

POLYPHEM

Small-Scale Solar Thermal Combined Cycle

D5.1 Manufacturing / Installation of the thermal

storage

Date of delivery01/09/2022Author(s)Alain Ferriere, Juan-Manuel CarrunchoInstitution/CompanyCNRS, ARRAELA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764048.

Document tracks

Identification	POLYPHEM_D5.1_Manufacturing&Installation of TES
TITLE OF DELIVERABLE	Manufacturing/installation of the thermal storage
Author(s)	Alain Ferriere, Juan-Manuel Carruncho
Reviewers(s)	Lauriane Gonzalez
Related Work Package (s)	WP5: Manufacturing and installation of the prototype plant
Beneficiary responsible of delivery	ARRAELA
Due date of delivery	28/02/2022
Actual date of submission/revision	01/09/2022
Number of pages	15
SUMMARY	This document is the deliverable D5.1 of the project POLYPHEM. It is planned in the framework of the Work Package 5 (Manufacturing and installation of the prototype plant). The deliverable D5.1 is a demonstrator. It shows that the thermal energy storage (TES) tank is erected on the site of the solar tower facility THEMIS (France) as part of the prototype plant. The TES tank is made of concrete for the basement and for the wall. The filler bed consists of stacks of concrete bricks arranged in a compact pattern. ARRAELA designed the concrete material and erected the tank on site. CIEMAT supplied the measurement instruments and CNRS was in charge of the civil works, the implementation of the filler bed and the instrumentation.
Dissemination level	PU
Repository	https://dms.polyphem-project.eu

Document History and Validation

Date	Name	Comments
28/08/2022	Alain Ferriere	Creation
29/08/2022	Lauriane Gonzalez	Review 1
30/08/2022	Alain Ferriere	Final

All information in this document only reflects the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

Background: about the POLYPHEM project

FULL TITLE	SMALL-SCALE SOLAR THERMAL COMBINED-CYCLE
Acronym	РОГАЬНЕМ
Call identifier	H2020 LCE-07-2017-RES-RIA-TwoStage
Instrument	Research and Innovation Action (RIA)
Grant Agreement N°	764048
Starting Date	01/04/2018
Duration	48 months
Website	https://www.polyphem-project.eu
Keywords	Renewable electricity; Energy collection, conversion and storage; Renewable energy
Additional keywords	Concentrated solar power; Solar tower system; Combined cycle; Gas-turbine; Thermal energy storage; Organic Rankine cycle; Process control
Beneficiaries	CNRS, CEA, CIEMAT, Arraela S.L., Fraunhofer ISE, Kaefer Isoliertechnik, Orcan Energy, Euronovia, Aalborg CSP

The POLYPHEM project is a research and innovation action funded by the European Union's H2020 program. It is implemented by a European consortium of 4 research centres and 5 industrial partners. The aim is to increase the flexibility and improve the performance of small solar tower power plants. The concept of POLYPHEM consists in implementing a combined cycle formed by a solarized micro gas-turbine and a Rankine organic cycle machine, with an integrated thermal storage device between the two cycles. The need for cooling is minimal.

Developed from a patented technology by CNRS and CEA, the pressurized air solar receiver is integrated in the micro-turbine cycle. The thermal efficiency targeted for the receiver is 80% with a cost of 400 \notin /kW. The innovative thermal storage uses a thermal oil and a single thermocline tank with a technical concrete filler material.

The main expected impact of this project is to enhance the competitiveness of low-carbon energy production systems through the technology developed. The expected progress is a better fitting of electricity generation to variable local needs, an overall conversion efficiency of solar energy into electricity of 18% for an investment cost of less than $5 \notin W$ and a low environmental impact. By 2030, the cost of electricity production targeted by the POLYPHEM technology is $165 \notin MWh$ for an annual direct normal irradiation of 2600 kWh/m²/year (North Africa and Middle East) and 209 $\notin MWh$ under 2050 kWh/m²/year (Southern Europe). In addition to decentralized power generation, other applications are considered for the deployment of this technology used in poly-generation: industrial heat production, solar heating and cooling, desalination of seawater or brackish water.

A prototype plant of 60 kW_{el} with a thermal storage of 1300 kWh is designed, built and installed on the site of the experimental solar tower of Themis in Targasonne (France). The objective of the project is to validate the technical choices under test conditions representative of actual operating conditions.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764048

Manufacturing/Installation of thermal storage – POLYPHEM_D5.1_Manufacturing&Installation of TES 3/15

Table of content

1. THERMAL ENERGY STORAGE SYSTEM	6
1.1 Thermal storage tank	6
1.2 Thermal storage capacity	7
2. CONSTRUCTION OF THE TANK	8
2.1 Time-table of the construction	8
2.2 Pictures of the construction	9
3. SITUATION ON 31 AUGUST 2022	15

List of Figures

Figure 1: Civil works [25-29/10/2022]
Figure 2: Construction of bottom formwork (left) and intermediate grids (right) [01-05/11/2021]9
Figure 3: 1 st shipment of materials from Spain to France [08-12/11/2021]
Figure 4: Construction of top cover of tank in Spain [15-19/11/2021]10
Figure 5: Construction of reinforcements and preparation of other materials in Spain [29/11-03/12/2021]10
Figure 6: Assembly of TES basement and Implementation of TCs in the basement [13-17/12/2021] 10
Figure 7: 2 nd shipment of materials from Spain to France [10-14/01/2022] 11
Figure 8: Construction and pre-assembly of the formworks of the wall in Spain [09-13/05/2022] 11
Figure 9: 3 rd shipment of materials from Spain to France [09/06/2022] 11
Figure 10: Implementation of insulation slab (left) and bottom formwork (center). Starting of construction of
reinforcements for concrete wall (right) [13-17/06/2022] 12
Figure 11: Assembly of inner and outer formworks for the wall [20/06-09/07/2022] 12
Figure 12: Construction of bottom slab in concrete [11/07/2022] 12
Figure 13: Installation of the inner formwork (left). Reinforcements of the formworks are set (center & right)
[14-15/07/2022]
Figure 14: Installation of the outer thermal insulation [19/07/2022]
Figure 15: Construction of the wall in concrete [25/07/2022]13
Figure 16: Internal reinforcements are removed (left). Pipes and bottom diffusor are implemented (center).
Bottom supporting grid is installed. Top cover is pre-adjusted (right) [26-29/07/2022] 14
Figure 17: Installation of a crane at THEMIS site [16/08/2022] 14
Figure 18: Installation of filler bricks and implementation of the instrumentation (TCs) [17-31/08/2022] 14

List of Tables

Table 1: Summary of the main physical parameters of the storage tank	6
Table 2: Thermal energy storage capacity	7
Table 3: Main steps of the construction of the TES	8

List of Acronyms and Abbreviations

Acronym/abbreviation	Meaning/full text
CIEMAT	Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas
CNRS	Centre National de la Recherche Scientifique
HTF	Heat Transfer Fluid
ORC	'Orcan Energy AG' or 'Organic Rankine Cycle'
PU	Public
RHX	Recovery Heat Exchanger
ТС	Thermocouple
TES	Thermal Energy Storage
WP	Work Package

1. THERMAL ENERGY STORAGE SYSTEM

1.1 THERMAL STORAGE TANK

The thermal energy storage system is composed of a single tank which contains a porous filler bed. The heat transfer fluid (HTF) occupies the open porosity of the filler bed. A summary of the main physical parameters of the tank is presented in Table 1.

Description	Value	Unit
TES TANK		
Cross-section area TES (dodecagonal)	5.049502462	m²
Number of stacks of filler bricks (1 stack=5 layers)	4	
Height of intermediate spacer between stacks of filler bricks	0.03	m
Height of filler zone	2.09	m
Volume of filler zone	10.553	m³
Porosity of filler zone (derived from Microsol-R)	0.443	
Volume of HTF in filler zone	4.675	m³
Height of bottom buffer zone (needed for diffusion of HTF)	0.25	m
Volume of bottom buffer zone	1.262	m³
Height of top buffer zone (needed for diffusion of HTF)	0.25	m
Volume of top buffer zone	1.262	m³
OIL PIPES IN CIRCUIT: Tubes NF A 49-211 DN25 (1")		
Inner diameter of pipes	27.3	mm
Volume of fluid per length unit	0.585	l/m
Estimated total length of circuits	435	m
Estimated volume of HTF in circuits	0.255	m ³
OTHER COMPONENTS OF THE OIL CIRCUIT		
Volume of HTF in RHX (data Aalborg)	0.11	m ³
Volume of HTF in ORC (data Orcan)	0.035	m³
Total volume of HTF outside of TES (in circuits + other components)	0.400	m³
SUMMARY		
Total volume of HTF in operation @0°C (after filling)	7.600	m ³
Density HTF @0°C	1059	kg/m³
Total mass of HTF in operation	8048	kg
Density HTF @350°C	799	kg/m³
Total volume of HTF in operation @350°C	10.073	m³
Max. volume for thermal expansion of HTF (from 0°C to 350°C)	2.47	m ³
Height needed for thermal expansion of HTF in TES	0.49	m
Height of additional volume of air above HTF in TES tank	0.15	m
Total height of tank (inside)	3.23	m

Table 1: Summary of the main physical parameters of the storage tank

1.2 THERMAL STORAGE CAPACITY

The thermal storage capacity is assessed assuming that the "cold" temperature of the storage is 110°C (returned back from the ORC after cooling) and the "hot" temperature is 330°C (heated up by the hot air in the RHX).

According to this assumption, the thermal storage capacity is 2482 kWh (8935 MJ). The detailed estimation is given in Table 2.

THERMAL ENERGY IN THE TANK		
Temperature of HTF after preheating (TES fully discharged)	110	°C
Density of HTF	977	kg/m ³
Volume of HTF in the circuits + TES (after preheating)	8.237	m ³
Volume of HTF in the tank (after preheating)	7.838	m³
Mass of HTF in TES tank	7657,5	kg
Temperature of HTF after heating (TES fully charged)	330	°C
Density of HTF	814	kg/m ³
Volume of HTF in the circuits + TES (after heating)	9.887	m ³
Volume of HTF in the tank (after heating)	9.487	m³
Mass of HTF in TES tank	7722	kg
Intrinsic porosity of filler bricks	0.274	
Volume of concrete (filler bricks in TES tank)	7.33187757	m³
Density of concrete	3105	kg/m ³
Mass of filler in TES tank	22765	kg
Specific heat of HTF and concrete (Heatek-RV)		
Specific heat of HTF: CP0	1.5201	kJ/kg.K
Specific heat of HTF: coefficient CP1	0.0031898	kJ/kg.K/°C
Specific heat of filler: CP0	0.63	kJ/kg.K
Specific heat of filler: coefficient CP1	0.00078571	kJ/kg.K/°C
Specific heat of filler: coefficient CP2	0.00000429	kJ/kg.K/°C ²
Thermal energy charged in the tank during full charge	8935	MJ

2. CONSTRUCTION OF THE TANK

2.1 TIME-TABLE OF THE CONSTRUCTION

The construction of the TES was executed from October 2020 to August 2022. The main steps of the construction are summarized in Table 3.

Date	Action	Participants
10/2020	Manufacturing of filler bricks in Spain	ARRAELA
10/2022	Construction of insulation blocks for basement	ARRAELA
25-29/10/2021	Civil works at THEMIS site (France) for the foundations	CNRS
01-05/11/2021	Construction of bottom formwork and intermediate grids	ARRAELA
08-12/11/2021	1 st shipment of materials from Spain to France	ARRAELA - CNRS
15-19/11/2021	Construction of top cover of tank in Spain	ARRAELA
29/11-03/12/2021	Construction of reinforcements and preparation of other materials in Spain	ARRAELA
13-17/12/2021	Assembly of TES basement and Implementation of TCs in the basement	CNRS
10-14/01/2022	2 nd shipment of materials from Spain to France	ARRAELA - CNRS
9-13/05/2022	Construction and pre-assembly of the formworks of the wall in Spain	ARRAELA
9/06/2022	3 rd shipment of materials from Spain to France	ARRAELA - CNRS
10/06/2022	Starting of the erection of TES tank at THEMIS site (France)	ARRAELA
13-17/06/2022	Implementation of insulation slab and bottom formwork. Starting of construction of reinforcements for concrete wall	ARRAELA
20/06-09/07/2022	Assembly of inner and outer formworks for the wall	ARRAELA
11/07/2022	Construction of bottom slab in concrete	ARRAELA
14-15/07/2022	Installation of the inner formwork. Reinforcements of the formworks are set	ARRAELA
19/07/2022	Installation of the outer thermal insulation	ARRAELA
25/07/2022	Construction of the wall in concrete	ARRAELA
26-29/07/2022	Internal reinforcements are removed. Pipes and bottom diffusor are implemented. Bottom supporting grid is installed. Top cover is pre-adjusted.	ARRAELA
01-15/08/2022	Preparation of the filler bricks (cuts)	CNRS
16/08/2022	Installation of a crane at THEMIS site	CNRS
17-31/08/2022	Installation of filler bricks and implementation of the instrumentation (TCs)	CNRS

Table 3: I	Main steps	of the	construction	of the	TES
------------	------------	--------	--------------	--------	-----

2.2 PICTURES OF THE CONSTRUCTION

Figure 1: Civil works [25-29/10/2022]

Figure 2: Construction of bottom formwork (left) and intermediate grids (right) [01-05/11/2021]

Figure 3: 1st shipment of materials from Spain to France [08-12/11/2021]

Figure 4: Construction of top cover of tank in Spain [15-19/11/2021]

Figure 5: Construction of reinforcements and preparation of other materials in Spain [29/11-03/12/2021]

Figure 6: Assembly of TES basement and Implementation of TCs in the basement [13-17/12/2021]

Figure 7: 2nd shipment of materials from Spain to France [10-14/01/2022]

Figure 8: Construction and pre-assembly of the formworks of the wall in Spain [09-13/05/2022]

Figure 9: 3rd shipment of materials from Spain to France [09/06/2022]

Figure 10: Implementation of insulation slab (left) and bottom formwork (center). Starting of construction of reinforcements for concrete wall (right) [13-17/06/2022]

Figure 11: Assembly of inner and outer formworks for the wall [20/06-09/07/2022]

Figure 12: Construction of bottom slab in concrete [11/07/2022]

Figure 13: Installation of the inner formwork (left). Reinforcements of the formworks are set (center & right) [14-15/07/2022)

Figure 14: Installation of the outer thermal insulation [19/07/2022]

Figure 15: Construction of the wall in concrete [25/07/2022]

Figure 16: Internal reinforcements are removed (left). Pipes and bottom diffusor are implemented (center). Bottom supporting grid is installed. Top cover is pre-adjusted (right) [26-29/07/2022]

Figure 17: Installation of a crane at THEMIS site [16/08/2022]

Figure 18: Installation of filler bricks and implementation of the instrumentation (TCs) [17-31/08/2022]

3. SITUATION ON 31 AUGUST 2022

The Grant Agreement of POLYPHEM ends on 31 August 2022. At this date, the thermal energy storage system is not yet completed. The tank is erected, insulated and the connections with the oil pipes are finished. Although a strong effort has been dedicated to the implementation of the filler bricks and the instrumentation embedded in the filler bed, the rate of achievement of this part of the work up is 75%. The remaining implementation work will be done in the beginning of September 2022.