
Springer Nature 2021 LATEX template

Leveraging Synthetic Data for DNN-based
Visual Analysis of Passenger Seats

Nerea Aranjuelo1,2*, Jose Luis Apellaniz1, Luis
Unzueta1, Jorge Garcia1, Sara Garcia1, Unai Elordi1,2

and Oihana Otaegui1

1*Vicomtech, Basque Research and Technology Alliance (BRTA),
San Sebastian, Spain.

2*Basque Country University (UPV/EHU), San Sebastian, Spain.

*Corresponding author(s). E-mail(s): naranjuelo@vicomtech.org;
Contributing authors: jlapellaniz, lunzueta, jgarciac, sgarcia,

uelordi, ootaegui@vicomtech.org;

Abstract

Deep Neural Network (DNN)-based vision systems could improve pas-
senger transportation safety by automating processes such as verifying
the correct positioning of luggage, seat occupancy, etc. Abundant and
well-distributed data are essential to make DNNs learn appropriate
pattern recognition features and have enough generalization ability.
The use of synthetic data can reduce the effort of generating var-
ied and annotated data. However, synthetic data usually present a
domain gap with real-world samples, that can be reduced with domain
adaptation techniques. This paper proposes a methodology to build sim-
ulated environments to generate balanced and varied synthetic data
and avoid including redundant samples to train classification DNNs
for passenger seat analysis. We show a practical implementation for
detecting whether luggage is correctly placed or not in an aircraft
cabin. Experimental results show the contribution of the synthetic
samples and the importance of correctly discarding redundant data.
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1 Introduction

In recent years, the irruption of Deep Neural Networks (DNNs) has generated
significant gains in various computer vision tasks: object detection [1], object
segmentation [2], image captioning and visual relationship detection [3] or
action recognition [4]. DNNs are Artificial Neural Networks (ANNs) with more
than one hidden layer; therefore, many parameters need to be tuned by a
learning algorithm. This learning process requires a lot of data, especially when
the neural network starts far from the required solution, which is the usual case.
Collecting such data can be challenging specifically for two principal reasons.

First, the data collection process should comply with privacy-related
regulations (e.g., EU’s GDPR). This process should put in place appropri-
ate technical and organizational measures to implement the data protection
principles, such as data protection or data anonymization.

Second, the time and cost we need to devote to the data collection process,
considering that the quantity is substantial and the variety and the required
balance in labeled visual appearances to cover all possibilities during training.
Some data may even penalize the DNN training results if we do not consider
these characteristics.

In most cases, we cannot extract data from the Internet since we try to
solve a particular problem in a specific scenario with a particular camera setup.
Thus, we need to create custom datasets. It implies executing several actions
such as dataset specification, camera setup installation, technical preparation,
recording protocols, and even actors simulating particular guide notes. All
these actions, together with the well-known problem of labeling data [5] due
to the lack of effective tools and the annotation complexity, make the dataset
generation process more challenging.

There are several ways to extend training data: (i) augmentation techniques
[6], (ii) domain adaptation techniques and [7] (iii) synthetic data generation
[8]. Augmentation techniques or domain adaptation approaches are suitable for
those cases in which we already have some annotated data corresponding to the
domain. Alternatively, before we start collecting real data, we could tackle the
initial stages of the system’s design by generating some synthetic data. They
would allow us to train initial versions of DNNs that could help us annotate
real data, start applying the other mentioned techniques, and progressively
improve the system’s reliability [9]. However, the domain gap limits the real-
world performance of machine learning models trained only with synthetic
data. Closing the gap is important for effectively using synthetic data or data
from different domains.

As stated in [8], we could generate synthetic data following different kinds
of strategies, such as compositing real data, relying on generative models, or
using simulated environments. The latter has an additional advantage when
building multi-camera systems for surveillance applications: they typically pro-
vide virtual cameras to help set up the camera system to cover the use cases in
the targeted real scenario. This feature is particularly relevant in scenarios not
easily accessible to system designers and when the camera positions and lens
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characteristics are not predefined. These challenges arise, for example, design-
ing multi-camera intelligent vision systems for passenger transportation safety,
which is the main motivation of our work. Our final goal is to build intelli-
gent vision systems for automated passenger seat analysis in different types of
transport (e.g., aircraft, trains, buses, cars, etc.). In these scenarios, the vision
system could be designed to detect seat occupancy, whether luggage is cor-
rectly positioned, the passenger’s body pose, whether seat belts are fastened,
whether tray tables are in the stowed position, etc. We consider DNNs to solve
these kinds of problems as they are currently the kind of Machine Learning
techniques that obtain the best accuracy results for image classification prob-
lems with complex scenes such as those that could be captured in such types
of scenarios.

However, there are no general simulated environments ready to solve the
camera setup and data generation tasks for all scenarios and use cases like
those we consider. Typically, we need to build ’ad hoc’ environments. On
the contrary, a more flexible solution should allow: (1) including the required
scenario-related graphical assets in an easy manner, (2) configuring context-
and use-case-based scenes with user-friendly parameters, (3) capturing images
from virtual camera viewpoints quickly, including camera-related effects, such
as the geometric distortion introduced by the lenses, and (4) generating a
broad and balanced range of plausible situations of interest randomly, applying
suitable noise to the labeled data for the appropriate training of DNNs.

Generating a random wide range of situations may improve the DNN gen-
eralization ability and minimize the problem of the domain gap between the
synthetic and real data domains [10]. However, if both real and synthetic sam-
ples are available for the training, we can adopt additional strategies to reduce
their domain gap and guarantee the contribution of the synthetic samples.

To respond to all these challenges, in this work, we present a methodology
to build an appropriate training dataset for training DNNs using both real and
synthetic samples for automated passenger seat visual analysis, extending the
approach presented in [11]. More specifically, the contributions of our work are
the following:

• A procedure to build simulated environments to generate balanced and
varied synthetic data.

• A procedure to discard redundant samples that may penalize the DNN
accuracy.

• A practical implementation example for detecting luggage’s correct or
incorrect positioning in aircraft cabins.

• A qualitative and quantitative analysis of the data generation process
compared to alternative approaches.

• An evaluation of the accuracy improvement obtained with our approach
compared to other alternatives when training Domain Adversarial Networks
(DANNs) with real and synthetic data.



Springer Nature 2021 LATEX template

4 Leveraging Synthetic Data for DNN-based Visual Analysis of Passenger Seats

The rest of the paper is organized as follows: section 2 describes prior
works related to simulated environments, real data acquisition, and DNN
training with real and synthetic data; section 3 explains our proposed method-
ology; section 4 presents the mentioned practical implementation example and
experiments; finally, section 5 presents the conclusions and future lines of work.

2 Related Work

2.1 Synthetic Data Generation

The recent survey on synthetic data for deep learning [8] shows that in the last
years there has been a shift from static synthetic datasets to interactive sim-
ulation environments, grouped in the following categories: (1) outdoor urban
environments for learning to drive, (2) indoor environments and (3) robotic
and aerial navigation simulators. Current state-of-the-art environments have
been built upon Grand Theft Auto V (GTA V) [12], Unity3D [13, 14], Unreal
Engine [15, 16], CityEngine [17] or Blender [18], among others.

GTA V is an action-adventure video game with realistic graphics of a large
detailed city and surrounding areas from which we could extract diverse data,
involving virtual people, animals, cars, trucks, motorbikes, planes, etc. Saleh et
al. [13] state that the main drawback of video-game-based environments is the
limited freedom for customization and control over the scenes to be captured.
These limitations make obtaining a large diversity and good balance of classes
difficult due to the complicated procedure required to obtain ground-truth
instance-level annotations. On the contrary, they claim that their environment,
built upon the game engine Unity3D, can be set up by one person in one day. In
comparison, much less effort as it allows access to a virtually unlimited number
of annotated images with the object classes of state-of-the-art real urban scene
datasets. It captures synthetic images and instance-level semantic segmenta-
tion maps simultaneously and in real-time, with no human intervention. While
generating the data, their system renders the original textures and shaders
of included 3D objects and other automatically created unique ones for their
corresponding instances. Unity3D is also the basis of the indoor environment
proposed by [14] for the generation of synthetic data for object detection from
an omnidirectional camera placed on the ceiling of a room. It generates the
3D assets using the skinned multi-person linear model proposed in [19]. This
work points out that Unity3D only provides a camera model for perspective
and orthographic projection. They overcome this limitation by combining four
perspective cameras following the procedure proposed in [20].

Lai et al. [15] proposed a universal dataset and simulator of outdoor scenes
such as pedestrian detection, patrolling drones, forest fires, shooting, and more.
It is powered by the Unreal Engine and leverages the AirSim [16] plugin for
hardware simulation. As it focuses on training dynamic systems relying on
deep reinforcement learning [21], it prioritizes the real-time interactivity of the
virtual agents over photorealistic rendering. Therefore, it differs from static
systems for surveillance applications, like those motivating this work. In our
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case, achieving a better rendering quality for the data generation process is
more important than the real-time interactivity during training.

CityEngine is a program that allows generating 3D city-scale maps proce-
durally from a set of grammar rules. It is used in [17] as part of their method
to generate an arbitrarily large, semantic segmentation dataset reflecting real-
world features, including varying depth, occlusion, rain, cloud, and puddle
levels, while minimizing required effort.

Blender is an open-source 3D graphics software with Python APIs that
facilitate loading 3D models and automating the scene rendering. Rajpura et
al. [18] used it to generate a dataset to train a DNN-based detector for rec-
ognizing objects inside a refrigerator. It used Cycles Render Engine available
with Blender. This engine is a physically-based path tracer that allows get-
ting photorealistic results, which is beneficial for avoiding a big domain gap
between the feature distribution of synthetic and real data domains.

2.2 Real Data Acquisition

Big amounts of data have been crucial for DNNs’ success. Large datasets such
as ImageNet [22] or OpenImages [23] have played an important role in the
advances and development of DNNs. However, generalist datasets do not cover
all possible computer vision tasks for all possible use-cases. Smart video surveil-
lance systems, for example, may need to cover specific use cases or camera
perspectives that are not available in any open dataset. Training techniques
that rely on pretrained DNN models, such as transfer learning, fine-tuning, or
BiT [24], can be used to benefit from models already trained with generalist
datasets and avoid collecting and annotating big amounts of data. Moreover,
works like [25–27] suggest that pretraining on domain-specific datasets leads
to improved accuracy compared to pretraining with generalist datasets

Other techniques, such as few-shot learning [28], try to train DNNs using
a limited number of samples per target category. However, we would need to
replicate the camera system to record the target scenes or situations. In these
situations, usually, we would capture redundant samples, for example, because
the captured scene remains the same for some time. Besides, redundancy could
also arise when gathering data from different sources.

Images with the same content add less additional information than images
with new content, but beyond this, they can be problematic during the DNN
training. The redundant data can lead to model overfitting during the training
process.

2.3 DNN Training with Synthetic and Real Data

The domain gap that data from different domains present is a challenge for
training DNNs. Training a model with data from a source domain and then
using it with data from another domain often leads to poor accuracy. This
domain gap is especially noticeable when working with real and synthetic
data. Domain adaptation can be defined as a type of transfer learning where
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there are two domains with different data distributions. This problem has been
researched in computer vision using various strategies to reduce or deal with
the difference between the two domains.

The most basic method is to first train on the synthetic domain and then
fine-tune the model on the real domain [29]. An alternative method is to jointly
train with both domains’ images by using mini-batches from source and tar-
get domains [30, 31]. These methods require having an adequate number of
annotated real samples for optimal accuracy.

Other works apply the domain randomization technique to reduce the
domain gap’s effects when training [10]. During the data simulation process,
they use random parameters (e.g., random light, objects’ pose or texture) to
generate non-realistic images, which force the model to learn the essential fea-
tures of the objects of interest. Some other works apply image augmentations
to the generated samples instead of focusing on the 3D scene generation and
rendering step. [32] generate new augmented synthetic samples using a semi-
supervised errors-guide method to improve the DNN accuracy on cross-domain
datasets.

Another way to solve the domain differences is the image-to-image trans-
lation method. Several works have emerged about Generative Adversarial
Networks (GANs), which try to convert an image from one domain to another
different one [33]. These methods are making remarkable advances, but they
tend to have some difficulties accurately preserving the image’s structure.
Rather than forcing the synthetic samples to look more like the real ones,
there is another research line that focuses on extracting domain-invariant fea-
tures [34]. These methods investigate how DNNs can be trained with different
domains’ data better. These approaches commonly consist of two main steps:
(i) learn features that minimize the target task loss and (ii) make the features
from both domains as indistinguishable as possible to make models trained in
one domain work correctly in a target domain.

3 Proposed Methodology

3.1 Synthetic Data Generation

Figure 1 shows the architecture of the proposed methodology for generating
synthetic data for training deep learning models. The input data are the 3D
assets of the scene and the scene’s description file. The outputs are the syn-
thetic images and the annotations for training DNNs. The principal modules
in our approach are: (i) the scene manager who is responsible for loading the
scene configuration; (ii) the engine which sets up the 3D scene according to
the provided configuration and generates the training images by rendering dif-
ferent camera viewpoints and; (iii) the label generator, which generates an
output file containing the annotations corresponding to the generated images.

As it happens in the data collecting process carried out in a real envi-
ronment, the first step is gathering all the necessary 3D graphical assets to
reproduce the scene of interest. Specifically, two different groups of graphical
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Fig. 1 Software architecture of the proposed methodology for creating synthetic training
data for vision-based systems. [11]

assets are required. The first type contains those graphical assets representing
the environment (i.e., the scenario where we should accomplish the recordings).
We assume that such assets belonging to the environment are static since they
represent the background. The second group contains those graphical assets
representing the dynamic objects of the scene. Combining the locations of
these assets, their poses, sizes, appearances, and the variations of the lighting
sources and the camera properties will provide a wide variety for generating
our custom training data.

For use cases where some graphical assets are unavailable, the user should
create them using 3D modeling software applications. We use 3DS Max but
other options such as Autodesk Maya, Lightwave-3D, Vectary, Blender, etc. are
also suitable. Depending on the complexity, additional plugins such as Populate
(for 3DS Max ) can alleviate the effort of designing the objects. Working with
a very detailed 3D model can become a challenge due to the vast number of
polygons and materials the render engine has to process. This is directly related
to the rendering time of the scene, and it could be a troublesome bottleneck
in the data flow when a user tries to generate thousands of samples. However,
using very detailed 3D assets or more lightweight ones should be considered
based on the scope of the use case.

Once all the scene assets are designed, our method allows us to configure
different camera setups, placing objects at multiple locations and poses, having
various illumination sources, or configuring the rendering parameters by a
minimum user interaction. Furthermore, the user can easily define multiple
combinations of parameters for generating different training data samples in
a single iteration.



Springer Nature 2021 LATEX template

8 Leveraging Synthetic Data for DNN-based Visual Analysis of Passenger Seats

Specifically, the user has to define a configuration file in which the param-
eterization of the scene is specified in a user-friendly way. Then, a loader
interprets the content related to the different entities according to the nature of
the parameters (objects, cameras, illumination, rendering). Such information
is received by the scene manager, which interprets and handles these data to
build the scene configuration for the user-defined sequence. This configuration
is used to replicate the target scenes in the 3D synthetic environment, which
implies loading the environment and dynamic assets with the corresponding
configurations and setting all the cameras, lighting, and rendering parame-
ters to get the desired results. Then, the engine renders the images from the
defined camera perspectives. We use Blender for this purpose, although the
same methodology could be applied using similar alternative programs.

The label generator is in charge of generating the corresponding annota-
tions based on generated segmentation masks. The user can choose different
annotation types depending on the target computer vision task (e.g., object
detection or semantic segmentation).

3.1.1 Scene Management

The synthetic scene is replicated based on the information provided by the
user. The user is in charge of the configuration through the description file.
For this purpose we adopt the Video Content Description (VCD) structured
JSON-schema file format [35]. VCD is an open-source metadata structure able
to describe complex scenes, including annotations and all the needed scene
information, in a very flexible way. In addition, it allows an effortless and fast
user interaction for the file generation process. The VCD format is compat-
ible with the OpenLABEL standard [36]. The configuration file contains the
cameras and lighting setup information, the 3D assets in the scene and the
relation between them, and the rendering parameters. Modifying something
in the scene, such as the position of an object or the camera specifications, is
done by changing the corresponding field in the configuration file.

3.1.2 Camera Setup and Lighting Sources

The camera setup controls how the scenario and the objects are represented in
the 2D images. In order to obtain realistic training data, the virtual cameras
should simulate the same properties of the sensor and the lens as the expected
cameras, which will be installed in the real environment. One of the major
benefits of using Blender as an engine for creating and rendering the scene,
in contrast with others such as Unity3D, is the multiple choices of camera
models. In particular, we can generate the image projection of the virtual
camera by using an orthographic model, a perspective model, or a panoramic
model. Each camera model has different properties and effects on the resulting
image (e.g., distortion), so the model needs to be selected depending on the
target application. These models allow emulating any combination of the image
sensor and lens type mounted in a real camera. Table 1 shows the parameters
that need to be added to the configuration file to add as many cameras as
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desired with their corresponding parameters. More specifically, the user needs
to define the camera’s position regarding the coordinate origin, the camera’s
orientation, the sensor size, the field of view, and the focal length.

Table 1 Camera Parameters

Camera model
Camera model (different distortion
types).

Resolution Output image resolution (pixels).

Position
Sensor position (m) in X, Y and Z
axis.

Orientation
Sensor orientation (degrees) in X,
Y, and Z axis.

Size Sensor size (mm).
FOV FOV of the sensor (degrees).
Focal length Focal length of the sensor (mm).
Custom params Extra params defined by the user.

Another important factor affecting the projection of the visual information
from 3D to 2D is the scene’s lighting. Depending on the target scenario, the
user may want to add light coming from single points which emit light in
all directions or from spots with a single direction (e.g., indoor lamps) or
outdoor lighting simulating the sun. Table 2 shows the parameters that should
be defined in the configuration file to add as many different light sources as
desired to the 3D environment.

Table 2 Lighting Parameters

Light model Type (point, spot, sun).

Position
Light position (m) in X, Y and Z
axis.

Orientation
Light orientation (degrees) in X, Y
and Z axis.

The scene configuration is automatically replicated in the 3D environment
from the description file. During this step, the scene configuration is exported
as a Blender project for those cases in which the user wants to explore the
camera setup interactively. This way, it can be used as an interactive tool
that helps to design a proper setup for a target application. The users can
modify the intrinsic and extrinsic camera parameters, their positions, or even
the number of needed cameras. At the same time, they visualize the images
that would be captured. Simulating a specific setup with no need to deploy it
physically can help avoid wrong decisions that lead to a not optimal or lousy
configuration.

This way, it may help define the appropriate number of cameras, their
locations, poses, and viewpoints. Thus, the proposed methodology includes the
following two bidirectional features:
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• VCD2Scene: The user defines the VCD description file, and the scene is repli-
cated in the 3D environment, including the 3D assets, camera configurations,
and lighting sources.

• Scene2VCD: The user loads a 3D scene, and after making the desired
modifications, then exports the new setup to a VCD description file.

3.1.3 3D Assets in the Scene

The 3D assets’ configuration in the scene is also defined in the VCD file. The
user can add as many objects as desired to the scene in specific configurations.
These objects should belong to the available 3D asset types (e.g., humans,
cars). Then the 3D environment simulator interprets this information through
the local relation between the assets. The user should have previously defined
the relations present in the scene and interactively selected the positions they
would belong to. For example, if the target application is about detecting aban-
doned objects in an airport, some local relations that would be necessary could
be ”on” or ”below.” These relations would let the user relate different assets,
for example, by describing that particular objects (e.g., a bag, a suitcase) are
on a desk or below the waiting seats. At the same time, the environment simu-
lator would relate these positions with the user-selected positions. In addition,
the user defines in the VCD file the time interval when each specific asset
is present in the scene in the described configuration. This method provides
high flexibility for the user to generate various configurations in a swift and
user-friendly way.

In order to add a higher degree of variety to the generated data, when each
asset is placed in a specific position, some random noise is added to slightly
perturb its position and orientation. In addition, the user can apply random
colors to the 3D assets to include more diversity in the data or maintain the
original textures.

3.1.4 Rendering Parameters

The rendering step turns the 3D scene into the output 2D image. The configu-
ration of the rendering affects both the image quality and rendering time. The
optimum configuration is closely related to the target task requirements and
the available hardware. Therefore, our approach lets the user change the most
influential parameters (shown in Table 3) in the configuration file. The user can
choose between the available rendering engines (in the case of Blender there
are three available engines), computing caustics or not, the rendering tile size,
the device to be used (CPU or GPU), and the maximum allowed light bounces.
When the light hits a surface, it bounces off the surface and hits another one,
and then the process is repeated. This is very expensive in terms of rendering
time. Decreasing the maximum bounces implies limiting the number of times
a ray can bounce before it is killed, reducing the time spent computing rays.
Depending on the scene and the task, the user can adjust this parameter to
get the desired output.
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Table 3 Rendering Parameters

Device Device used for rendering (CPU/GPU).
Engine Engine type used for rendering.

Tile
Area of the image considered during
the rendering.

Bounces Maximum light bounces to be applied.
Caustics Caustics computation.

3.1.5 Labeled Data Generation

Training machine learning models in a supervised way implies collecting the
needed data and the corresponding annotations. Annotating the data is an
expensive process for which synthetic data generation can be beneficial, thanks
to automatic label generation. Our approach provides flexible annotations with
different levels of detail depending on the target computer vision task (object
detection, object segmentation, or visual relationship detection).

We opt for rendering instance-level masks. Each asset in the simulated
scene is given a unique ID apart from the object class ID it belongs to. These
instance IDs are used to compute an alpha mask per object. These masks are
combined in a single segmentation mask. When the data generation starts, the
synthetic images are rendered simultaneously as the instance-level semantic
segmentation maps.

The segmentation masks are used to generate the annotations stored in
the output VCD file. This file contains both the input configuration data and
the annotations. By default, the masks are used to get the minimum bounding
boxes containing each object’s pixels, represented in the VCD file by each box’s
corner coordinates. These annotations can be used to train object detectors.
However, our approach can also be configured to save the objects’ segmentation
masks. These data are already in the instance-level masks and are stored as
object contours, which are described as polygons in the output file. In addition,
the output VCD file contains the description of the relations between the
assets in the scene. These data are complemented with the objects’ bounding
boxes. These annotations can be used to train visual relationship detectors.
The annotations need to be parsed to the required format depending on the
chosen deep learning framework (e.g., TensorFlow, PyTorch).

The annotations in the output VCD file are stored per object and frame-
wise. Consequently, each annotation is stored along with its corresponding
image path.

3.2 Real Data Acquisition

The synthetic environment built following the proposed method helps to design
an appropriate camera system for a smart video surveillance system (Section
3.1.2). Once the virtual camera setup is done, it can be replicated for real data
acquisition.

When capturing real data for video surveillance systems, it is common
to get some very similar or redundant images, especially in scenarios where
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Fig. 2 Clustering-based pipeline to select samples of interest from all the captured data of
each target class.

events happen from time to time and stay the same the rest of the time. The
advantage of capturing data continuously is that skipping consecutive frames
may reduce data redundancy. However, this process can exclude interesting
samples as it only relies on time consistency but does not consider the content
of the images. We propose an alternative process for selecting varied samples
in Figure 2. The goal of the pipeline is to choose specific samples of interest
to train the target DNN.

For that purpose, we do the following steps:

• Use a pretrained generalist DNN’s backbone as a feature extractor to encode
all the images in image embeddings (m-dimensional vectors).

• Cluster the embeddings using a clustering algorithm, such as K-Means.
• Select a specific number of n samples randomly from each cluster to generate

the new subset of images.

The optimum number of clusters to be used in a clustering algorithm such
as K-Means can be computed using the Elbow method. This method consists
of plotting the sum of squared distances from each point to its assigned center
as a function of the number of clusters, and selecting the elbow of the curve as
the optimum number of clusters. The process is applied to all the images of a
specific target category i so that a balanced dataset is generated. The number
of samples per cluster depends on the target size of the dataset.

Once the samples are selected, they are combined with the rest of the
synthetic data to complete the final dataset.

4 Practical case and experiments

In order to validate the proposed methodology, we apply it to a real problem
in the context of digitalized on-demand aircraft cabin readiness verification
with a camera-based smart sensing system. Currently, verifying Taxi, Take-off,
and Landing (TTL) requirements in aircraft cabins is a manual process, which
entails an increased workload for the crew, operational inefficiencies, and the
risk of human errors in handling safety-related procedures. One of the require-
ments the cabin crew members must check is that all the luggage is correctly
placed in each TTL phase. During these phases, the luggage should not be
situated so that an emergency evacuation of the aircraft would be delayed or
hindered. Figure 3 shows the allowed and not allowed positions for the cabin
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Fig. 3 Authorised positions for luggage during TTL. [11]

luggage during TTL. The verification done by the crew members could be
automated with the development of a vision-based system. This system would
be beneficial in terms of operational efficiency and safety. Developing a system
capable of detecting the luggage positions in the cabin entails designing an
appropriate camera setup and generating suitable and enough training data
for the corresponding machine learning models. This setup could automate
additional tasks, such as checking the seat occupancy or whether tray tables
are in stowed positions.

4.1 3D Assets for the Synthetic Environment

To address this problem, the first step of our methodology is the generation of
the assets for the 3D synthetic environment. We first generate all the involved
assets for the scene of interest. In this case, we model 22 different object
types to simulate typical cabin luggage (e.g., backpacks, magazines, laptops),
a cabin model representing a Boeing 737 aircraft (with 19 seats), and a group
of different human models with various poses and appearances for the seated
passengers. The generated 3D assets are shown in Figure 4.

Fig. 4 Generated 3D assets for the use case: passengers, cabin luggage, and aircraft cabin.

4.2 Cabin Camera Setup Design

Our feature VCD2Scene allows loading the aircraft model within some of the
modeled 3D assets using an initial configuration file and visualizing the 3D
scene from the virtual camera viewpoints for the camera setup task. The initial
setup idea could be to place some cameras on top of the seats to control the
luggage in these areas (e.g., backpacks partially below the seats) and other
cameras above the corridor to verify a clear exit. However, how many cameras
should be installed? Where should they be to guarantee the system can see
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every seat without occlusions? What lens parameters should these cameras
have?

Fig. 5 Captured scene from different camera positions in the seats (left) and corridor (right)
areas. Some of the configurations are discarded because of occlusions.

We interactively change the virtual cameras’ extrinsic and intrinsic param-
eters to check the results we would obtain with each configuration to answer
these questions. We move the camera positions and orientations to guarantee
that the minimum number of cameras captures all the regions of interest.

Figure 5 (left) shows an example of accepted and discarded camera posi-
tions for capturing the luggage in the seat areas. At first, we could think the
cameras should be on top of the middle seats to capture the status of 6 indi-
vidual seats (left images). As can be observed, the passenger seated in the
front middle generates an occlusion that does not allow visualizing if some lug-
gage is incorrectly placed. To avoid this blind spot, we test moving the camera
towards the windows to capture four individual seats (right image). From this
viewpoint, we can see that there are no occlusion problems, so we opt for this
configuration. Then, we test setting some cameras in the corridors to verify
that area and the seats next to the corridor. Figure 5 (right) shows the tested
configurations. Even though the corridor space is well visualized in both shown
camera positions, the camera should be aligned with the seats (right image)
to guarantee the minimum possible occlusions in the feet are of the passengers
for as many seats as possible.

These tests resulted in a setup design of 20 perspective cameras on top of
the seats and 19 on top of the corridor. To guarantee a good visualization of
the target areas, we set the parameters of all the cameras to a FOV of 118
degrees, a focal length of 2.13mm, and a sensor size of 4mm. In the end, the
final decision of how to configure the cameras comes from testing the proposed
camera configurations and iteratively reviewing and testing the proposals until
the system’s functionality requirements are fulfilled, with the minimum number
of cameras possible to improve the economic viability of the system. In order



Springer Nature 2021 LATEX template

Leveraging Synthetic Data for DNN-based Visual Analysis of Passenger Seats 15

to make passengers feel more comfortable, the manufacturers should hide the
cameras, the transporters should inform passengers appropriately about their
rights according to regulations (e.g., EU’s GDPR and AI Act, etc.), and those
regulations should protect privacy. Nevertheless, in this use case, the chosen
camera viewpoints are not suitable for recognizing individuals as faces are
generally not visible.

4.3 Configuration Files Generation

Once we have the final camera configuration, we export it to an updated
VCD configuration file with the Scene2VCD functionality. The file should also
contain the 3D assets’ configuration so that our environment generator repli-
cates the defined sequences. The situations’ variety and the number of object
instances of each class can be easily controlled but depends on the configura-
tion file we use. Generating a balanced dataset is important to guarantee that
the trained model does not have a bias toward the most common objects in
the dataset. Consequently, we define the following requirements for generating
the VCD files:

1. An object sample from each object category should be placed at all the
possible configurations and placed at least once.

2. All the object classes should be present in the generated sequences’ frames
the same number of times.

3. Samples should show a wide variety of object appearances.

Following these criteria, we generate three VCD files. The first file describes a
sequence where each frame contains an object type placed in a specific config-
uration at all the cabin places (e.g., backpacks on all the seats). This sequence
aims to generate enough samples of each object type’s appearance in simple
configurations (with no interaction with other object types). The second file
randomly combines all the objects in all the possible configurations the same
number of times. We define a sequence of 500 frames. Each of these frames
contains different object configurations. The last file follows the same strategy
of random combinations, but it is focused on appearance variations. In addi-
tion to the default random variations aggregated to the 3D assets position, it
enables the color randomization for objects (Section 3.1.3). Consequently, this
file extends the already defined object combinations with new ones that con-
tain objects with a wide variety of random appearances. Providing a 3D asset
with a random color can make some objects look less realistic but increases the
variety of samples and benefits the trained models’ robustness. The strategy
used for generating the VCD files is not limited to the current use case. It can
be applied to other tasks and scenarios. The defined sequences are summarized
in Table 4.
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Table 4 Summary of the generated data based on the configuration files.

Sequence VCD 1 VCD 2 VCD 3 Total

Description
Single object
class/frame

Random,
balanced

Random
appearances

-

Number of
frames

45 500 500 1,045

Number of
rendered images

1,755 19,500 19,500 40,755

Number of 3D
object instances

5,966 33,000 33,000 71,966

4.4 3D Scenes and Synthetic Data Generation

We use the VCD files to automatically replicate the 3D scenes described in
them with no manual intervention. The 3D environment is configured with all
the data regarding the cameras, lighting, rendering, and 3D assets to replicate
the defined scenes in the cabin. The environment is dynamically configured
when the data generation starts.

Fig. 6 Data generation pipeline example. The input VCD file describes the scene that is
replicated by the synthetic 3D environment generator, including present objects and their
relations. The tool outputs rendered images and corresponding annotations in VCD format,
which correspond to data from different camera perspectives. [11]

Each frame in the sequences is captured from all the defined cameras, so
39 images are rendered from different camera viewpoints for each frame. An
output VCD file is generated for each sequence containing the data already
in the input file (e.g., camera configurations, relations between objects) and
the addition of the output data. The output data include the paths to the
generated images and the corresponding bounding box annotations for each
object or passenger. Figure 6 shows the data generation process from the input
VCD file to the output synthetic data. The left image shows an example of
the objects and their relations as defined in the VCD file. The 3D environ-
ment simulator processes this information to configure the 3D scene. It can
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Fig. 7 Examples of synthetic images for a specific seat in the image.

be seen that the example data (’magazine-4 is on Passenger-14’) is replicated
in the synthetic 3D world). This scene is captured from the defined cameras
to produce the corresponding rendered images and annotations. In the output
synthetic images it can be observed that the same 3D assets can be observed
from different cameras at the same time. The right images of Figure 6 show
an example of the additional information that the output VCD file contains
(objects’ bounding box coordinates in each rendered frame). This information
can be used for training object and visual relationship detectors.

In Figure 7 we show some examples of the appearance of a specific seat in
the generated synthetic images. Different object types can be seen belonging
to cabin luggage (e.g., laptop) or non-cabin luggage (e.g., magazine) placed in
various positions, and different subject appearances and body poses.

4.5 Real Data Capture

We use the results of the camera setup design (Section 4.2) to replicate a
cabin mock-up with the chosen camera configuration to capture also some real
images.

We prepare a recording protocol for a group of 20 participants. Each par-
ticipant is asked to place a piece of cabin luggage correctly or incorrectly to
generate different scenes. We also ask them to act naturally and stay calm,
so artificial situations with a lot of movement are avoided. Otherwise, blurry
images which belong to unnatural behaviors would be captured. As a disad-
vantage, staying calm reinforces the possible redundancy between the captured
frames. Figure 8 shows an example of this redundancy in the image crop of
one of the seats. A participant stays calm with a suitcase between his legs for
some seconds. We can observe that consecutive frames look very similar.

Fig. 8 Similar captured images of a participant staying calm with a suitcase between his
legs.
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We capture 24,000 images, half of them belonging to situations where the
luggage was incorrectly placed. In order to avoid including many redundant
samples in the training dataset, we apply the clustering-based image selection
pipeline (Section 3.2). We use the classification model EfficientNet-B0 [37],
already pretrained on ImageNet, without the last classification layers as a fea-
ture extractor. We chose EfficientNet-B0 for the backbone as it obtains high
accuracy results with better efficiency than other alternative state-of-the-art
DNNs. In this context, efficiency is also a key factor as the system should be
energetically sustainable to go onboard. We resized input images to resolu-
tions of 300x300, as it was the minimum resolution that allowed visualizing
smaller objects with sufficient size for the classifications. This way, each input
image with size 300x300 pixels is embedded as a 1280-length feature vector.
Then, we use the Elbow curve for both target categories (correct and incorrect
situations) to choose the number of clusters for applying the K-Means algo-
rithm. This results in 300 clusters. From each cluster, we randomly select ten
samples. We combine these images with the already generated synthetic ones.

4.6 Analysis of the Proposed Approach

This section provides a qualitative and quantitative analysis of the proposed
methodology.

4.6.1 Synthetic 3D Environment

Table 5 shows a qualitative comparison of some state-of-the-art approaches to
our synthetic simulated environment approach.

Feature [15] [14] [13] [18] [17] Our approach
Environment
modeling

Manual Manual Manual Manual Manual (data priors) Manual

Scene
modifications

Manual Manual Manual Manual Manual Automatic

Scene capture Single-sensor Single-sensor Single-sensor Multisensor Single-sensor Multisensor
3D assets
relations

Users’ interactions None None None None Spatial configuration

Annotations

Obj. detection,
sem. segmentation,
reinforcement
learning

Obj. detection,
sem. segmentation

Sem. segmentation Obj. detection
Sem. segmentation,
depth estimation

Obj. detection,
sem. segmentation,
visual relationship
detection

Generality Default scenarios Limited Driving scenarios Limited Urban driving scenarios Surveillance scenarios

Table 5 Comparison between state-of-the-art synthetic dataset generation methodologies
and our approach.

The environment and 3D assets involved in all the data generation methods
are manually modeled with the help of a 3D modeling software or gathered
from public repositories. [17] also uses data priors such as OpenStreetMap data
to model different city environments but still needs manual work to complete
and adjust the scene data.

Once the 3D environment is prepared, if the user wants to change specific
scene configurations with our method, such as the light properties, the objects
in the scene, or the relationship between these objects, he/she can define the
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modified scene in the configuration file using a user-friendly parameterization.
Then the new 3D scenario will be automatically replicated. Our approach
is the only one that proposes to dynamically configure all the environments
when the data generation process starts. Scene modifications can be done in
the different approaches, but none of them provides a high-level mechanism
like ours to vary the environment. Related to the possible 3D assets relations,
[15] allows adding some limited user interactions. Our approach allows adding
spatial location relations between the 3D assets.

Regarding the image capture, all the works propose a single source to
capture the scene, except for [18] and our approach, which allows capturing
the same time interval from cameras with different viewpoints.

The data generated by the presented works are oriented to the training of
DNNs. Typical output includes annotations for object detection or semantic
segmentation tasks, to which [15] adds reinforcement learning. Our approach
also generates labels suitable for training visual relationship detectors.

One of the main advantages of our approach over the others is its generality
and the possibility to adapt it with little effort to new scenarios and tasks
for passenger transportation safety, compared to building ’ad hoc’ simulated
environments each time. This feature is very limited to the predefined scenarios
in the state-of-the-art works.

The rendering time depends on different factors such as the rendering
engine, the complexity of the scene, the number of 3D assets, the light configu-
ration, or the polygon number of the modeled objects. For the current aircraft
use case, we configure the rendering to be as fast as possible using the param-
eters in the configuration file, maintaining a good output quality. We use the
real-time viewport shading rendering for the camera setup design (Section 4.2)
so that we can see the modifications’ effect interactively. For the data gen-
eration, we use the Cycles Rendering Engine, which is slower but provides
more photorealistic results. It takes 9.3 seconds to render an image of 640x480
pixels of the cabin environment, including 50 3D assets (e.g., suitcases, passen-
gers) apart from the background ones, 16 point lights, and outdoors sunlight.
We use an Nvidia Tesla T4 GPU. Regarding the rendering time of related
state-of-the-art approaches, some works based on game engines claim to ren-
der in real-time [14, 17]. As stated in [17], a simplified lighting model allows
real-time rendering of massive amounts of geometry with limited realism. The
Cycles Rendering Engine, as a physically-based path tracer, allows generating
good quality results in a reasonable time. Domain adaptation techniques are
important to solve the domain gap that DNNs trained with synthetic data can
present. Generating data with a certain degree of realism minimizes the prob-
lem to be solved by those techniques. However, Blender also has a real-time
rendering engine (Eevee) that can be used in tasks where the rendering time
is considered to be a bigger priority than the data quality.

We apply our methodology to the aircraft use case, but adapting it to
another surveillance scenario requires little effort from the user. Once the user
collects all the 3D assets of the new environment, the flexibility of the method
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Fig. 9 Trained DANN for learning domain-invariant image features.

allows building a new scene. The user interactively designs a suitable camera
setup, along with the selection of target places. Then, the user can start gath-
ering variate training data for the considered task based on the configuration
files.

4.6.2 Real Samples Selection

In order to analyze whether the images’ redundancy problem affects the DNN
training and, in that case, to analyze how much our clustering-based approach
helps mitigate it, we do the following tests. We train the EfficientNet-B0 image
classifier with different datasets but with the same training configuration to
analyze the impact of varying data sampling strategies. We define a region
of interest (ROI) for each seat, which will be classified as correct or incorrect
by the DNN depending on the correctness of the cabin luggage. We generate
different datasets following each of the subsequent strategies:

• Use all the captured data.
• Use a random subset of the recorded data.
• Use a subset of the recorded data, skipping some images when selecting

them based on the order they were captured.
• Use a subset of the recorded data based on the proposed clustering algorithm

that helps us select non-redundant images.

Then, we add the real samples to a subset of 4,000 synthetic samples for
each option to complete the training dataset. We use these datasets in the
DNN training experiments (Section 4.6.3).

4.6.3 DNN Training

In order to see how a DNN would perform with the generated synthetic and
real data and to see the impact of different data sampling strategies, we train
the model EfficientNet-B0 to classify images as correct or incorrect (e.g., cabin
luggage correctly or incorrectly placed).

To minimize the domain gap between the synthetic and real domains during
the training, we include the domain adaptation technique of [38]. The idea is
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to learn to extract domain-invariant features from the images using a Domain
Adversarial Neural Network (DANN), of which an overview schema is shown
in Figure 9.

We use EfficientNet-B0 as the feature extraction backbone. The main clas-
sifier of the architecture classifies the images in the correct or incorrect category
and contains a fully connected layer and a softmax activation. The discrimina-
tor is an adversarial domain classifier whose loss is maximized using a gradient
reversal layer [38]. It tries to classify the domain an input sample belongs to
using two fully connected layers output and a softmax activation. The fully
connected layers have 1,280 and 2 outputs, respectively.

Sampling strategies. To see the impact of the different sampling strate-
gies, we train the DANN with the different generated datasets (Section 4.6.2).
We initialize the DANN backbone with pretrained weights on the ImageNet
dataset [22] and fine-tune it with our datasets. The classifier and the discrimi-
nator are trained from scratch. We train each model for 50 epochs with a batch
size of 40, and the RMSprop optimizer [39]. We split the data into training,
validation, and test sets. We separate the captures of a recording session to
use them in the validation and test sets so that neither the participants nor
the lighting conditions used in training are repeated in the validation or test
sets, which contain 2,000 and 500 images, respectively. The results are shown
in Table 6.

Sampling Method Test Accuracy
All images 86.9%
Random subset of images 86.7%
Skipping consecutive frames 92.2%
Selecting images based on the clustered embeddings 95.3%

Table 6 Comparison between achieved DNN accuracy in the test set for different
sampling strategies. Synthetic images are added to the real ones in all the trainings.

As it can be seen, using all the captured images does not lead to the best
results. Selecting a subset of the images (30% of the images) randomly does not
help either, resulting in the lowest accuracy (86.7%). The image redundancy is
confirmed as a problem because when we skip 10 consecutive frames, we obtain
an accuracy boost of almost 6% compared to using all the samples. Selecting
the training samples with the proposed approach improves an additional 3.1%
of the final accuracy. Consequently, selecting the images based on their content
helps to improve the training dataset.

Synthetic and real data combination. We compare the proposed
DANN with other state-of-the-art methods that combine synthetic and real
domain data using different strategies. There are no works applied to the same
task, so we adopt the methods followed by other authors for different tasks
and apply them to our DNN training. We summarize the results of the exper-
iments in Table 7. The authors in [10, 29] train their DNN on the synthetic
domain and then fine-tune the model on the real domain in a second step.
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We replicate this process with our data. We train the classification DNN with
no domain adversarial branch for this experiment. We use the EfficientNet-B0
backbone as in our proposed method and maintain the same training param-
eters configuration to make both models comparable. The model achieves an
accuracy of 93.8%, which is 1.5% lower than our proposed methodology. We
additionally compare our method with [30, 31], which jointly train with both
domains’ images by using mini-batches from the source and target domain.
We follow the same data strategy and train the classification DNN with no
domain adversarial branch. We use the EfficientNet-B0 backbone and maintain
the same training parameter configuration. The model achieves an accuracy
of 92.2% in the test set, which is 3.1% lower than our proposed method.

Synthetic and real data combination strategy Test Accuracy
Pretrain with synthetic data, fine-tune with real data [10, 29] 93.8%
Train with real and synthetic mini-batches [30, 31] 92.2%
Train with a domain adversarial strategy (ours) 95.3%

Table 7 Comparison between achieved DNN accuracy in the test set for different data
combination strategies.

Figure 10 shows some correctly and incorrectly classified test images using
our proposed DANN for the synthetic and real data domains. In the first
column, we show two samples of situations with cabin luggage incorrectly
placed, which are correctly classified as so. There is no cabin luggage in the
second and third column images, but the last ones are incorrectly classified. We
think this is probably because of these images’ dark or blurry characteristics.
In the last column, we show two more samples of incorrect classifications. In
both images, cabin luggage is barely visible on the egress. This is the most
challenging situation for the classification, as the passenger or the seat might
remarkably occlude the objects. In these situations, we think that temporal
analysis of the consecutive frames’ classification might help.

Fig. 10 Some examples of correctly (green) and incorrectly (red) classified images using
the proposed DANN model. Images in the top row are synthetic and images in the bottom
row are real.
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5 Conclusions

This work presents a methodology to build an appropriate dataset for DNN
training combining synthetic and real data. We propose a method for building
simulated 3D environments for configuring and training multi-camera systems
with enough generality to be used in different surveillance contexts with little
effort. Our proposal helps design an appropriate camera system to cover the
target use cases and avoid expensive system setup errors. Once the camera
setup is done, our method allows generating a wide range of situations of inter-
est for training DNNs with suitable synthetic data. The input configuration
files allow controlling the content of the data with a user-friendly fast scene
parameterization and consequently generating a balanced dataset. Including
captured real data in the dataset helps minimize the domain gap between real
and synthetic samples. However, captured data may present high redundancy.
We present a method based on feature clustering to avoid including redundant
samples which penalize the DNN accuracy.

We show a practical implementation example of our methodology in the
context of digitalized on-demand aircraft cabin readiness verification with a
camera-based smart sensing system. We first design a 39 camera-based system
and generate a set of synthetic samples in the cabin environment. We follow
a data balancing strategy to guarantee the suitability of the generated data
based on the configuration files. We also replicate the designed setup with a
cabin mock-up to capture real samples of the target scenario. We determine
the less redundant samples for the DNN training based on their content. To
select them, we use a pretrained DNN to encode the images as feature vectors
and cluster them based on their similarity.

We compare our synthetic environment to alternative state-of-the-art
approaches to validate our methodology. Features such as the generality, flex-
ibility, and multi-camera setting stand out from the features provided by the
other approaches. Regarding selecting the real samples, we generate different
datasets following different strategies to see their impact on the training of a
DNN. We train a DANN with the generated synthetic and real samples. We
show that incorporating our synthetic samples into the training dataset boosts
the model’s accuracy when tested on real images. In addition, the clustering-
based sampling strategy for the real data showed a positive impact on the
model accuracy. Consequently, the dataset generated by our methodology is
suitable for training DNNs.

Future work includes the research of the various possible domain adaptation
techniques for training DNNs and their suitability for different computer tasks
involving synthetic and real samples.
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