

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

Available online at: <u>http://www.iajps.com</u>

Research Article

FORMULATION DEVELOPMENT AND EVALUATION OF POLYHERBAL GEL OF EFFECTIVE TREATMENT OF ACNE ¹Anand bharatpure, ²Dr. Navjot Singh, ³Dr. Anwar Iqbal khan

^{1,2,3}NRI Institute of Pharmacy, Bhopal, MP

NRI Institute of Pharmacy, Bhopai, MP

Article Received: September 2022 Accepted: September 2022 Published: October 2022

Abstract:

The present research work deals with formulation and evaluation of herbal gels against this etiologic agent of acne vulgaris. Acne vulgaris is a most common skin disorder of pilosebaceous unit that affect areas containing the largest oil glands, including the face, back, and trunk. It is generally characterized by formation of seborrhea, comedone, inflammatory lesions. Propionibacterium acnes have been recognized as pus-forming bacteria triggering an inflammation in acne. The crude extracts so obtained after the maceration process, each extracts were further concentrated on water bath evaporation the solvents completely to obtain the actual yield of extraction. To obtain the percentage yield of extraction is very important phenomenon in phytochemical extraction to evaluate the standard extraction efficiency for a particular plant, different parts of same plant or different solvents used. The extractive value of Embelia ribes, Acacia nilotica and Chenopodium album was found 6.98, 5.77, and 7.23% respectively. The prepared gel were evaluated for Psycho Rheological Characteristists, washability and Extrudability, spreadability, Determination of pH, Viscosity, and phenol content Formulations of gel the spreadibility ranging 9.25 \pm 2.10 to 13.25 \pm 1.25 the optimized formulation PHG4 is good (10.23 \pm 2.36). The formulation PHG4 has good viscosity 2545 \pm 11. The polyherbal gel obtained from plant used to suitably dilute upto the concentrations of 100, 50 and 25 microgram per ml and applied on to the test organism using well diffusion method.

Keywords: Viscosity, extrudability, rheology, drug content, extraction

Corresponding author:

Anand bharatpure,

NRI Institute of Pharmacy, Bhopal, MP

Please cite this article in Anand bharatpure et al, Formulation Development And Evaluation Of Polyherbal Gel Of Effective Treatment Of Acne., Indo Am. J. P. Sci, 2022; 09(10).

INTRODUCTION:

Herbal medicines and their preparations have been widely used traditionally, for the thousands of years in developing and developed countries owing to its natural origin and lesser side effects or dissatisfaction with the results of synthetic drugs. One of the characteristics of oriental herbal medicine preparations is that all the herbal medicines, either presenting as single herbs or as collections of herbs in composite formulae¹. The traditional preparations comprise medicinal plants, minerals, organic matter, etc. Herbal drugs constitute mainly those traditional medicines which primarily use medicinal plant preparations for therapy. These drugs are made from renewable resources of raw materials by eco-friendly processes and will bring economic prosperity to the masses growing these raw materials.

India is known as the "Emporium of Medicinal plants" due to availability of several thousands of medicinal plants in the different bioclimatic zones. Medicinal plants continue to provide valuable therapeutic agents, both in modern medicine and in traditional systems of medicine. Attention is being focused on the investigation of efficacy of plant based drugs used in the traditional medicine because they are economy, have a little side effects and according to W.H.O, about 80% of the world population rely mainly on herbal remedies⁵. The World Health Organization has recently defined traditional medicine (including herbal drugs) as comprising therapeutic practices that have been in existence, often for hundreds of years, before the development and spread of modern medicine and are still in use today⁶. The uses of traditional medicines are widely spread and plants represent a large source of natural chemicals that might serve as leads for the development of the novel drugs⁷. Scientists have devised different ways of alienating the problem and one of the easy and cheapest options is herbal medicines. Herbs have been in use since long time to treat various diseases. Almost one fourth of pharmaceutical drugs are derived from botanicals.

MATERIALS AND METHOD:

Crude drugs are derived from natural sources like plants, animals and minerals. It is important that they should be properly identified and characterized for their physical and chemical characteristics and their quality should be enforced.

Plant material collection

Seeds of Embelia ribes, bark of Acacia nilotica and leaves of Chenopodium album were collected from local area of Bhopal (M.P.) in the month of March, 2019.

Extraction of plant material

Dried powdered of seeds of Embelia ribes, bark of Acacia nilotica and leaves of Chenopodium album has been extracted with methanol using maceration process for 48 hrs, filtered and dried using vaccum evaporator at 40° C.

RESULT AND DISCUSSION:

Determination of Percentage Yield

Yield of Extraction: The yield of extracts obtained from methanol as solvent are depicted in the table 1.

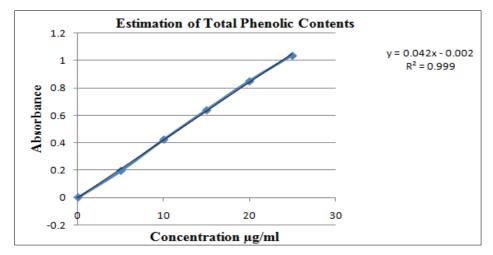
S. No.	Extracts	% Yield (w/w)
1	Embelia ribes extract	6.98
2	Acacia nilotica extract	5.77
3	Chenopodium album extract	7.23

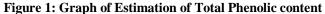
Table No. 1: % Yield of methanolic extract

Phytochemical screening of extract: The outcomes of the results are discussed separately in the table 2.

Table No. 2: Result of Phytochemical screening of methanol extracts

S. No.	Constituents	Embelia ribes	Acacia nilotica	Chenopodium album
1.	Alkaloids	-ve	+ve	-+ve
2.	Glycosides	-ve	-ve	-ve
3.	Flavonoids	+ve	+ve	-ve
4.	Diterpenes	+ve	+ve	+ve
5.	Phenolics	+ve	+ve	+ve
6.	Amino Acids	-ve	+ve	-ve
7.	Carbohydrate	+ve	+ve	+ve
8.	Proteins	-ve	+ve	-ve
9.	Saponins	+ve	+ve	+ve
10.	Oils and fats	-ve	-ve	-ve


Results of Estimation of Total Phenolic and flavanoid content estimation Total Phenolic content estimation (TPC)


The content of total phenolic compounds (TPC) content was expressed as mg/100mg of gallic acid equivalent of dry extract sample.

Calibration Curve of Gallic acid

Table No. 3: Preparation of calibration curve of Gallic acid

S. No.	Concentration	Absorbance
0	0	0
1	5	0.194
2	10	0.422
3	15	0.637
4	20	0.848
5	25	1.035

Total flavonoid content estimation (TFC)

The content of total flavonoid compounds (TFC) content was expressed as mg/100mg of quercetin equivalent of dry extract sample.

Calibration Curve of Quarcetin

Table No. 4: Preparation of calibration curve of Quarcetin

S. No.	Concentration	Absorbance
0	0	0
1	5	0.352
2	10	0.61
3	15	0.917
4	20	1.215
5	25	1.521

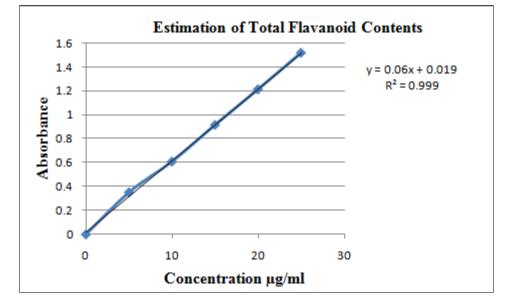


Figure 2: Graph of Estimation of Total flavanoid content

S.	Solvents→	Methanolic extracts		
No.	Bioactive compound↓			
		Embelia ribes	Acacia nilotica	Chenopodium
				album
1.	Total Phenol (Gallic acid equivalent (GAE)mg/100mg)	0.657	0.916	0.788
2.	Total flavonoid (Quercetin equivalent(QE) mg/100mg)	0.421	0.213	-

Results of Formulation Development of polyherbal Gel

Evaluation of gel formulation of polyherbal Gel

Table No. 6: Results of Psycho Rheological Characteristics

Formulation	Colour	Clogging	Homogeneity	Texture
PHG1	Brown	Absent	Good	Smooth
PHG2	Brown	Absent	Good	Smooth
PHG3	Brown	Absent	Good	Smooth
PHG4	Brown	Absent	Good	Smooth
PHG5	Brown	Absent	Good	Smooth
PHG6	Brown	Absent	Good	Smooth

Results: In the above formulations of gels, it has been noted that all of them hasclear colour, No clogging, good homogeneity and smooth texture.

Results of washability and Extrudability

Table 10. 7. Results of washability and Extrudiability			
Formulation	Washability	Extrudability	
PHG1	Good	Good	
PHG2	Good	Good	
PHG3	Good	Good	
PHG4	Good	Good	
PHG5	Average	Good	
PHG6	Average	Good	

Table No. 7: Results of washability and Extrudability

Results: In the above formulations of gels, they have good washability as well asextrudability.

Results of spreadability

Table No. 8: Results of spreadability		
Formulation	Spreadability (gcm/sec)	
PHG1	13.25±1.25	
PHG2	12.25±1.23	
PHG3	11.23±1.45	
PHG4	10.23±2.36	
PHG5	9.85±2.32	
PHG6	9.25±2.10	

Results: In all above formulations of gel the spreadibility ranging 9.25 ± 2.10 to 13.25 ± 1.25 the optimized formulation PHG4 is good (10.23 ± 2.36).

Determination of pH

Table No. 9: Determination of pH		
Formulation	рН	
PHG1	6.92 ± 0.11	
PHG2	6.95±0.15	
PHG3	7.02±0.11	
PHG4	7.02±0.14	
PHG5	7.08±0.12	
PHG6	7.15±0.13	

Table No. 9: Determination of pH

Results: The above formulation of topical gels has different pH value for different formulation

Results of Viscosity

Table No. 10: Results of Viscosity		
Formulation	Viscosity (cps)	
PHG1	2865±12	
PHG2	2750±15	
PHG3	2655±14	
PHG4	2610±10	
PHG5	2545±11	
PHG6	2415±14	

Results: In the above formulations the viscosity of different sample of gel were determined and found that there is increase in viscosity. The formulation PHG4 has good viscosity 2545 ± 11 .

Results of phenol content

Table No. 11: Results of phenol content using Folin-Ciocalteu method

Formulation	% Phenol content (equivalent to gallic acid mg/100mg)
PHG1	2.45
PHG2	2.12
PHG3	2.19
PHG4	2.65
PHG5	2.31
PHG6	2.05

Results: In the above formulation of different gels the percentage of drug content was found that PHG4 has maximum percentage of drug content.

Results of antimicrobial activity of optimized formulation

Antibiogram studies

The present investigation in this research work, the Anti-acne activity of polyherbal gel of Seeds of Embelia ribes, bark of Acacia nilotica and leaves of Chenopodium album were evaluated against Propionibacterium acnes pathogens used under present study.

S. No.	Formulation	Zone of inhibition		
		100mg/ml	50 mg/ml	25mg/ml
1.	Clintop (Marketed gel)	18±0.5	16±0.94	15±0.57
2.	Polyherbal gel	20±0.74	17±0.5	16±0.57

 Table No. 12: Anti-acne activity of standard and polyherbal gel formulationagainst

 Propionibacterium acnes

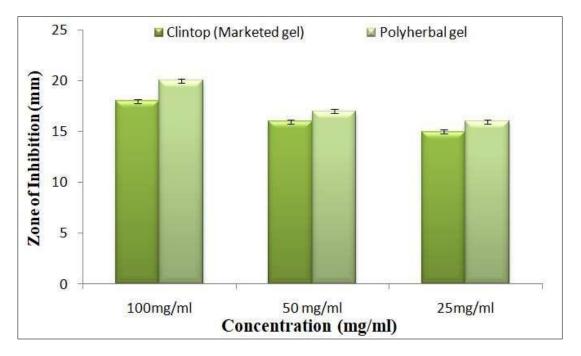


Figure 3: Anti-acne activity of marketed gel and polyherbal gel formulationagainst Propionibacterium acnes

SUMMARY AND CONCLUSION:

The present research work deals with formulation and evaluation of herbal gels against this etiologic agent of acne vulgaris. The extractive value of Embelia ribes, Acacia nilotica and Chenopodium album was found 6.98, 5.77, and 7.23% respectively. The content of total phenolic compounds (TPC) content was expressed as mg/100mg of gallic acid equivalent of dry extract sample using the equation obtained from the calibration curve: Y = 0.042X+0.002, $R^2=$ 0.999, where X is the gallic acid equivalent (GAE) and Y is the absorbance. The content of total flavanoid compounds (TFC) content was expressed as mg/100mg of quercetin equivalent of dry extract sample using the equation obtained from the calibration curve: Y = 0.06X+0.019, $R^2 = 0.999$, where X is the quercetin equivalent (QE) and Y is the absorbance. The prepared gel were evaluated for Psycho Rheological Characteristists, washability and Extrudability, spreadability, Determination of pH,

Viscosity, and phenol content. In all above formulations of gel the spreadibility ranging 9.25 ± 2.10 to 13.25 ± 1.25 the optimized formulation PHG4 is good (10.23 ± 2.36). In the above formulations the viscosity of different sample of gel were determined and found that there is increase in viscosity. The formulation PHG4 has good viscosity 2545 ± 11 . The present investigation in this research work, the Anti-acne activity of polyherbal gel of Seeds of Embelia ribes, bark of Acacia nilotica and leaves of Chenopodium album were evaluated against Propionibacterium acnes pathogens used under present study.

REFERENCES:

1. Abel Nosereme Agbon, Helen Ochuko Kwaneshie and Wilson Oliver Hamman, Antidiarrheal Activity of Aqueous Fruit Extract of Phoenix dactylifera (Date Palm) in Wistar Rats, British Journal of Pharmacology and Toxicology 4(3): 121-127, 2013.

- 2. Ansari Sufiyamohdazam Farhana, Antimicrobial and Synergistic Activity of Phoenix Dactylifera Seeds, Indian J.L.Sci. 4 (1): 95-100, 2014.
- 3. Ayesha mateen, P.V.K. Suresh, Parwez Ahmed, Evaluation of antibacterial activity of cuscuta reflexa and abutilon indicum, international journal of pharma and bio sciences, 2011, (2) 4, pp. 355-361
- Balakrishnan BR, Sangameswaran B, Bhaskar VH, Effect of methanol extract of Cuscuta reflexa aerial parts on hepatotoxicity induced by antitubercular drugs in rats, International Journal of Applied Research in Natural Products Vol. 3(1), pp. 18-22, March-April 2010
- 5. Bele A. A. Jadhav V M, Kadam V J. Formulation and evaluation of herbal drug. Drug invert today. 2010 2 (7) 369- 372.
- 6. Carl AB, Edward RA, David EB, Tietz NW, Text book of clinical chemistry and molecular

diagnostics, 4th rev. ed., W.B Saunders Philadelphia, 2001.

- 7. Ch. Muhammad Tahir. Pathogenesis of Acne Vulgaris: Simplified. Journal of Pakistan Association of Dermatologists 2010; 20: 93-97.
- 8. Chukwugozie N Okwuosa, Theophilus K Udeani, Joshua E Umeifekwem, Augustine C Onuba, Innocent C Anioke1 and Romanus. E. Madubueze. Hepatoprotective Effect of Methanolic Fruit Extracts of Phoenix dactylifera (Arecaceae) on Thioacetamide Induced Liver Damage in Rats, American Journal of Phytomedicine Clinical Therapeutics and 2(3)2014 pp290-300.
- 9. Collected from Different Hosts, J Food Process Technol 2013, 4:5 pp 1-6.
- Dandopani Chatterjee, Ram K Sahu, Arvind K Jha and Jaya Dwivedi, Evaluation of Antitumor Activity of Cuscuta Reflexa Roxb (Cuscutaceae) Against Ehrlich Ascites Carcinoma in Swiss Albino Mice, Tropical Journal of Pharmaceutical Research August 2011; 10 (4): 447-454.