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ABSTRACT

A methodology to cluster multiple sets of Gaussian multivariate
complex observations based on the alignment of their column spaces
is presented. These subspaces are identified with points in the Grass-
mann manifold and compared according to a similarity measure
drawn from a chosen manifold distance, which is proportional to the
squared projection–Frobenius norm. In order to guarantee that dis-
tances between subspaces of different dimensions are comparable,
we proposed to normalise the corresponding decision statistics with
respect to their asymptotic mean and variance, assuming that (i)
the dimensions of both the observation and the involved subspaces
are large but comparable in magnitude and (ii) both subspaces are
generated by the same statistical law. A procedure is derived to
estimate these normalisation parameters, leading to a new statistic
that can be built exclusively from the observations. The method is
applied to a MIMO wireless channel clustering problem, where is
shown to outperform conventional similarity measures in terms of
classification performance.

Index Terms— Complex Subspace Clustering, Grassmann
Manifold, Random Matrix Theory, Central Limit Theorem.

1. INTRODUCTION

Multiple applications nowadays require the use of subspace cluster-
ing, a powerful mechanism that classifies sets of multivariate obser-
vations into clusters according to the alignment of their spanned sub-
spaces. This technique is useful in both dynamic and non–dynamic
systems, such as wireless communications [1], electroencephalog-
raphy [2], transfer learning [3] or image segmentation [4] to name
a few. Several methods have been developed to extract meaning-
ful subspace–structured features that can typically be fed into con-
ventional clustering algorithms (see [5] for a detailed review). A
common approach is to represent these subspaces as points in a
Grassmann manifold [6]. By doing so, one can take advantage of
the geometrical properties of the Grassmannian in order to perform
subspace alignment/comparison or design optimized kernel meth-
ods [5, 7, 8].

The main objective of the present paper is to propose a method
to cluster collections of complex multivariate Gaussian observations
according to their proximity in terms of the subspace they span.
The motivation behind it can be found in the field of multi–antenna
wireless communications, where these collections of observations
correspond to different MIMO Rayleigh channels. The idea is to
optimize the use of the available spatial degrees of freedom by
identifying groups of users that are seen from similar angles (i.e.
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span a similar subspace) as a single spatial entity. It is typically
easier to spatially multiplex different signals among well separated
groups rather than attempt individual user multiplexing. Once these
groups have been spatially multiplexed, one can process the signals
within each group by either orthogonal (FDMA, TDMA) or non–
orthogonal (NOMA, Rate Splitting) techniques [9,10]. It is therefore
important that MIMO wireless channels are clustered according to
their proximity in terms of the subspace they span.

In [11] we proposed a hierarchical subspace–based clustering
mechanism that assumes observations to be complex multi–variate
circularly symmetric Gaussian observations. The main idea is to
build the hierarchical structure by using a similarity measure which
exploits the inherent geometry embedded in the observed subspaces,
i.e. by identifying groups of observations as points in the Grass-
mann manifold. In order to find a similarity measure which is
relevant when the compared subspaces have different dimensions,
we propose to normalise the original metric according to its large–
dimensional asymptotic behavior (see Section 2.2 for details). The
idea is to guarantee that, whenever the two compared subspaces are
well aligned, the similarity measure will approximately behave as
a standard Gaussian random variable regardless of dimensions of
the involved subspaces. This provides a valid tool in order to com-
pare the proximity of multiple subspaces by checking their pairwise
similarity.

One of main open issues of the described approach is the fact
that the normalisation of the similarity statistics requires perfect
knowledge of the statistics of the underlying observations. Un-
fortunately, this information is typically unknown in real–world
applications and needs to be estimated from the observations them-
selves. The one of the main objectives of this work is to propose an
alternative solution and directly estimate the normalisation param-
eters from the given observations. In that sense, this work can be
seen as an extension of [11] for the case where the statistics of the
observations are no longer available.

2. PRELIMINARIES

2.1. Signal Model

Let us consider a collection ofK complex independent multi–variate
stochastic processes, all of the same dimension M . We assume that
each multi–variate process is Gaussian distributed, with zero mean
and covariance matrix Rk ∈ CM×M (assumed to be full rank).
Moreover, we assume thatNk < M observations (independent from
each other) are available from the kth multidimensional process and
denote as Xk ∈ CM×Nk the observation matrix that contains these
Nk observations as columns, k = 1, . . . ,K. This means that the
observation matrix of the kth process is decomposable as

Xk = R
1
2
kGk (1)



where the entries of the M ×Nk matrix Gk are assumed to be inde-
pendent and identically distributed (i.i.d.) complex circularly sym-
metric Gaussian random variables, with zero mean and unit variance.
Here the covariance matrice is inspired by the wireless communica-
tions context and can be interpreted as theM×M receive covariance
matrices of the multi–antenna channel. In that particular setting, this
matrix is inherently dependent on the scattering structure of the sce-
nario, in particular on the angles of arrival (AoA) of the multiple
transmission paths.

We are primarily interested in establishing the similarity be-
tween the subspace spanned by the columns of pairs of observation
matrices Xk,Xj , for k 6= j. By checking the structure of these ob-
servations in (1), one can readily anticipate that two observation ma-
trices will span similar subspaces with high probability when they
are generated with the same left covariance matrix Rk. However,
since this matrix is in practice unknown, we will instead resort to the
sample covariance matrix, defined for the kth process as

R̂k =
1

Nk
XkX

H
k . (2)

We emphasise that the sample covariance matrix is now rank defi-
cient, i.e., rank(R̂k) = Nk < M . In the next section we will see
that this is closely related to the dimension of the manifold which
the kth observation is projected onto.

2.2. Subspace Comparison Using Grassmann Manifolds

It is well known [8, 12–14] that the distance between two (complex)
N–dimensional subspaces can be geometrically characterised by
their principal angles. Interestingly enough, these angles induce sev-
eral metrics on the (complex) Grassmann manifold G(N,M), which
provides a topological structure to the set of all N–dimensional sub-
spaces in a (complex) M–dimensional space.

The Grassmannian G(N,M) can be identified with the space of
symmetric orthogonal projection matrices of size M ×M and rank
N [8]. In other words, we can represent the column space of the kth
observation matrix Xk as a point P̂k ∈ G(Nk,M), where P̂k is the
projection matrix

P̂k = Xk(XH
kXk)−1XH

k . (3)

Alternatively, both the column subspace of Xk and the projection
matrix P̂k are fully determined by the first Nk left singular vectors
of Xk, which we denote here as V̂k. Therefore, it can be seen [11,
13] that the cosine of the principal angles between the subspaces
spanned by the columns of Xk, Xj are equal to the singular values
of the matrix V̂H

k V̂j .
The main advantage of formulating the problem of subspace

classification in the framework of Grassmannian learning is that we
can consider conventional distance measures that define the topolog-
ical structure of this manifold, see [12] for a detailed review. In par-
ticular, in this paper we consider the squared projection–Frobenius
distance, which is defined as

d2PF(Xk,Xj) =
∑
i

sin2(αk,j(i)) = min(Nj , Nk)− tr(P̂kP̂j)

(4)
where tr(·) denotes the trace of a matrix and αk,j(i) denotes the
ith principal angle between the column spaces generated by Xk and
Xj . This particular choice of metric has the advantage that it can be
computed without eigenvalue decompositions. Moreover, it can be
shown [11] that this metric is particularly useful for the task at hand.

Finally, we can directly convert (4) into a similarity measure by

considering

sk,j =
1

M
tr(P̂kP̂j) (5)

when comparing two observations. Observe that this similarity mea-
sure takes values between 0 (when the observations span orthogo-
nal subspaces) to M−1 min(Nk, Nj) (when they span parallel sub-
spaces). Notice, however, that even in the case where Rk = Rj , the
probability that two observations (k, j) span exactly the same sub-
space is zero due to the fact that those observations are drawn from
absolutely continuous Gaussian probability distributions.

3. HIERARCHICAL CLUSTERING OF SUBSPACES
We have now introduced the main concepts necessary to formulate
an agglomerative hierarchical clustering based on the similarity mea-
sure in (5). In this bottom–up approach, the goal is to combine dif-
ferent observations into larger collections based on how similar their
corresponding subspaces are. To do so, we consider the collection of
all pairs of clustered subspaces and compare them according to the
similarity measure described above. The pair with highest similarity
(or, equivalently, lower distance) is merged and forms a new clus-
ter, represented by the concatenation of the different columns that
constitute the corresponding observation matrices.

In order to study the problem from the statistical perspective,
we formulate each merging step in the hierarchical clustering proce-
dure as a binary hypothesis test. We declare that the two observation
matrices belong to the same cluster (in terms of proximity of their
corresponding column subspaces) if the observations are generated
from the same left covariance matrix, that is

H0(k, j) : Rk = Rj (6)
H1(k, j) : Rk 6= Rj .

If the null hypothesis is accepted, then the new cluster is formed by
the concatenation X[k,j] = [Xk,Xj ], which is equivalent to con-
catenating the left singular vectors associated to their respective col-
umn subspaces, assuming thatNi+Nj ≤M . Moreover, notice that
the concatenated matrix X[k,j] – of dimension M × (Ni +Nj) –
can still be modeled according to (1), where Rk is the common left
covariance matrix of the new cluster.

Now, one of the main problems with the use of the similarity
measure in (5) is that its statistics are inherently dependent on the
pair of observations that are being compared, especially with regard
to the dimensionality of the associated subspaces. This problem is
a direct consequence of the fact that the the distance measures are
functions of the dimensionality of the underlying Grassmann mani-
fold.

There are a few existing proposals for distances between sub-
spaces of different dimensions [15–17], although usually the solu-
tion follows from embedding both Grassmanianns into a higher di-
mensional one. A more effective alternative consists in normalising
the similarity measure si,j with respect to its asymptotic null distri-
bution (under H0(i, j)), by subtracting the corresponding mean and
dividing by the corresponding standard deviation. This guarantees
that, under the null hypothesis, all the statistics associated to pairs of
observations will have the same standardized behavior, so that they
can be considered to be comparable.

Since obtaining the exact expression for the first and second or-
der moments of si,j appears to be extremely difficult, one can instead
resort to a large dimensional approximation and consider the situa-
tion where all the involved dimensions (M,N1, . . . , NK ) are large
but comparable in magnitude. It can be seen that these are very good
approximations even for relatively low dimensions.



In [11], we show that si,j in (5) asymptotically fluctuates as a
Gaussian random variable and provide expressions for the asymp-
totics of the first (ηk,j) and second order (σ2

k,j) moments, which
obviously depend on the covariance matrices Rk, Rj . We therefore
propose to use the normalised similarity measurement

s̃k,j =
sk,j − ηk,j

σk,j
(7)

where ηk,j and σk,j are particularized to the null hypothesis in (6),
namely Rk = Rj . The main advantage of the proposed similarity
measure is the fact that all distances are comparable under the null
hypothesis (i.e. when the subspaces are generated with the same left
covariance matrix) and this property holds asymptotically regardless
of the inherent subspace dimensions. This means that the normalised
similarity measure in (7) allows us to effectively compare the degree
of alignment of different subspaces, in the sense that all similarity
measures between observations in the null hypothesis (i.e. sharing
the same covariance) will asymptotically behave according to the
standard Gaussian law.

Observe that the construction of the normalised statistic in (7)
requires a perfect knowledge of the common left covariance ma-
trices of the signals that are being compared. In low dimensional
scenarios, this is typically solved by computing the required param-
eters with the sample covariance matrix in (2) instead of the true
one. However, in large dimensional scenarios this is far from op-
timal, mainly because the sample covariance matrix can hardly be
regarded as a consistent estimate of the true one. In this paper, we
propose to solve this issue by directly attempting to estimate both the
asymptotic mean and variance ηk,j , σ2

k,j under the null hypothesis,
directly from the observations. More specifically, we will provide
estimators for these two quantities that are consistent even in the sit-
uation where the observation dimension increases with the sample
size of each class under comparison.

4. ESTIMATOR OF THE DISTRIBUTION UNDER H0

In this section, we present estimators for ηk,j and σ2
k,j that can be

built from the sample covariance matrices R̂k, R̂j and are consis-
tent even when the observation dimension increases without bound.
In order to simplify the exposition, we begin by presenting the ex-
pression of these estimators and then later formulate the consistency
result.

The proposed estimator of ηk,j is denoted as η̂k,j and can be
expressed as

η̂k,j =


Nk
2M

(
1− κ2

k(1)

κk(2)

)
+

Nj

2M

(
1− κ2

j (1)

κj(2)

)
Nk = Nj

1
2M

(
Nkµ̂k(k)−Nj µ̂j(k)

µ̂k(k)−µ̂j(k)
+

Nkµ̂k(j)−Nj µ̂j(j)

µ̂k(j)−µ̂j(j)

)
Nk 6= Nj

where we have defined, for l ∈ {k, j},

κl(m) =
1

Nl
tr
[(

R̂#
l

)m]
, m ∈ N

and where (·)# denotes the Moore–Penrose pseudo–inverse. Fur-
thermore, we have µ̂l(l) = −1

κl(1)
, whereas for Nk 6= Nj we take

µ̂j(k) = γ

(
1− Nj

Nk

)
where γ is the smallest solution to

1

Nj
tr

[
R̂k

(
R̂k − γIM

)−1
]

= 1.

The estimator of the asymptotic covariance σ2
k,j is denoted as

σ̂2
k,j and can be described as

σ̂2
k,j = ζ2k(j) + ζ2j (k) +

(
tr
[
R̂#
k R̂

#
j

])2
tr

[(
R̂#
k

)2]
tr

[(
R̂#
j

)2] . (8)

The quantity ζ2j (k) can in turn be expressed as

ζ2j (k) =

[
κj(4)κ2

j (1)

κ3
j (2)

− 2

(
κj(1)κj(3)

κ2
j (2)

)2
]
×[

1

κj(1)
ρj(Bk, 1)−

(
1

κj(1)
ρj(Ak, 1)

)2
]

+
κj(1)κj(3)

κ2
j (2)

(
ρj(Bk, 1)

κj(1)
+

2ρj(Ak, 2)

κj(2)
− ρj(Bk, 3)

κj(3)

)
− 2

κj(3)ρj(Ak, 1)

κ2
j (2)

(
2ρj(Ak, 2)

κ2(2)
− ρj(Ak, 3)

κj(3)

)
+

(
ρj(Ak, 2)

κj(2)

)2

− ρj(Bk, 2)

κj(2)
(9)

where we have introduced the matrices Ak = −P̂⊥k and Bk =

P̂⊥k −
κk(1)
κk(2)

R̂#
k , together with P̂⊥k = IM − P̂k and

ρj(A, n) =
1

Nj
tr
[
A
(
R̂#
j

)n]
valid for any squared matrix A. Obviously, ζ2k(j) is defined in the
same way, but swapping the two indexes k, j. Having introduced
these two estimators, we are now in the position to formulate the
main result of the paper.

Theorem 4.1. Consider two independent random matrices Xk, Xj

following the statistical structure in (1). Assume that M,Nk, Nj
increase to infinity at the same rate, so thatNk/M → ck, Nj/M →
cj for some ck, cj ∈ (0, 1). Assume that Rk = Rj has bounded
spectral norm for all M . Then, we have |ηk,j − η̂k,j | → 0 and
|σ2
k,j − σ̂2

k,j | → 0 with probability one.

Proof. See [18].

Theorem 4.1 offers a simple mechanism to build an asymptotic
equivalent of (5) that uses only the available observations and is still
able to behave asymptotically as the original one under the null hy-
pothesis, namely

ŝk,j =
sk,j − η̂k,j

σ̂k,j
. (10)

We will see in the next section that this new statistic provides a very
practical way of comparing subspaces of different dimensions, al-
ways keeping the same reference behavior under the null hypothesis.

5. NUMERICAL VALIDATION
In order to validate the results presented above, we compare the
clustering performance of the proposed similarity measure ŝk,j as
defined in (10), where the normalising coefficients are estimated ac-
cording to Theorem 4.1. The performance of this proposed simi-
larity measure is denoted as “EST” in the figures. For comparison
purposes, we also analyze the performance of the artificial statistic
sk,j in (5), which cannot be built unless the left covariance matrices
of the observations are known. This performance will be denoted as
“ASYM” in what follows.



We also compare the performance against four other more con-
ventional metrics, the conventional Projection–Frobenius similarity
(denoted here by “PF”), the Fubini–Study based similarity [12]
(“FS”), together with the conventional maximal (“C–S”) and av-
erage (“C–AVG”) similarity between one–dimensional subspaces
belonging to the observed subspaces. More specifically, the PF
(resp. FS) similarity measure between the jth and kth subspaces
is given by the arithmetic (resp. geometric) average of the non–
zero eigenvalues of the matrix P̂kP̂jP̂k. On the other hand, the
C–S (resp. C–AVG) similarity is defined as the maximum (resp.
average) scalar product between column vectors of Xj and Xk

after norm–one normalisation. For all these distances, we consid-
ered an agglomerative hierarchical clustering algorithm that at each
step merges the pair of observed matrices with highest similarity
measure.

Rather than characterizing the behavior of the whole hierarchi-
cal clustering method, we focus here on individual merging steps
in the clustering process. More specifically, we evaluate a simpli-
fied scenario with three observation matrices, X1,X2,X3 and as-
sume that X1,X2 are generated with the same left covariance ma-
trix (R1 = R2), and should therefore be merged into a single cluster.
The left covariance matrix of the third observation is different from
the other two (R3 6= R1). Notice that the hierarchical clustering
of K observations boils down to K

(K−3)!3!
triplet comparisons. In

this sense, analysing the merging of pairs based on triplets is closely
related to the behaviour of the hierarchical clustering in large scenar-
ios, i.e., K > 3. Moreover, by comparing observations of different
sizes, we are essentially simulating different levels of the hierarchi-
cal clustering. Finally, for each of the six metrics described above,
the algorithm first computes the three similarity measures between
pairs of matrices, and chooses to merge the pair that has the highest
similarity. We define the probability of success (POS) as the prob-
ability of making the right merge and evaluate it by considering a
collection of 104 realizations of these observations.

Inspired by the channel clustering application in wireless com-
munications, we simulate the three observation matrices as MIMO
wireless channels, where the left covariance matrices are generated
by averaging the contribution of random directions of arrival imping-
ing on a uniform linear array with half a wavelength inter–element
separation. We will denote by θj , j = 1, 2, 3 the mean angle of ar-
rival associated to each channel (they are Gaussian distributed with
angular spread of ten degrees), so that obviously we have θ1 = θ2 6=
θ3. The separation between θ1 and θ3 can be understood as a dis-
tance between the subspaces that are spanned by the different chan-
nels, hence, the distribution from the observations. For instance,
for small ∆θ = |θ1 − θ3|, we have that two groups are close to-
gether, thus it becomes harder to distinguish between one another.
In contrast, for ∆θ large, both groups are generated by non-related
subspaces.

Figure 1 illustrates the POS obtained in four distinct scenarios
for different choices of the dimensions (M,N1, N2, N3), where in
all cases these quantities are taken to increase proportionally in the
x–axis. Notice that in all four scenarios the proposed normalised
metric generally outperforms the other similarity measures, espe-
cially in situations where the compared subspaces have very different
dimensions. (We recall here again that the “ASYM” is merely shown
for comparative purposes.) Furthermore, observe that the proposed
metric outperforms the rest even in scenarios with a relatively low
number of dimensions, in spite of the fact that the statistic is de-
signed to perform well in large dimensional settings. Figure 2 illus-
trates the relationship between the mean angular distance in the co-
variance generation |θ1−θ3| and the POS for each of the considered

similarity measures. Observe that, once again, both normalised met-
rics outperform all the other metrics, especially in the region where
the two left covariance matrices are close, which corresponds to the
region where ∆θ is small.
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Fig. 1: Probability of success related to different metrics in four
different scenarios (a)-(d) with respect to the growth ofN1 (x–axis).
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Fig. 2: Probability of success for different ∆θ. The dimensions of
each observation can be described by N3/3 = N2/2 = N1 = 4.

6. CONCLUSION

A novel similarity metric has been proposed that allows clustering
complex Gaussian data according to the proximity of their column
spaces. The main idea is to normalise the projection–Frobenius mea-
sure in the Grassmann manifold so that it behaves as a standard
Gaussian random variable when the compared observation sets have
the same left covariance matrix. The main achievement of the paper
has been the proposal of consistent estimators of these normalisa-
tion parameters that are obtained exclusively from the observations.
Numerical simulations confirm the validity of the presented results
by illustrating a consistent and fast performance improvement of the
normalised schemes when compared to other metrics. We finally
stress that the approach described here is also applicable to other
subspace clustering applications that are based on pairwise similar-
ity comparisons.
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