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Networks are everywhere!
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Social networks

• Twitter • Google +
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Dataset SNAP [53]



Stomata distribution networks
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Metabolic networks

• Metabolites (nodes) relationship are 
connected according to the reaction 
directions.

• Organisms [18]:
• Archaea
• Bacterium 
• Eukaryote
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Textual networks
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Pattern recognition in networks

• Emerges due to high demand on big data 
scenario. 

• Aims to characterize networks
• Extracts information from the correlation between 

vertices and their relationship to the network. 

• Literature:
• Structural measurements [7], 
• Some attempts based on non-linear methods, such 

as random walks [10].
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Cellular automata (artificial life)

• Discrete dynamical systems in time-space [3].
• Well-known CAs

• ECA (Wolfram)
• Life-Life (Conway)

• Represented by
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Life-like CA

• Nomenclature: Bx/Sy (218 rules)
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Cellular automata in networks

Cellular automata
• Entities: Cells

• Tessellation:
• Regular/irregular

• Local neighborhood

• Rule 
• Based on #cells alive

Network automata
• Nodes

• Tessellation:
• Network

• Non-spatial neighborhood 
• not necessarily

• Rule: 
• Based on neighborhood density
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• Life-like family has 218 rules (possible solutions)

Life-like network automata (LLNA)
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Spatio-temporal patterns

Spatial-time diagram of the life-like network-automaton of the 4 synthetic
network models with N = 500 vertices and different degree, evolved by t = 500
iterations using rule B1357 / S2468 13



LLNA’s characterization 
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Pattern recognition based on LLNA
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Datasets

16



Classification of synthetic network models
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Identification of organisms 
from distinct domains of life

Dataset Jeong et. al. [18]
18



Identification of structural 
patterns in social networks

Dataset SNAP [53]
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Classifying stomata distribution 
patterns varying according to 
lighting conditions
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