A non-linear approach for pattern recognition in networks

Marina Jeaneth Machicao Justo Advisor: Prof. Dr. Odemir M. Bruno

18 de setembro de 2017

Ph. D Project Profile

- Ph. D elapsed time: 4 years
- Expected Ph. D defense: December 2017
- Thesis deposit deadline: March 2018

Networks are everywhere!

Social networks

Stomata distribution networks

Tradescantia zebrina

Exposição de Luz

Metabolic networks

 Metabolites (nodes) relationship are connected according to the reaction directions.

(S)-malate + NAD+ \rightarrow CO2 + pyruvate + NADH (S)-malate \leftrightarrow fumarate + H20

- Organisms [18]:
 - Archaea
 - Bacterium
 - Eukaryote

Textual networks

1) Pre-processing

1.1) Lemmatization

Twice already in his career had Holmes helped him to attain saccess, his own sole reward berohum. For this reason the affection and respect of the Scotcham for his amateur colleague were profound, and he showed them by the frankness with which he consulted Holmes in every difficulty. Mediocrity knows mothing higher than itself; but talent instantly recognizes geaux, and MacDonald had talent enough for his profession to enable him to percive that there was of one who already stood alone in expreps. hot he miss gifts and in his experience. Holmes was not prone to big Scotchman, and smiled at the sight of him.

2) Network construction

Darwin

Pattern recognition in networks

- Emerges due to high demand on big data scenario.
- Aims to characterize networks
 - Extracts information from the correlation between vertices and their relationship to the network.
- Literature:
 - Structural measurements [7],
 - Some attempts based on non-linear methods, such as random walks [10].

Cellular automata (artificial life)

- Discrete dynamical systems in time-space [3].
- Well-known CAs
 - ECA (Wolfram)
 - Life-Life (Conway)
- Represented by

Specie conus textile

Rule 30 ECA

AC representada por $\langle \mathcal{T}, S, s, \mathcal{N}, \phi \rangle$

- \mathcal{T} : tesselação
- S: Estados, $S = \{s_0, s_1, ..., s_{k-1}\}$
- s : função de estado, $s(c_i, t)$
- N: função vizinhança
- ϕ : regra de transição

Life-like CA

• Nomenclature: Bx/Sy (2¹⁸ rules)

Cellular automata in networks

Cellular automata

- Entities: Cells
- Tessellation:
 - Regular/irregular
- Local neighborhood
- Rule
 - Based on #cells alive

Network automata

- Nodes
- Tessellation:
 - Network
- Non-spatial neighborhood
 - not necessarily
- Rule:
 - Based on neighborhood density

 $s(c_i, t+1) = \begin{cases} 1, & \text{if } s(c_i, t) = 0 \text{ and } x/r \le \rho_i < (x+1)/r \Rightarrow \text{born (B) rule} \\ 1, & \text{if } s(c_i, t) = 1 \text{ and } y/r \le \rho_i < (y+1)/r \Rightarrow \text{survive (S) rule} \\ 0, & \text{otherwise,} \end{cases}$

Life-like network automata (LLNA)

• Life-like family has 2¹⁸ rules (possible solutions)

Spatio-temporal patterns

Network	$\langle k \rangle = 4$	$\langle k angle = 6$	$\langle k \rangle = 8$	$\langle k \rangle = 10$
Random				
Small-world				
Geographical				
Scale-free				

Spatial-time diagram of the life-like network-automaton of the 4 synthetic network models with N = 500 vertices and different degree, evolved by t = 500 iterations using rule B1357 / S2468

LLNA's characterization

Shannon entropy distribution

Word length distribution

- $\vec{\mu_S} \qquad H_{S_i} = -(p_i^0 \log_2 p_i^0 + p_i^1 \log_2 p_i^1)$ $\vec{\mu_W} \qquad H_{W_i} = -\sum_{l=1}^{L} p_l^l \log_2 p_l^l$
- Lempel Ziv complexity distribution $\vec{\mu_L}$

Histogram of the three distributions used to quantitatively analyze the spatio-temporal patterns of distinct network models: Shannon entropy $\vec{\mu}_S$, word length $\vec{\mu}_W$ and Lempel-Ziv complexity $\vec{\mu}_L$. The following parameters were adopted: N = 500, $\langle k \rangle = 4$ and t = 350.

Pattern recognition based on LLNA

Datasets

		Validação		dação	Seleção da regra	
	#0	Classes / Legendas	#Redes	\times classe	# Redes	\times classe
Redes sintéticas Sintética	4	ER, WS, BA, GEO	11200	2800	1400	350
Redes metabólicas Jeong	3	Archae, Bacterium, Eu- karvote	37	4, 30 e 3	6	2, 2 e 2
Redes sociais SNAP	2	Twiiter, Google+	100	50	30	15
Redes textuais Autoría	8	Doyle, Stoker, Darwin, Dickens, Hardy, Wo- dehouse, Poe, Munro	40	5	60	5
Redes de estômato Trandescantia	3	natural, L4h, L24h	12	4	6	2

Classification of synthetic network models

Identification of organisms from distinct domains of life

Identification of structural patterns in social networks

Classifying stomata distribution patterns varying according to lighting conditions

Authorship attribution

Proposed

Classical

References

[1] ALBERT, R.; BARABÁSI, A.-L. Statistical mechanics of complex networks. Reviews of Modern Physics, v. 74, n. 1, p. 47–97, 2002.

[3] BAETENS, J. M.; DE BAETS, B. Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians. Chaos, v. 20, n. 3, p. 033112, 2010.

[7] COSTA, L. D. F.; RODRIGUES, F. A.; TRAVIESO G.; BOAS, P. R. V. Characterization of complex networks: a survey of measurements. Advances In Physics, v. 56, n. 1, p. 167, 2007.

[10] W.N. Gonc alves, B.B. Machado, and O.M. Bruno. A complex network approach for dynamic texture recognition. Neurocomputing, 153(0):211–220, 2015.

[11] DOGANAKSOY, A.; GÖLOGLU, F. On Lempel-Ziv complexity of sequences. In: GONG, G. et.al., (Ed.) Sequences and their applications – SETA 2006. Berlin, Heidelberg: Springer, 2006 p. 180–189. (Lecture notes in computer science, v. 4086).

[13] ERDÖS, P.; RÉNYI, A. On random graphs I. Publicationes Mathematicae Debrecen, v. 6, p. 290–297, 1959. Disponível em: http://ftp.math-inst.hu/~p_erdos/1959-11.pdf>. Acesso em: 20.10.2015.

[18] Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A.-L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

[21] Miranda GHB, Machicao J, Bruno OM. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks. Scientific Reports. 2016;6(37329).

[28] WATTS, D. J.; STROGATZ, S. H. Collective dynamics of "small-world" networks. Nature, v. 393, n. 6684, p. 440–442, 1998.

[53] Leskovec, J. & Krevl, A. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data (2014).

