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Abstract. 

Pendant droplets of water and paramagnetic solutions are studied in the presence of uniform and 

nonuniform magnetic fields produced by small permanent magnet arrays, both in static conditions 

and during dynamic pinch-off. Static measurements of the droplet shape are analysed in terms of 

an apparent surface tension γapp or an effective density ρeff. The change of surface tension of 

deionized water in a uniform field of 450 mT is insignificant,  0.19 ± 0.21 mNm-1. Measurements 

on droplets of compensated zero-susceptibility solutions of Cu2+, Mn2+ and Dy3+ where the shape 

is unaffected by any magnetic body force show changes of surface tension of about -1% in 500 

mT. Magnetic field gradients of up to 100 T2m-1 deform the droplets and lead to changes of ρeff 

that are negative for diamagnetic solutions (buoyancy effect) and positive for paramagnetic 

solutions. The droplet profile of strongly-paramagnetic 0.1 Dy M DyCl3 solution is analysed, 

treating the nonuniform vertical field gradient as a spatial variation of gravity. The influence of 

Maxwell stress on droplet shape is discussed.  In dynamic measurements, the droplet shape at 

pinch-off is recorded by high-speed photography and analysed in terms of a relative change of 

dynamic surface tension in the presence of a magnetic field. The surface-tension-dependent pre-

factor of the scaling law that governs the pinch-off dynamics shows no difference for pure water 

or 0.11 M DyCl3 solutions in the field. The nonuniform field has no influence in the pinch-off 

region because the filament diameter is much less than the capillary length.  
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1. Introduction 

The surface tension of liquids plays a crucial role in wetting and interfacial phenomena. Microscale 

and nanoscale device applications such as micro-mechatronics, fluidic micro-robotics and 

precision micro-manipulators all depend on the interfacial or surface tension of water-based fluids 

[1]. The functioning of the human body itself depends critically on the surface tension of different 

biological fluids and surfactants. The flow properties of liquids can be manipulated by external 

stimuli such as pH [2], light [3], surface tension or wettability gradients [4] and external magnetic 

[5,6] or electric fields [6,7]. It is important to know if and how magnetic fields can influence the 

surface tension of liquids and, more generally, influence the shape of liquid droplets on which 

common methods for measuring surface tension depend. 

The existence of any effect of a magnetic field on the surface tension of water is a controversial 

topic that has been addressed by many researchers over the years. There is no consensus [8-11], 

and an adequate explanation is still missing [10,12-14]. Fujimora et al [10], for example, reported 

an increase of 1.32 mN/m for the surface tension of water in a field of 10 T using a surface-wave 

resonance method [10]. Others found a decrease in surface tension of Millipore water with 

magnetic field exposure using a commercial magnetic water conditioner [8], surface wave 

resonator[10] and neodymium ring magnets[9]. One report states that the magnetic field effects 

depend on the circulation time and the effect increases with field duration[13]. However, in a 

recent report Hayakawa et al applied a uniform field of 250 mT to pendant droplets using 

permanent magnets [12] and found that the surface tension of water was essentially unaffected, 

but there was a small negative effect in a 0.1 M Ho solution. There are numerical studies of pendant 

droplet shape in uniform and nonuniform magnetic fields using a modified Young-Laplace 

equation [15]. Studies conducted by Katsuki et al [16] on magnetic field effects in pseudo-

microgravity conditions using a superconducting magnet with a field of 15 T established that the 

size and shape of the drop changes due to the high magnetic field gradient forces. 

         Here, we extend the scope of the investigations of effects of magnetic fields on the shape of 

pendant droplets and the static surface tension of water to include several paramagnetic aqueous 

solutions, and also neck shape and dynamic surface tension during droplet detachment. The static 

surface tension is the thermodynamic property of a liquid that governs its equilibrium shape. 

Water, however, was thought to exhibit a different, dynamic surface tension [17] during the pinch-

off process as a pendant droplet becomes detached and falls from an orifice. When a new surfactant 
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interface is formed, its initial surface tension will decrease as surfactant molecules are transported 

to the interface until the equilibrium value is re-established [18]. During the pinch-off of a pure 

liquid, the dynamic surface tension inferred is the value at an interface that is in the process of 

forming the fluid filament, which occurs on a millisecond timescale. No discrepancy between the 

static and dynamic surface tension was expected for water or other pure liquids, but Hauner’s 

results[17] suggested a higher dynamic value for water of ∼ 90 mNm-1, compared to the static 

value of 72.8 mNm-1. While further studies cast doubt on the explicit values measured by the 

pinch-off method [19], it can be used to investigate any relative differences in surface tension due 

to the magnetic field on time scales accessible by high-speed photography. In our study, we have 

explored the magnetic field effects on liquid droplets in the micro and macroscale regimes, and 

discuss the results in terms of magnetic field gradient forces and static and dynamic surface 

tension. 

 

2. Experimental Methods 
    2.1 Static Measurements 

Pendant droplets were measured in a commercial DataPhysics OCA 25 analyser that records the 

shape of a pear-shaped pendant droplet (Fig. 1), which is assumed to depend only on the density ρ 

of the liquid and its surface tension γ. The Young - Laplace pressure difference at a point P on the 

droplet surface with principal radii of curvature R1 and R2 is 
                               ∆P = γ(1/R1 + 1/R2)             (1) 

and there is an additional vertical pressure gradient dP/dz = ρg due to gravity. If the lowest point 

of the droplet is O, the arc length OP is s and the tangent  to the droplet in a vertical plane containing 

O and P makes an angle Φ with the horizontal, the surface tension is obtained by numerically 

fitting an image of the droplet shape to the three parametric equations (2-4), a procedure carried 

out automatically by software supplied by the manufacturer.   

                                                                                                    (2)  

                                                              (3)         

dΦ
ds

= − sinΦ
x

+ 2
R
+ Δρgz

γ

dx
ds

= cosΦ
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                                                                                                     (4) 

where 2/R = (1/R1+1/R2) 

 
Figure 1. A pendant droplet. 

                                         

Surface tension tries to minimise the surface area of a drop and makes it spherical, whereas gravity 

stretches the drop and makes it pear-shaped.  Given a value of ρ, the analyser will compute γ from 

the droplet shape.  We use a nonmagnetic quartz nozzle with internal diameter 1.75 mm and outer 

diameter 3.02 mm. The lower surface is polished. The volume of liquid in the droplet is 

approximately 50 µL. Our procedure is to input the density of the liquid to determine the surface 

tension in zero field γ0, and then repeat the measurement in some configuration of magnetic field 

B, noting the difference Δγapp given by the analyser. The quantity Δγapp is therefore a shape 

parameter, not necessarily due to a real change of surface tension. 

The introduction of inhomogeneous field gradients to the problem results in a spatial variation of 

the body force experienced by the drop. This can be explicitly taken into account in the modelling 

by adding a Δρ term to the right-hand side of Eq. 2 of the form, [g + (dg/dz).z](z/γ) that takes into 

account, not any changes of the gravitational acceleration, but rather changes of the magnetic field 

gradient produced along the main, vertical z-axis. We have included this additional term in a 

customized version of the differential solver used to integrate Eq. 1- 4, within a MathCadTM 

dz
ds

= sinΦ
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computational and fitting routine. The ability to extract this additional parameter δ = dg/dz, 

depends on the level of pixel noise in the images acquired of the drops and the overall non-trivial 

droplet shape deformation, which is produced by the gradient-field magnet assemblies used. 

        

 In view of the small size of the droplet and the limited space available, we used configurations of 

permanent magnets to generate uniform or nonuniform fields of up to 500 mT. Unlike small 

electromagnets, permanent magnet arrays generate no heat and cause no convection.  The three 

configurations illustrated in Fig. 3 are all made of Nd-Fe-B with a remanence of 1.26 T. a) is a 

uniform horizontal flux source with two 50 × 20 × 10 mm3 magnets and permalloy pole pieces 

producing a field of up to 450 mT in the y-direction, depending on the magnet separation. b) is an 

array of five 10 mm magnet cubes that produces a vertical field Bz and a negative vertical field 

gradient dBz/dz along the z-axis. c) is an array of three 10 mm magnet cubes that produces a 

horizontal field Bx and a negative vertical field gradient dBx/dz along the z-axis. 

 

 
 

Figure 2. Permanent magnet arrays used to apply magnetic fields to the pendant drop. a) Uniform horizontal field, b) 

Vertical field with a vertical gradient c) Horizontal field with a vertical gradient. Black arrows indicate the directions 

of magnetization of the magnet blocks        
 

Fig. 3 shows plots of B and dB/dz calculated as a function of distance from the surface of the 5-

magnet and 3-magnet arrays. The magnet blocks were represented by uniform sheers of magnetic 

charge on the surfaces perpendicular to the magnetization M. Three easurement positions of the 

centre of the droplet are indicated on the curves by V1,2,3 for the 5-magnet array and H1,2,3 for the 

3-magnet array.  
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     Figure 3. Field plots for the 5-magnet array, with the values of  a) Bz and b) -dBz/dz along the vertical axis  and 

the 3-magnet array, with the values of  c) Bx and d) -dBz/dz along the vertical axis.  
 

When a magnetic field is present, there are three effects that could influence the shape in addition 

to surface tension and gravity. They are:  

i) A change in surface tension of the liquid induced by the magnetic field 

ii) The Kelvin force FK = χ∇Β 2/2µ0,  

iii) Maxwell stress 
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where χ is the dimensionless SI susceptibility of the liquid (χw = -9 x 10-6 for water) and µ0 is the 

magnetic constant.  For all the liquids we are concerned with here, χ << 1 and any effects on 

surface tension are linear in B.  

The Kelvin force (also known as the magnetic field gradient force or Β∇Β force) is therefore 

vertical for the arrays in Fig. 2b) and c) and the gradient is negative; its effect is to reduce the 

effective density ρeff of diamagnetic liquids and increase it for paramagnetic liquids. When ∇zΒ 2 

is big enough, it is possible to levitate water completely; the effective change of density Δρeff is 

given by a force-balance equation, where g is the acceleration due to gravity.  

         Δρeffg = χB∇zΒ/ µ0             (5) 

If, for example, B∇zΒ = 100 T2m-1, the apparent density of water is reduced by 7%. The levitation 

condition for water  Δρeff  =  −ρ  is B∇zΒ = 1360 T2m-1. 

In order to to investigate the magnetic field effects on surface tension in paramagnetic solutions, 

we have adopted a zero-susceptibility method, where we make use of the fact that the 

dimensionless susceptibility of water is negative, χw = -9 x 10-6, whereas that of 3d or 4f ions is 

positive and follows a Curie law 

                      χ = µ0ng2peff2µB2/3kBT.                                           (6)  

 

Here n is the number of ions per unit volume, g is the Landé g-factor and the effective Bohr 

magneton number peff is (S(S+1))1/2 for 3d ions and (J(J+1))1/2 for 4f ions where S and J are the 

spin quantum number and the total angular momentum quantum number, respectively [20]. The 

effective ionic moment is peffµB where µB is the Bohr magneton.  The molar susceptibility χmol is 

obtained by replacing n by Avogadro’s number N0. The numerical expression for the susceptibility 

of a mole of ions is χmol = 1.571x10-6 peff2/T. The susceptibility of an aqueous ionic solution of 

molarity x in the dilute limit is therefore  

   

                       χ  =  χw/1000 + 1.571 10-6 xpeff2/T.                                           (7) 

 

The first term is the susceptibility of a litre of water. It follows that there is a molar concentration 

x0 of any paramagnetic ion where the net susceptibility is zero. In this case, Maxwell stress is 

absent and there are no Kelvin force effects. Any change in the shape of the droplet must be 

attributed to a change in the surface tension of the liquid. Table 1 lists the molar susceptibility of 
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the three ions we will consider, Cu2+, Mn2+ and Dy3+,  as well as the molarity x0 = -9 x 10-9/χmol of 

the zero-susceptibility solution where χmol is the molar susceptibility of the ions, given by Eq. 6 

with n = N0 and using a Landé g-factor of 2 for 3d ions and 4/3 for Dy3+. Results for the three ions 

at T = 295 K are shown in Table I. Also included are the experimentally measured values x0exp,  

which are discussed in §3.1. 
 

                              Table I  Calculated susceptibility at 295 K, and calculated  

                               and measured zero-susceptibility concentrations 

 Cu2+ Mn2+ Dy3+ 

meff 1.73 5.92 10.65 

χmol 16 x 10-9 187 x10-9 604 x 10-9 

x0 0.56 0.048 0.015 

x0exp 0.47 0.051 0.017 

 

2.2 Dynamic measurements 
Dynamic surface tension was probed by recording the pinch-off behaviour of a water filament 

using high-speed photography. When a droplet falls from an orifice under gravity, a column--like 

neck forms between the orifice and drop. The neck thins to a filament of some minimum diameter 

at which it breaks, and the droplet detaches. This process is highly surface-tension dependent, as 

a balance between inertial and surface tension forces causes the droplet to move and the neck to 

thin. Self-similar behaviour is exhibited at the filament [21] and the thinning close to pinch-off is 

universal [22], independent of the initial conditions of the experiment. For inviscid liquids, 

potential flow theory describes the thinning dynamics [23] and Keller [21] developed a universal 

scaling law that governs the thinning of the filament prior to breaking in the limit of low viscosity. 

Dmin = A(γ/⍴)⅓  τ ⅔    (8) 

where Dmin is the minimum diameter of the filament indicated in Fig. 6(a), A is a prefactor and ρ 

and γ are the density and surface tension of the fluid respectively. The time scale τ, defined as (t0 

– t), is the time to pinch--off at t0.  This expression is independent of gravity as the typical length 

scale in the necking process is much smaller than the capillary length κ−1 = (γ/ρg)1/2, a measure of 

the length below which gravity is negligible compared to surface tension forces. For water it is 

2.72 mm. 
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This scaling law was predicted to hold for minimum filament radius values, Rmin, much greater 

than the viscous length scale lv = µ2/γρ, where µ is the dynamic viscosity[24]. As the filament thins 

past this point (lv = 14 nm for water), the dynamics transition to the inertial-viscous regime where 

viscosity contributes [25]. There is considerable variation in the literature on values obtained for 

the universal prefactor in Eq. 8 which range from 0.2 to 1.46, from both numerical and 

experimental studies [23,26-29]. 

Hauner et al [17], showed that by measuring Dmin close to pinch-off, a dynamic surface tension for 

low viscosity liquids can be inferred using Eq. 8. The term is most used in the context of surfactant 

solutions. When a new surfactant interface is formed, its initial surface tension will decrease as 

surfactant molecules are transported to the interface until the equilibrium surface tension is reached 

[18]. In pinch-off of pure liquid, the dynamic surface tension inferred is the value at the liquid 

filament where the interface is in the process of forming on a millisecond timescale. For pure 

liquids, no discrepancy between the static and dynamic surface tension was expected. However, 

Hauner et al’s results [17] suggested a higher dynamic value for water, ∼ 90 mNm-1 compared to 

the static value of 72.8 mNm-1, which they calculated with a prefactor of 0.9, determined by fitting 

experimental data for several liquids to Eq. 8 using the prefactor as a fit parameter. They suggested 

that the dielectric relaxation, typically at a scale of ∼ ps, may be much longer at the surface, with 

the time scale of relaxation during pinch-off being of order of ∼ 1 ms. 

It has since been shown that the prefactor in Eq. 8, that was assumed to be constant for all liquids, 

varies due to an influence of viscosity for minimum filament radii Dmin ≫ lv [19].  While the model 

may not then be used to infer an absolute quantitative value for the dynamic surface tension of the 

pinch-off system without further analysis, it allows us to investigate any relative differences in 

surface tension for pinch-off in the presence of a magnetic field. While previous studies have been 

carried out in electric fields [20] where no effect of field on the rate of pinch-off was found, ours 

is the first study in a magnetic field. 

 High-speed videos of the pinch-off of the fluid filaments were obtained using a Phantom v2010 

camera with a Navitar 12× microscope lens as shown in Fig. 4. A plastic shield around the nozzle 

and magnet assembly mitigated effects from ambient air currents on the pinch-off process. 
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Figure 4. Experiment to record the droplet pinch-off. 

 

Videos were taken at 89,000 fps, with an exposure time of 10 µs. Liquid was delivered to a quartz 

nozzle with outer diameter of 3.02 mm using a syringe pump at a constant rate of 100 µl/min to 

form a pendant droplet on the nozzle tip. Additional liquid was then added incrementally until the 

droplet reached the critical volume where it continued to deform in the absence of flow. This 

allows the droplets to detach under their own weight. The resolution of the pinch-off videos was 

12 µm. Measurements were taken both in the absence of a magnetic field, and with two different 

magnet arrays. Fields 1 and 2, shown in Fig. 5 were produced using the 5-magnet array shown in 

Fig. 2(b), while fields 3 and 4 were produced with two parallel identical neodymium magnets with 

dimensions 25 × 10 × 50 mm. For field 3, the field strength at the nozzle tip aligned with the top 

of the magnets is 137 mT. The field strength at the nozzle tip for field 4 is approximately 0.3 mT. 

The field strengths for fields 1 and 2 are given in Fig. 3(a). 

The videos obtained were converted to images and the minimum diameter of the liquid filament 

was measured using a custom MATLAB script. Two different liquids were examined using this 

process – Millipore water and 0.11 M DyCl3 solution. Images obtained for field direction 1 

displayed an 8° tilt in the highly susceptible DyCl3 filament due to the magnetic field gradient 

which can be seen in Fig. 6. Since the angle is small, the images were rotated for analysis so that 

the filament was vertical. 

 

 

 



11 
 

 
 

Figure 5. Field directions used in the dynamic experiment. In (a), the face of the 5-magnet array of Fig. 2(b) is 

aligned vertically with the centre opposite to the centre of a stable pendant drop on the nozzle, In (b) the nozzle was 

above the centre of the magnet array. In (c) and (d) two vertical magnets are aligned or opposed, respectively. The 

end of the nozzle was aligned with the top of the magnets  

 

 
Figure 6. Fluid filament for (a) water and (b) 0.11M DyCl3 45 µs before pinch-off in field 1. The position of Dmin is 

indicated in (a). 
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3 Results and Discussion 
3.1 Static measurements  

The liquids used for these experiments were pure Millipore deionized water, and solutions of 99% 

pure CuSO4, MnSO4 or DyCl3 in distilled water with the following molarities:  Cu  0.1, 0.38, 0.42, 

0.45, 0.47 and 0.56M; Mn 0.048 and 0.052 and Dy 0.01, 0.05, 0.1, 0.4 and 1M. 

 

In order to determine the change of apparent surface tension γapp due to the magnetic field, 

measurements were made as follows: The liquid droplet was observed in the OCA 25 for an initial 

period of 60 seconds, then the magnet array was raised to the measurement position and the record 

continued for a further 60 seconds, before lowering the magnet and re-establishing the zero-field 

background for a final 60 seconds. In this way, any drift due to temperature change or evaporation 

could be corrected. This is important as it has been shown that added ions will change the rate of 

evaporation of a pendant drop [21].  Some representative results for water and 0.1M dysprosium 

solution are shown in Fig. 7, where we observed changes of apparent surface tension of 2.2 mNm-

1for water and -5.1 mNm-1 for dysprosium in the vertical gradient field of Fig. 3a) at position V1, 

and smaller values in the weaker vertical field gradient of Fig. 3c) at position H1. The body force 

acting on the droplet due to the magnetic field gradient changes its shape, which the instrument 

interprets as a change in surface tension, as the density and gravitational acceleration are fixed. In 

diamagnetic water, the effect is a compression of the droplet, upwards, and an increase in apparent 

surface tension, but for paramagnetic solutions, such as dysprosium chloride, the negative vertical 

magnetic field gradient results in a downward body force and that the droplet, corresponding to a 

decrease in apparent surface tension, as shown in Fig. 8.  
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Figure 7. Changes of apparent surface tension change of water in a) a vertical gradient field, b) a horizontal gradient 

field and 0.1 M DyCl3 in c) a vertical gradient field d) a horizontal gradient field in position 1.  

 

 
Figure 8: Images of a pendant droplet of a) water b) 0.1M DyCl3 with and without magnetic field, with a negative 

vertical gradient. The water droplet is compressed, but the DyCl3 droplet is extended. 
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       B∇zB is 80 T2m-1 for the 5-magnet vertical field structure and 14 T2m-1 for the 3-magnet 

horizontal field structure in Fig. 3. The effective changes of density for water in the two cases 

would be -6% and -1%, while the corresponding changes for 0.1 M DyCl3 are 39% and 7%, 

respectively. In Fig. 9a) we plot the measured apparent changes of surface tension Δγapp, computed 

by the OCA 25, against the change of density Δρeff, needed to fit the droplet shape at constant 

surface tension.  An ordinary least-squares fit giveas a slope of the graph of -1.00 ± 0.02, as 

expected. In fig. 9b) we plot the change in gravitational force corresponding to the change of 

density needed to fit the droplet shape against the field gradient force obtained from the known 

values of B∇zB  using Eq. 5 for force, both in kNm-3. Here the slope is 1.05 ± 0.09. This suggests 

that there is little change in surface tension due to the applied field.  

 

 
Figure 9. a) Plot of the  measured change in apparent surface tension Δγapp  versus Δρeff calculated from Eq. 5 versus 

for water and b) plot of gravitational force versus field gradient force for water.  

 

For paramagnetic solutions, the magnetic field gradient force stretches the drop down towards the 

magnet and the extent of the stretching increases with solution concentration. The limiting factor 

to the stretching here is the shape of the pendant drop just before the pinch-off limit. There is a 

threshold extension for paramagnetic solution pendant drop, beyond which the drop detaches and 

sticks to the magnet, preventing further measurements. Thus the maximum stretching deformation 

is very much the same for 0.1 M Dy and 1 M Dy, as the critical nature of the necking process. All 

the measurements conducted use droplet shapes that are statically stable. 
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For water in a uniform field, the effect of Maxwell stress is negligible, and there is no field gradient 

so any effect must be attributed to a magnetically-induced change of the surface tension of water. 

We repeated the experiment 37 times, and the result was that the change of surface tension in the 

uniform 0.45 T field (Fig 3a) was 0.19 ± 0.21, mNm-1,  where the error is the standard deviation 

on the mean. 

We use our zero susceptibility method to eliminate any magnetic body forces on the droplet, in 

order to look for any magnetic field effect on surface tension in magnetically undeformed droplets. 

Since any surface tension change is likely to be small, it was important to ensure that the solutions 

we are using really have zero susceptibility. We cannot rely on salt mass measurements before 

dissolution because the soluble salts are hygroscopic and readily absorb water. Furthermore, Eq. 

7 is valid only in the dilute limit, when the density of water is independent of the dissolved ions. 

We measured the susceptibility of the solutions used directly in a SQUID magnetometer, in the 

range -5 T to 5 T. Some representative data for determining x0exp for CuSO4 solutions are shown 

in Fig. 10. The experimentally determined zero-susceptibility solutions are 472.7 mM, 51.3mM , 

and 17.18 mM for CuSO4, MnSO4 and DyCl3, somewhat different from x0 in Table 1. We then 

measured the change of surface tension induced by a magnetic field of 0.5 T as a function of 

concentration to the value of Δγ when there is no magnetic body force. Some data are shown in 

Fig 10b.for Cu. where the change of surface tension for CuSO4 in 0.5 T is ~ -0.4 mNm-1. The 

corresponding results for MnSO4 and DyCl3 are -0.48 mNm-1 and -0.30 mNm-1. 

 

 
Figure 10. a) Zero susceptibility optimisation of different concentrations of CuSO4 , b) Variation of apparent surface 

tension as a function of the concentration of copper solutions    
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It is impossible to avoid subjecting the drop to a field gradient when the magnet is moved even 

when the horizontal homogenous field magnet is used. 

Second order effects on droplet shape, going beyond the standard analysis in the introduction,  can 

be treated by adding an effective gradient of the gravitational acceleration to the standard set of 

differential equations, Eq. 1 - 4.  An example of this process is shown on Fig. 12. It can be seen 

that the quality of the shape parameter fit is improved by the introduction of this additional free 

parameter. Its reliable extraction, however, is hindered by the spatial resolution of the images 

(pixel density) and random pixel noise, which affect the extraction of the visible drop profile. The 

fitted values of the effective parameters for the fit of figure are: γeff  = 55.5 mNm-1, δ =  -9.6g m-1. 

The high value of effective gradient of the gravitational acceleration is primarily due to the 

maximal field-gradient product of 80 T2m-1 and the substantial susceptibility of the Dy solution of 

59 x10 -6. Magnetic field gradients thus provide a relatively convenient way to investigate the 

effects of inhomogeneous body forces (gravity) on liquid drops, without the complexity and cost 

of microgravity experimental environments, following the same underlying principles as magnetic 

levitation. As the solution used here is more than a factor of ten below the solubility saturation 

limit, there is potential to increase the magnitude of the observed effects by up to an order of 

magnitude, preserving the simplicity of the magnet arrays used. 

 

 
Figure 11. An example of the fitting process for a 0.1 M DyCl3 solution, using the vertical gradient 

5-magnet array. (a) a representation of the border of the drop`s projection – data in dots and 

continuous line for the fit; (b) the fitted data and fitting curve in polar coordinates; (c) fit residual 

in polar coordinates.  
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         We end this section with  a brief discussion of Maxwell stress[30,31]. Consider a spherical 

drop with susceptibility χ in a uniform horizontal magnetic field, as shown in Fig. 12. When χ ≲ 

10−3, demagnetizing effects are negligible. The drop has uniform magnetization M = χH0, which 

can be represented by a surface magnetic charge density σm = M.en, where en is the surface normal. 

This results in a tensile stress σ, as shown in the figure, and a spheroidal deformation of the drop, 

with half axes c and a, where c = a(1+x). We compare the pressures at the points A and B, as 

shown. There is no magnetic pressure at A, since M ⊥ en, but at B M ∥ en, and σm = χH0. The 

magnetic pressure is therefore Pm = µ0H0σm =  1/2 χ µ0H02. If µ0H0 = 500 mT and χ = 10 x10−6, Pm 

= 1 Pa. We equate this to the pressure difference between points A and B. Each is given by Eq. 1, 

where the two radii of curvature at point A are c2/a and a and at point B both are a2/c. Setting  c = 

a(1 + x), we find Pm to first order in z 

               PB  - PA = 4xγ/a .              (9) 

Taking a = 2 mm, we find that the deformation of the drop is  x = 0.7 %.  The Maxwell stress 

would therefore produce an oblate compression of 0.6 % in the shape of a spherical drop of water 

and a 3.5% prolate extension shape of a spherical drop of 0.1M Dy solution. The effects in  pendant 

droplets will be similar. These effects are small in relation to the droplet deformations illustrated 

in Fig. 8. 

 
Figure 12 Prolate deformation of a spherical drop with a positive susceptibility due to Maxwell stress σM 

due to the distribution of positive and negative magnetic charge induced by the magnetic field B. 
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3.2 Dynamic measurements 

To analyze the pinch-off data, t0 was found for each of the 10 filaments measured per field. This 

is done by plotting Dmin as a function of 𝜏	for different values in the range where the data is linear 

and obeys the scaling law for τ < 0.4 ms. Eq. 8 with a fixed slope of 2/3 is fitted to these data, and 

the value of t0 that gives the fit is selected, illustrated in Fig. 13(a) for a single fluid filament of 

water in no field. Dmin 2/3 can then then be plotted against τ and the slope of a linear fit is used to 

calculate the dynamic surface tension using a rearrangement of Eq. 8, 

slope = A3/2 (γDST/⍴)1/2     (10) 

where γDST is the apparent dynamic surface tension, given the density of the fluid and some 

prefactor value A, which we know from Deblais et al [19] is not constant. Here, we are interested 

in the relative changes of the pinch-off dynamics in the presence of a magnetic field, rather than 

the calculated dynamic surface tension values. Assuming a constant prefactor of 0.9 as determined 

by Hauner [17], a dynamic surface tension of 97.3 ± 0.03 mN/m was obtained for water in no field. 

To compare measurements for different fields, the Dmin data for all droplets in each field 

configuration was averaged using built-in statistical analysis in Origin. 

 

Figure 13. (a) Log-log fit of Eq. 8 for a single fluid filament to find t0. (b) linear fit to determine the dynamic surface 

tension of water. 
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Figures 14(a) and 15(a) show the change in minimum filament radius Dmin with the dimensionless 

time τ* given by τ* = τ/tc, where the capillary time tc = (⍴D03/γ)½,  D0 is the nozzle diameter and γ 

the static surface tension. Fig. 14(a) shows no variation in the averaged Dmin for water in each field 

configuration. The data all lie upon the same curve, indicating that the dynamic surface tension of 

water is unchanged in these different fields. The error is denoted by the shaded regions (standard 

deviation of averaged data, ranging from 3×10−4 to 2×10−3 mm). In Fig. 15(a) we see no significant 

difference between in-field and no-field data across all magnet configurations, this time for 0.11 

M DyCl3.  

Figure 14. Pinch-off results for water. (a) Averaged data with data close to pinch-off in inset, (b) calculated prefactor 

as a function of dimensionless time t∗ (c) calculated prefactor as a function t∗ with averaged data. 
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Figure 15. Pinch-off results for DyCl3.(a) Averaged data with data close to pinch-off in inset, (b) calculated prefactor 

as a function of dimensionless time t∗ (c) calculated prefactor as a function t∗ with averaged data. 

Analysis was also carried out to investigate how the prefactor A, changes over time, as shown by 

Deblais et al [19]. The prefactor was calculated by restating Eq. 8 in terms of the dimensionless 

time t*, to obtain (Dmin/D0)3/2 = A3/2 t*. A is then calculated over the range of measured filament 

diameters, using literature values of static surface tension and density to calculate t*. The results 

of the calculations are plotted in Figs 14 and 15 (b) and (c) for water and 0.11 M DyCl3, 

respectively. Calculated prefactors over time for each individual filament are shown in panel (c) 

of each figure, with simulations from Deblais et al overplotted for reference. Note that these 

simulations are for different nozzle diameters than those used in this study and are not expected to 

agree perfectly with our results. Prefactor values for 10 different filament measurements are 

included for each field. Panel (c) of each figure shows an average prefactor value for each field 

over time with standard deviation indicated by the shaded regions. The spread in data points close 

to pinch-off seen in all plots is due to the increased error in Dmin measurements as the detected 

diameter approaches the resolution limit of 12 µm. 

In Fig. 14(b) and (c), we can see the instantaneous prefactor values for each field follow the same 

trend. The data follows a similar trend to that predicted by the simulations, showing that the 
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prefactor is not constant over the pinch--off process. However, for t* ≳ 0.1 it is close to 0.9 as 

measured by Hauner et al [17]. The fluctuating prefactor is also seen in Fig. 15(b) and 15(c) for 

0.11 M DyCl3. Values for the different field configurations follow the same trends, with the 

exception of field 2, at times far from pinch-off. Here the prefactor values lie below that of other 

fields, most apparent in Fig. 15(c).  

Our plots for minimum filament diameter during the pinch-off process show no variation in 

behaviour for any of our four magnetic field configurations, which include both gradient and quasi-

uniform fields. Our data follow the same trend for water and 0.11 M DyCl3, indicating no change 

in dynamic surface tension for the paramagnetic solution in the presence of a magnetic field. The 

value reported here for the dynamic surface tension of water under no magnetic field, while 

agreeing that the dynamic surface tension of water is higher than that of the static surface tension, 

differs from that previously reported in the literature. Our result is 8% higher than the value 

measured by Hauner et al. [17] using the prefactor 0.9 they found experimentally. However, they 

assumed a constant prefactor. Our measured instantaneous prefactor results across both fluids 

show similar variations to those found by Deblais et al [19]. 

 

 Our important finding is that the known magnetic body forces acting on the droplet do not 

influence the surface tension driven nature of the pinch-off process. In a gradient field, our fluid 

filament is acted upon by the Kelvin force, modifying the effective force of gravity on the filament. 

Pinch-off dynamics are not affected by gravity, as is evident by the absence of a term in the scaling 

law, Eq. 8. This is because pinch-off occurs at filament diameters far below the capillary length, 

2.72 mm for water, 2.38 mm for 0.11 M DyCl3. A small percentage change in the effective 

gravitational force due to the presence of magnetic body forces would barely change the capillary 

number, and so we would not expect to see an effect of these forces during pinch-off. The effective 

gravity, geff, can be calculated from the 8° angle of filament tilt shown in Fig. 8 for DyCl3 in field 

2 due to the high paramagnetic susceptibility of the filament. We obtain a capillary length of 2.36 

mm and pinch-off remains unaffected by body forces due to the field.  We do however see some 

deviation of the prefactor variation in field 2 for the DyCl3 filament at times far from pinch-off 

figure 15 (c). The scaling law does not apply in this regime (1 mm < Dmin <1.5 mm) and body 

forces can no longer be neglected, resulting in deviations from the thinning dynamics in the 
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absence of a field. We do not see this effect for measurements with water in field 2, as the change 

in the effective gravity due to the additional body forces due to the field is negligible due to the 

lower magnetic susceptibility of water. 

 

4 Conclusions        

Magnetic field effects on surface tension can be evaluated from droplet shape in either of 

two ways — in a uniform magnetic field, or in aqueous solutions of paramagnetic ions where the 

Curie-law paramagnetism cancels the diamagnetism of water to give zero net magnetic 

susceptibility, and therefore no magnetic body force. The effects are small; the first method applied 

to water gives changes that are barely significant, 0.42 ± 0.47 mNm-1T-1.  The second method, 

applied to zero-susceptibility solutions of Cu2+, Mn2+ and Dy3+ gives negative values in the range 

-0.77 to -1.13 mNm-1T-1.  These measurements should be extended to much larger, uniform 

magnetic fields. 

The shapes of pendant droplets of water and paramagnetic solutions are mainly deformed by the 

magnetic field gradients produced by permanent magnet arrays. Uniform vertical field gradients 

over the droplet volume are equivalent to changes of effective liquid density. The corresponding 

changes of droplet shape are interpreted by the droplet analyser as changes of ‘apparent surface 

tension’.  Nonuniform magnetic field gradients, however, produce droplet deformations that 

cannot be interpreted using the standard fitting algorithm. The droplet shapes can be fitted by 

adding a term with a gradient of gravitational acceleration into the differential equations. These 

second-order effects are dominant for strongly-paramagnetic solutions and have been calculated 

for 0.1 M DyCl3. An ‘effective surface tension’ of 55.5 mNm-1 has been measured in 0.1M  DyCl3 

in  an ‘effective gravity gradient’ of  0.1 ms-2/mm.  Such analysis of the non-uniform Kelvin force 

over a pendant drop requires high-resolution images of the droplet shape. The standard fitting 

algorithms are inapplicable for such solutions in a nonuniform magnetic field. Maxwell stress 

makes a minor contribution to the deformation. 

Our method of measuring the static droplet deformation, which images the droplet in zero 

field before and after imaging it in the presence of the field, involves moving the permanent magnet 

array to and from the droplet and exposing it to a variable, transient field gradient. The method 

provides the zero-field baseline and allows the correction of small drifts in the course of a 

measurement, but there is an upper limit to the susceptibility that can be measured in a given 
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magnet array, beyond which the droplet is pulled off when the magnets are first moved towards it. 

Measurements of changes in ‘apparent surface tension’ are limited to about 6 mNm-1 

No influence of magnetic field on the dynamic surface tension of water or Dy3+ solution 

was detected in any of four magnetic configurations used within the error of the experiments.  The 

pinch-off is unaffected by the field-gradient forces, which are equivalent to a change of gravity, 

because the filament diameter in the scaling regime is much less than the capillary length.  The 

negative changes in static surface tension observed for paramagnetic solution of about -1 mNm-

1T-1 are within the error of the dynamic surface tension measurements. 

                                                                       

Acknowledgements Support from the European Commission from contract No 766007 for the 
‘Magnetism and Microfluidics’ Marie Curie International Training Network is acknowledged, as 
well as support from Science Foundation Ireland contracts  12/RC/2278 AMBER, 16/RI/3403, 
16/A/4534, and 17/CDA/4704. We are very grateful to Dr. M. Venkatesan for his help with this 
work, and to Peter Dunne for help with field profiling of the magnetic arrays. 

 

 
Author Contributions. MEM and JMDC formulated the project and supervised the work. SP 
and JAQ carried out the experiments and analysed the data. PS analysed the droplet shape in a 
nonuniform field gradient. All authors discussed the results. SP, JAQ and JMDC wrote the paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24 
 

Bibliography 

 
 
 

 

[1] P. Lambert and M. Mastrangeli, Micromachines 10 (2019). 
[2] A. Dunne, W. Francis, C. Delaney, L. Florea, and D. Diamond, in Reference Module in 
Materials Science and Materials Engineering (Elsevier, 2017). 
[3] A. Fathi Azarbayjani and A. Jouyban, Bioimpacts 5, 29 (2015). 
[4] K. Koch, B. Dew, T. E. Corcoran, T. M. Przybycien, R. D. Tilton, and S. Garoff, Mol 
Pharm 8, 387 (2011). 
[5] P. Dunne et al., Nature 581, 58 (2020). 
[6] N.-T. Nguyen, Microfluidics and Nanofluidics 12, 1 (2012). 
[7] A. V. Zakharov, P. V. Maslennikov, and S. V. Pasechnik, Physical Review E 101, 062702 
(2020). 
[8] M. Amiri and A. Dadkhah, Colloids and Surfaces A: Physicochemical and Engineering 
Aspects 278, 252 (2006). 
[9] E. Chibowski, A. Szcześ, and L. Hołysz, Colloids and Interfaces 2 (2018). 
[10] Y. Fujimura and M. Iino, Journal of Applied Physics 103, 124903 (2008). 
[11] Y. Fujimura and M. Iino, Journal of Physics: Conference Series 156, 012028 (2009). 
[12] M. Hayakawa, J. Vialetto, M. Anyfantakis, M. Takinoue, S. Rudiuk, M. Morel, and D. 
Baigl, RSC Advances 9, 10030 (2019). 
[13] A. Szcześ, E. Chibowski, and E. Rzeźnik, Colloids and Interfaces 4 (2020). 
[14] H. U. O. Zhong-feng, Z. Qian, and Z. Ying-hua, Procedia Engineering 26, 501 (2011). 
[15] H. C. Weng, J.-Y. Zhang, and C.-L. Chen, Magnetohydrodynamics 49, 372 (2013). 
[16] A. Katsuki, K. Kaji, M. Sueda, and Y. Tanimoto, Chemistry Letters 36, 306 (2007). 
[17] I. M. Hauner, A. Deblais, J. K. Beattie, H. Kellay, and D. Bonn, The Journal of Physical 
Chemistry Letters 8, 1599 (2017). 
[18] J. Eastoe and J. S. Dalton, Advances in Colloid and Interface Science 85, 103 (2000). 
[19] A. Deblais, M. A. Herrada, I. Hauner, K. P. Velikov, T. van Roon, H. Kellay, J. Eggers, 
and D. Bonn, Phys Rev Lett 121, 254501 (2018). 
[20] J. M. D. Coey, Magnetism and magnetic materials (Cambridge University Press, 2010). 
[21] J. B. Keller and M. J. Miksis, SIAM Journal on Applied Mathematics 43, 268 (1983). 
[22] D. H. Peregrine, G. Shoker, and A. Symon, Journal of Fluid Mechanics 212 (2006). 
[23] R. F. Day, E. J. Hinch, and J. R. Lister, Physical Review Letters 80, 704 (1998). 
[24] J. Eggers and E. Villermaux, Reports on Progress in Physics 71 (2008). 
[25] J. R. Lister and H. A. Stone, Physics of Fluids 10, 2758 (1998). 
[26] J. C. Burton, J. E. Rutledge, and P. Taborek, Phys Rev Lett 92, 244505 (2004). 
[27] A. U. Chen, P. K. Notz, and O. A. Basaran, Phys Rev Lett 88, 174501 (2002). 
[28] M. P. Brenner, J. Eggers, K. Joseph, S. R. Nagel, and X. D. Shi, Physics of Fluids 9, 1573 
(1997). 
[29] J. R. Castrejon-Pita, A. A. Castrejon-Pita, E. J. Hinch, J. R. Lister, and I. M. Hutchings, 
Phys Rev E Stat Nonlin Soft Matter Phys 86, 015301 (2012). 
[30] J. Dodoo and A. Stokes, Physics of Fluids 32, 061703 (2020). 



25 
 

[31] R. E. Rosensweig, Ferrohydrodynamics (Dover Publications, New York, 1997). 

 

 


