∂t
(∑
i∈H

πi(t)
)

=
∑
i∈H

∑
G∈G

∑
(ik,jk)∈G

qik,jk(t)f ik,jki (π(t))

=
∑
i∈H

∑
G∈G

qG(t)
∑

(ik,jk)∈G

f ik,jki (π(t))

=
∑
H′ 6=H

qGH→H′ (t)
∑
i∈H

∑
(il,jl)∈GH→H′

f il,jli (π(t))

+
∑
H′ 6=H

qGH′→H (t)
∑
i∈H

∑
(il,jl)∈GH′→H

f il,jli (π(t))

= −
∑
H′ 6=H

qGH→H′ (t)
∑
i∈H
|H ′|πi(t)

+
∑
H′ 6=H

qGH′→H (t)
∑
i∈H

∑
j∈H′

πj(t)

= −
∑
H′ 6=H

qGH→H′ (t)|H
′|
(∑
i∈H

πi(t)
)

+
∑
H′ 6=H

qGH′→H (t)|H|
( ∑
j∈H′

πj(t)
)

(6)

We next show that q̂iH ,iH′ (t) := qGH→H′ (t)|H
′| ∈

[m̂iH ,iH′ ; M̂iH ,iH′ ] for all t ≥ 0 and H,H ′ ∈ H with H 6= H ′.
To this end, we note that

qGH→H′ (t)|H
′|

=
∑

(ik,jk)∈GH→H′

qik,jk(t)
|H ′|

∑
i∈H f

ik,jk
i (π(t))∑

i∈H
∑
il,jl∈GH→H′

f il,jli (π(t))

=
∑

(ik,jk)∈GH→H′

qik,jk(t)
−|H ′|πik(t)

−
∑
i∈H |H ′|πi(t)

=
∑

(ik,jk)∈GH→H′

qik,jk(t)
πik(t)∑
i∈H πi(t)

=
∑
ik∈H

πik(t)∑
i∈H πi(t)

∑
jk∈H′

qik,jk(t)

Since H is an ordinary lumpability of CTMCs (S,m) and
(S,M), for all ik, i′k ∈ H it holds that∑
jk∈H′

mik,jk =
∑
jk∈H′

mi′k,jk
,
∑
jk∈H′

Mik,jk =
∑
jk∈H′

Mi′k,jk
.

With this, for all t ≥ 0 it holds that q̂iH ,iH′ (t) ∈
[m̂iH ,iH′ ; M̂iH ,iH′ ] which, together with (6), implies U ⊆ Û .



To show the converse relation, let us assume that we are
given transition rate functions (q̂iH ,iH′ )H,H′ . For H,H ′ ∈ H
with H 6= H ′ and (ik, jk) ∈ GH→H′ , we set qik,jk(t) to

mik,jk +
Mik,jk −mik,jk∑

jl∈H′
(Mik,jl −mik,jl)

(
q̂iH ,iH′ (t)− m̂iH ,iH′

)
Since H is an ordinary lumpability of CTMCs (S,m) and
(S,M), it holds that∑

jl∈H′
(Mik,jl −mik,jl) =

∑
jk∈H′

(Mik,jk −mik,jk).

Hence,
∑
jk∈H′ qik,jk(t) = q̂iH ,iH′ (t) and qik,jk(t) ∈

[mik,jk ;Mik,jk ] for all t ≥ 0. By choosing the so-constructed
(qi,j)i,j and repeating the argumentation from the first part
of the proof, we observe that

∑
i∈H πi(t) = π̂iH (t) for all

H ∈ H and t ≥ 0. This yields the converse Û ⊆ U .

Proof of Theorem 6. Set r = 0 and φH = 1H . With this, we
obtain V Θ

U (i′, T ) = Θ{RU
(
H,T,1i′

)
} and V Θ

Û (iH′ , T ) =

Θ{RÛ
(
{iH}, T,1iH′

)
} for H,H ′ ∈ H, i′ ∈ H ′ and Θ ∈

{inf, sup}. Since the H-reachability probabilities consitute
intervals, the assumption of Theorem 6 implies the assumption
of Proposition 5 which, in turn, yields the claim.

Proposition 5. Fix the triples U = (S,m,M) and Û =
(Ŝ, m̂, M̂) where Ŝ = {iH | H ∈ H} and H is a partition of
S. Assume that for any T ≥ 0, H,H ′ ∈ H and i′ ∈ H ′

RU
(
H,T,1i′

)
= RÛ

(
{iH}, T,1iH′

)
Then, H is an ordinary lumpability of (S,m) and (S,M).

Proof. Fix arbitrary i, i′ ∈ H ′. Picking 1i as the initial
condition, we infer that

∑
j∈H πj(t) = (

∑
j∈H qi,j(0))t+o(t)

for small t ≥ 0 because q is piecewise continuous function with
right limits. Thus, with Int(RU (H, t,1i)) = (αi(t);βi(t)),
we obtain2

• αi(t) = (
∑
j∈H mi,j)t+ o(t) for small t ≥ 0.

• βi(t) = (
∑
j∈HMi,j)t+ o(t) for small t ≥ 0.

Likewise, if the initial condition is 1i′ , we obtain that
• αi′(t) = (

∑
j∈H mi′,j)t+ o(t) for small t ≥ 0.

• βi′(t) = (
∑
j∈HMi′,j)t+ o(t) for small t ≥ 0.

Moreover, the assumption ensures RU (H,T,1i) =
RU (H,T,1i′) for all T ≥ 0. This implies that αi(0) = αi′(0)
and βi(0) = βi′(0), thus showing that H is an ordinary
lumpability of (S,m) and (S,M).

D. Proof of Theorem 7

We prove Theorem 7 by exploiting the fact that the validity
of an until formula can be expressed in terms of a reachability
probability [16], [17], [55]. In this section, we drop rewards
for sake of readability and assume that transition rate functions
are piecewise analytic, a property that has been required for the
well-definedness of the satisfiability operator in [17], [55]. We
begin by introducing a version of the auxiliary CTMC from [55]

2By Filippov’s theorem [46, Section 4.5], measurability of rate functions
ensures that the reachable sets are closed intervals [α(t);β(t)].

that is tailored to our needs. To improve readability, we omit
the explicit mentioning of the running and final rewards.

Definition 10 (Auxiliary UCTMC). Assume that H is a
UCTMC lumpability of the UCTMC (S,m,M). Moreover, let
U, T ⊆ S be such that both U and T can be written as unions
of blocks from H. With this, (Ṽ, m̃, M̃) is given by Ṽ = S ∪ S̄ ,
where S̄ = {̄i | i ∈ S}, and
• m̃i,j := mi,j and M̃i,j := Mi,j if i /∈ U ∪ T and j /∈ T ;
• m̃i,j̄ := mi,j and M̃i,j̄ := Mi,j if i /∈ U ∪ T and j ∈ T ;
• all other entries of m̃ and M̃ are zero.

As observed next, a UCTMC lumpability of (S,m,M)
induces a UCTMC lumpability of (Ṽ, m̃, M̃).

Lemma 2. Assume that H is a UCTMC lumpability of the
UCTMC (S,m,M). Moreover, let U, T ⊆ S be such that both
U and T can be written as unions of blocks from H. Then,
H̃ = H ∪ H̄ is a UCTMC lumpability.

Proof. Follows by noting that the auxiliary UCTMC arises by
redirecting the lower and upper bounds blockwise.

The model checking of until formulae is ultimately related
to the probability that a time-varying target set can be reached
by avoiding a time-varying set of unsafe states [17], [55]. The
next definition formalizes this in our context.

Definition 11. Assume that H is a UCTMC lumpability of
(S,m,M). Further, let U, T : [0;∞)→ Powerset(S) be such
that
• U, T have, on any bounded time interval at most finitely

many discontinuity points with respect to the discrete
topology;

• both U(t) and T (t) can be written, for any t ≥ 0, as
unions of blocks from H.

Then, Preach(Q, t, T, T , U)[i] is the probability of the set of
paths underlying a given Q = (qi,j)i,j reaching a (target)
state in T (T ) at time T ∈ [t; t+ T ] without passing through
a (unsafe) state in U(T ′) for any T ′ ∈ [t;T ], when starting in
state i ∈ S at time t.

The following result is key for the proof of Theorem 7.

Proposition 6. Assume that H is a UCTMC lumpability of
(S,m,M). Let H induce (Ṽ, m̃, M̃) and U, T : [0;∞) →
Powerset(S) be such that
• U, T have, on any bounded time interval at most finitely

many discontinuity points with respect to the discrete
topology;

• U(T ) and T (T ) can be written, for any T ≥ 0, as unions
of blocks from H.

Set Û(T ) := {iH | H ∈ H ∧H ⊆ U(T )} and T̂ (T ) := {iH |
H ∈ H ∧H ⊆ T (T )}. Then, for given T > 0, t ≥ 0, H ∈ H
and i ∈ H:
• for admissible (qi,j)(i,j), we construct admissible

(q̂iH ,iH′ )(iH ,iH′ )
;

• instead, for admissible (q̂iH ,iH′ )(iH ,iH′ )
, we construct

admissible (qi,j)(i,j),

such that Preach(Q, t, T, U, T )[i] = Preach(Q̂, t, T, Û , T̂ )[iH ].



Proof. Let t = T0 < T1 < . . . < Tκ+1 = t + T be the time
points in [t; t + T ] at which discontinuities of U or T may
arise. Following [55], we set W (s) = S \ (U(s) ∪ T (s)) and
let ζW (Tν) be the n×n matrix equal to 1 only on the diagonal
elements corresponding to states ι belonging to both W (T−ν )
and W (T+

ν ) (i.e., states that are safe and not a target both
before and after Tν), and equal to 0 elsewhere. Furthermore, let
ζT (Tν) be the n×n matrix equal to 1 in the diagonal elements
corresponding to states ι belonging to W (T−ν ) ∩ T (T+

ν ) and
zero elsewhere. Finally, let ζ(Tν) be the 2n× 2n matrix

ζ(Tν) :=

(
ζW (Tν) ζT (Tν)

0 In×n

)
Let us assume that we are given an admissible Q and write
ei for the unit vector of state i. Thanks to the fact that Q is
piecewise analytic with finitely many discontinuity points on
any bounded time interval, the discussion in [55] ensures that

Preach(Q, t, T, U, T )[i] =
∑
j̄∈S̄

Υ(t, t+ T )i,j̄ + 1{i ∈ T (t)},

where 1 denotes the characteristic function, while

Υ(t, t+ T ) = Π̃(t, T1)ζ(T1)Π̃(T1, T2)ζ(T2) · . . .
. . . · ζ(Tκ)Π̃(Tκ, t+ T )

is such that Π̃(t1, t2) is the 2n×2n matrix where eTι Π̃(t1, t2)eι′

is the probability that the auxiliary CTMC is in state ι′ ∈ Ṽ
at time t2, provided that it was initialized with state ι ∈ Ṽ at
time t1. The auxiliary CTMC in turn is given by Definition 10
and

• Uν := U(Tν−1+Tν
2 ) and Tν := T (Tν−1+Tν

2 );
• π̃[Tν ]T := π̃[Tν−1]T · Π̃|S×S(Tν−1, Tν) and π̃[T0] :=eTi ;
• Q̃ on [Tν−1;Tν ] is induced by Uν , Tν , π̃[Tν−1] and Q.

Since Π̃(Tν−1, Tν−1) = I2n×2n, matrix Π̃(Tν−1, Tν) can
be obtained by solving the forward Kolmogorov equation
∂T Π̃(Tν−1, T ) = Π̃(Tν−1, T ) · Q̃(T ) on the interval T ∈
[Tν−1;Tν ]. In particular, eTι · Π̃(Tν−1, Tν) is given by π̃(Tν)
when π̃(Tν−1) = eι and ∂T π̃(T )T = π̃T (T ) · Q̃(T ) for all
T ∈ [Tν−1;Tν ]. The composite term Π̃(Tν−1, Tν)ζ(Tν) writes
as (for the benefit of presentation, we suppress the explicit
time dependence in the following equation):

Π̃ · ζ =

(
Π̃|S×S Π̃|S×S̄

0 In×n

)
·
(
ζW ζT
0 In×n

)
=

(
Π̃|S×S · ζW Π̃|S×S · ζT + Π̃|S×S̄

0 In×n

)
Note that, for all H ∈ H and ι, ι′ ∈ H , it holds that eTι ζW eι =
eTι′ζW eι′ and eTι ζT eι = eTι′ζT eι′ because Uν and Tν are unions
of blocks from H. Hence, ζW and ζT are cutoff functions that
are operating blockwise.

The above discussion and Lemma 2 ensure that a given
probability distribution π̃[Tν−1] induces a piecewise analytic
Q̃ on [Tν−1;Tν ] such that∑
ι∈X

π̃ι(T ) = ˆ̃πιX (T ) for all X ∈ H ∪ H̄ and T ∈ [Tν−1;Tν ],

where ˆ̃π is the transient probability of the lumped auxiliary
CTMC. Hence, for all H ′ ∈ H, it holds that

π̃[Tν−1]T · Π̃|S×S(Tν−1, Tν) ·
( ∑
ι∈H′

eι
)

=

ˆ̃π[Tν−1]T · ˆ̃Π|Ŝ×Ŝ(Tν−1, Tν) · eiH′
π̃[Tν−1]T · Π̃|S×S̄(Tν−1, Tν) ·

( ∑
ι∈H̄′

eι
)

=

ˆ̃π[Tν−1]T · ˆ̃Π|Ŝ× ˆ̄S(Tν−1, Tν) · ei
H̄′
,

where ˆ̃Π is the matrix of transient probabilities of the lumped
CTMC. The above discussion ensures that

eTi Υ(t, t+ T ) = eTi Π̃(t, T1)ζ(T1)Π̃(T1, T2)ζ(T2) · . . .
. . . · ζ(Tκ)Π̃(Tκ, t+ T )

= eTiH
ˆ̃Π(t, T1)ζ̂(T1) ˆ̃Π(T1, T2)ζ̂(T2) · . . .

. . . · ζ̂(Tκ) ˆ̃Π(Tκ, t+ T )

for all H ∈ H and i ∈ H , where ζ̂ is defined in the obvious
manner. This implies the statement if we can find an admissible
Q̂ such that ˆ̃Q =

˜̂
Q. We next study ˆ̃Q via the following case

distinction:
• If H ∩ (Uν ∪ Tν) = ∅ ∧H ′ ∩ Tν = ∅: Then, the proof of

Theorem 5 yields

ˆ̃qiH ,iH′ (t) =
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

qik,jk(t)

• If H ∩ (Uν ∪ Tν) = ∅ ∧ H ′ ⊆ Tν : Then, the proof of
Theorem 5 yields

ˆ̃qiH ,iH′ (t) =
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

qik,jk(t)

• Otherwise, ˆ̃qι,µ ≡ 0.
The above case distinction suggests to pick

q̂iH ,iH′ (t) =
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

qik,jk(t)

for all H,H ′ ∈ H with H 6= H ′. With this, we proceed by
the following case distinction.
• If iH /∈ Ûν ∪ T̂ν ∧ iH′ /∈ T̂ν : Then ˜̂qiH ,iH′ ≡ q̂iH ,iH′ ≡

ˆ̃qiH ,iH′ .
• If iH /∈ Ûν ∪ T̂ν ∧ iH′ ∈ T̂ν : Then ˜̂qiH ,iH′ ≡ q̂iH ,iH′ ≡

ˆ̃qiH ,iH′ .
• Otherwise, ˜̂qι,µ ≡ 0 ≡ ˆ̃qι,µ.

This completes the proof in the case where we are given an
admissible Q and have to find an admissible Q̂ such that

Preach(Q, t, T, U, T )[i] = Preach(Q̂, t, T, Û , T̂ )[iH ] (7)

For the converse, let us now assume that we are given some
admissible Q̂ and have to find an admissible Q such that (7)
holds true. To this end, we construct Q from Q̂ as in the proof
of Theorem 5, that is, we set qik,jk(t) to

mik,jk +
Mik,jk −mik,jk∑

jl∈H′(Mik,jl −mik,jl)

(
q̂iH ,iH′ (t)− m̂iH ,iH′

)



To see that this Q does the job, we construct following the
foregoing discussion Q̃ from Q and Q̂′ from Q̃, respectively.
This yields

q̂′iH ,iH′ (t) =
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

qik,jk(t)

=
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

[
mik,jk

+
Mik,jk −mik,jk∑

jl∈H′(Mik,jl −mik,jl)

(
q̂iH ,iH′ (t)− m̂iH ,iH′

)]
=
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

(
m̂iH ,iH′ + q̂iH ,iH′ (t)− m̂iH ,iH′

)
= q̂iH ,iH′ (t)

Since q̂′ ≡ q̂, the discussion preceding (7) ensures that our
choice of Q yields (7).

Armed with Proposition 6, we can prove Theorem 7.

Theorem 7. The proof proceeds by structural induction on φ.
• φ = a: Follows from the fact that L̂(iH) = L(i) for all
H ∈ H and i ∈ H .

• φ = φ1 ∧ φ2: Follows by induction hypothesis.
• φ = ¬φ1: Follows by induction hypothesis.
• φ = P∀./p

(
φ1U[t0;t1]φ2

)
: Let us define

U(t) :={j ∈ S | j, t |= ¬φ1} T (t) :={j ∈ S | j, t |= φ2}

By induction hypothesis, it holds that both U(T ) and T (T )
can be written, for any T ≥ 0, as unions of blocks from
H. The definition of the semantics, instead, ensures that
U and T have finitely many discontinuity points on any
bounded time interval. Together with Û(t) := {iH | H ∈
H∧H ⊆ U(t)} and T̂ (t) := {iH | H ∈ H∧H ⊆ T (t)},
the discussion in [55] implies that for any admissible . . .

– . . . q we have: i, t |=U P./p
(
φ1U[t0;t1]φ2

)
iff

Preach(Q, t, t1−t0, U, T )[i]./p;
– . . . q̂ we have: iH , t |=Û P./p

(
φ1U[t0;t1]φ2

)
iff

Preach(Q̂, t, t1−t0, Û , T̂ )[iH ]./p.
With this, Proposition 6 yields the claim.
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