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Abstract
Many structural aspects of music, such as tonality, can be expressed using hierarchical representations. 
In music analysis, so-called keyscapes can be used to map a key estimate (e.g., C major, F minor) to 
each subsection of a piece of music, thus providing an intuitive visual representation of its tonality, in 
particular of the hierarchical organization of local and global keys. However, that approach is limited 
in that the mapping relies on assumptions that are specific to common-practice tonality, such as the 
existence of 24 major and minor keys. This limitation can be circumvented by applying the discrete 
Fourier transform (DFT) to the tonal space. The DFT does not rely on style-specific theoretical assumptions 
but only presupposes an encoding of the music as pitch classes in 12-tone equal temperament. We 
introduce wavescapes, a novel visualization method for tonal hierarchies that combines the visual 
representation of keyscapes with music analysis based on the DFT. Since wavescapes produce visual 
analyses deterministically, a number of potential subjective biases are removed. By concentrating 
on one or more Fourier coefficients, the role of the analyst is thus focused on the interpretation and 
contextualization of the results. We illustrate the usefulness of this method for computational music 
theory by analyzing eight compositions from different historical epochs and composers (Josquin, Bach, 
Liszt, Chopin, Scriabin, Webern, Coltrane, Ligeti) in terms of the phase and magnitude of several Fourier 
coefficients. We also provide a Python library that allows such visualizations to be easily generated for 
any piece of music for which a symbolic score or audio recording is available.
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Many domains of  human cognition, such as music, language and action planning, exhibit hier-
archical structure (Arbib, 2013; Rebuschat et al., 2012). In the case of  music, several struc-
tural features are organized hierarchically, for instance formal arrangement, rhythm, melody 
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and tonality (Abdallah et al., 2016; Caplin, 1998; Gilbert & Conklin, 2007; Mavromatis, 2012; 
Rohrmeier & Neuwirth, 2015). This article is concerned with the tonality of  Western music, 
considered in a broad sense as the hierarchical organization of  chords, scales and keys in pieces 
of  music. Accordingly, notes can be grouped into chords that can be grouped into local keys 
that, in turn, are grouped into the global key of  a piece. For instance, a classical piece could be 
in the key of  C major, globally, but at the same time have subordinate sections in related keys 
such as G major and A minor. On an even more local level, more frequent changes of  harmony 
can occur, for instance through applied dominant chords (e.g., A7, the dominant of  D minor).

This article proposes a new approach to the visualization of  hierarchical tonal structures. As 
demonstrated by several case studies, the method goes beyond related techniques in that it is 
applicable to a wide range of  Western musical styles, including the extended tonality of  the 19th 
century. In the following, we first summarize the related research that motivates our approach.

In music analysis, Schenkerian theory aims at revealing hierarchical relations between 
musical elements in order to derive a complete reduction of  a piece (Cadwallader & Gagné, 
1998). Such relations can be studied using frameworks from formal language theory (Manning 
& Schütze, 2003), and there have been many attempts to formalize Schenkerian’s intuitions 
(e.g., Lerdahl & Jackendoff, 1983), in particular by employing formal grammars that represent 
hierarchical relations within sequences of  notes or chords (Abdallah et al., 2016; Keiler, 1978; 
Kirlin & Jensen, 2011; Rohrmeier, 2011; Steedman, 1984). Such mathematical models bridge 
the gap between music theory and psychology by describing human cognition on the computa-
tional level (Harasim, 2020; Marr, 1982).

However, there are theoretical and practical difficulties for automatic hierarchical music 
analysis. For instance, the combinatorial complexity of  deciding between all plausible relations 
for a given musical sequence might cause long computation times or even render the decision 
intractable for long pieces such as entire sonatas or symphonies. Furthermore, representing the 
hierarchical relations in a piece of  music using formal grammars requires a set of  generative 
rules that model the syntax of  a musical style. However, virtually all approaches to musical 
grammar focus on the so-called common-practice tonality (Rohrmeier & Neuwirth, 2015; 
Tymoczko, 2003), blues (Katz, 2017; Steedman, 1996), or jazz (Granroth-Wilding & Steedman, 
2012; Harasim et al., 2018, 2019; Rohrmeier, 2020). Many other forms of  tonality that go 
beyond these idioms have not been studied sufficiently from the formal language perspective, 
for instance Renaissance modality or late 19th-century extended tonality. Formal grammars do 
not exist for these styles—at least not to date.

Visual hierarchical music analysis

Keyscapes (Sapp, 2001, 2005) provide an alternative approach to hierarchical music analysis. 
They visualize key estimates for all possible subdivisions of  a piece (see e.g., Figure 1). Those 
estimates are commonly obtained by a key-finding algorithm that returns the best-fitting major 
or minor key according to the distribution of  notes in a segment of  music (Krumhansl, 1990; 
Temperley, 1999). Keyscapes require much less computation than, for instance, formal gram-
mar models and can be viewed as a first approximation for the hierarchical organization of  the 
tonal material in a musical composition or improvisation.

As an example, Figure 1 shows the keyscape for Bach’s Prelude in C major (BWV 846) using 
the Krumhansl-Schmuckler key-finding algorithm (Krumhansl, 1990).1 The mapping from 
key estimates to colors is displayed under the keyscape, with major and minor keys being 
arranged along the circle of  fifths. The markers on the sides of  the triangle indicate different 
segments of  the piece, and the bar numbers are shown under the keyscape. The figure shows 
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that the algorithm produces different key estimates for different parts of  the piece. The keyscape 
thus represents the algorithm’s estimation of  the prelude’s local key regions and modulations. 
The global key is correctly estimated as C major (shown in orange), and large subsections are 
attributed to F major (shown in red) and G major (shown in mustard yellow). These subordinate 
key sections represent modulations to the subdominant and dominant keys that are common in 
Baroque pieces. The example demonstrates how keyscapes can be used to visualize the hierar-
chical organization of  keys in a composition. Although this visualization does not explicitly 
provide a tree- or graph-structured analysis of  the music, it is a useful tool for music analysis 
that is easy to understand for a broad audience.

It is tempting to apply keyscapes also to pieces from musical styles other than common-
practice tonality or jazz. However, that approach does not always lead to satisfying results 
(Sapp, 2005). Figure 2 shows the keyscape for the introduction of  Liszt’s Faust Symphony 
(S. 108). According to the key-finding algorithm’s estimate, the introduction is in the key of  F 
minor, with the first and second half  being in C♯ minor and A minor, respectively. We discuss 
the tonality of  this piece in more detail below (see “Analytical case studies”). Here, we want to 
point out that an analysis that relies on major or minor keys does not do justice to its intricate 
harmonic structure (Cohn, 2012). An appropriate analysis of  tonality in late 19th-century 
music, sometimes referred to as “extended tonality” (Schoenberg, 1969), requires more 
advanced concepts, such as chromaticism, extended harmonies, and symmetrical chords and 
scales (Cohn, 1996; Haas, 2004; Horton, 2018; Kopp, 2002; Lerdahl, 2001; Lieck et al., 2020; 
Polth, 2018; Weiß & Habryka, 2014). Thus, keyscapes based on key-finding algorithms are not 
suitable for representing extended tonality. Nonetheless, the abstract idea of  visualizing hierar-
chical structures remains applicable because it is independent of  the tonal content of  a piece. In 
fact, the hierarchical representation of  keyscapes can also be used for other applications, such 
as the study of  timbre, tempo variations in different performances of  the same piece, and 
melodic similarity (Park et al., 2019; Sapp, 2007; Segnini & Sapp, 2005).

Analysing music using the discrete Fourier transform (DFT)

Based on a rediscovered observation by Lewin (1959), music theorists have recently begun to 
analyze pieces by applying the discrete Fourier transform (DFT) to pitch-class sets (Amiot, 
2016). The DFT transforms a set of  pitch classes into complex numbers that describe character-
istics of  the music (Quinn, 2006, 2007). Since the DFT measures the prevalence of  even divi-
sions of  the octave in pitch-class sets (Amiot, 2007), it is not based on major and minor keys 
and thus particularly useful for the analysis of  extended tonality. Details of  the DFT and its 
interpretations with respect to music are provided below (see “Methodology” and “Prototypes 
and their interpretation”).

The DFT has been used to analyze and compare the tonal languages of  several composers, 
including Bach, Schubert and Scriabin (Noll, 2019; Yust, 2015), as well as existing approaches 
to key finding (Yust, 2017). It has also been applied to the study of  changes in pitch-class distri-
butions, both within pieces (Harding, 2020) and between compositions from different histori-
cal periods (Yust, 2019b). Moreover, several connections have been drawn between the DFT of  
pitch-class sets and geometric approaches to harmony such as voice-leading spaces (Hoffman, 
2008; Tymoczko, 2008; Tymoczko & Yust, 2019) and the Tonnetz (Yust, 2019a).

The present approach

The motivation for this study is the observation that keyscapes are insufficient for pieces with 
non-standard tonal organization (see Figure 2), because the notion of  a diatonic key is not 
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equally applicable to pieces from all time periods or styles. In contrast, the method proposed in 
this article does not rely on the concept of  musical keys but only on the representation of  tones 
as pitch classes and thus reveals the tonal structure of  a piece in a more general way.

Our approach combines the hierarchical representation of  keyscapes with the analytical 
insights obtained from the application of  the DFT to pitch-class sets. Since keyscapes depict dif-
ferent hierarchical levels of  tonality in a piece of  music but have the shortcoming that they rely 

Figure 2.  Keyscape of the opening of Liszt’s Faust Symphony (S. 108).

Figure 1.  Keyscape of Bach’s Prelude in C major (BWV 846).
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on a diatonic key-finding algorithm as mentioned above, we substitute such algorithms by out-
puts of  the DFT and use a color mapping that exploits geometric properties of  the Fourier space. 
We thus obtain a visual depiction of  the hierarchical relations of  tonal structures in a piece. 
Because the DFT measures periodicity in a signal by means of  combinations of  cosine and sine 
waves, we call the resulting visualization wavescapes. The synthesis of  these two methods 
advances computational musicology by providing an elegant visualization that is a first build-
ing block in the deeper understanding of  hierarchical relations in music not only within but 
also beyond common-practice tonality.

Recently, Lieck and Rohrmeier (2020) introduced pitch scapes, which employ a Fourier repre-
sentation to directly model prototypical hierarchical pitch-class statistics independently of  any 
key-finding algorithms. However, the visualization of  the results was again performed using con-
ventional key-finding algorithms. Their approach can therefore be considered complementary to 
ours and wavescape visualizations might facilitate the interpretability of  pitch scapes.

In the remainder of  this article, we first provide a detailed description of  the DFT, its applica-
tion to pitch-class sets, and an intuitive color mapping to create wavescapes (“Methodology”). 
We then discuss a number of  prototypical examples (“Prototypes and their interpretation”). In 
the following section (“Analytical case studies”), we analyze eight pieces of  music and demon-
strate how wavescapes can provide insights into the tonal structures in these pieces. Finally, we 
discuss the benefit of  using wavescapes for music analysis more generally and point out several 
potential extensions of  our approach, before concluding with some final remarks.

Methods

This section starts by describing how pieces of  music can be transformed into a hierarchy of  
pitch-class vectors. Then, we describe the discrete Fourier transform (DFT), its application to 
such hierarchies, and the color mapping used for the obtained Fourier coefficients. This proce-
dure results in a visual representation of  pieces called wavescapes.

A hierarchy of pitch-class vectors

We start by partitioning a piece of  music into N  non-overlapping segments of  equal length r. 
In this general sense, segments can be defined by musical units in symbolic scores (e.g., meas-
ures, note durations) as well as by continuous durations in audio recordings (e.g., seconds, 
onsets).2 In the present study, we chose appropriate resolutions r  according to the time signa-
tures of  the pieces (see “Analytical case studies”). The q-th segment of  a piece is represented by 
a pitch-class vector (PCV) xq ∈ ≥ 0

12  (1 ≤ q ≤ N) whose entries contain the total durations (also 
called weights) of  the 12 pitch classes in that segment. A pitch class is the equivalence class of  
all octave-related pitches in 12-tone equal temperament (C, C♯, D, D♯, E, F, F♯, G, G♯, A, B♭, 
B), assuming enharmonic equivalence. The value xq [0]  is the weight of  pitch class C, xq [1]  is 
the weight of  C♯, and so forth. For example, the PCV of  the first four measures of  J. S. Bach’s 
Prelude in C major shown in Figure 3 is x=(14,0,9,0,9,2,0,3,0,1,0,4) , where the duration of  
each pitch class is given in quarter-notes.

A complete piece is modeled as a hierarchy of  segments given by a function p  that inclusively 
returns the pitch-class content from the m-th to the n-th segment,

P m n x
q m

n

q:N R2
0

12

=

, ( , ) ,→ ≥ ∑ 	 (1)
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for (1 ≤ m ≤ n ≤ N). The size as well as the hierarchical level of  the ( , )m n -th segment is then 
n m− +1, and there are 

q

N
q

N N
=1

=
( 1)
2∑ +  segments in total. This hierarchy is shown sche-

matically in Figure 4, where all cells are represented as diamonds (except those at the very bot-
tom which are shown as triangles).

Discrete Fourier transform

The DFT decomposes a vector into a sum of  sinusoidal functions of  unique frequency with 
varying amplitudes and phases. That is, the DFT of  any PCV x  is the mapping

F x X:R C≥ →0
12 12, , 	 (2)

where the k-th component of  the complex-valued vector X  is given by

X k x n e
n

i n
k

[ ]= [ ]
=0

11 2
12∑

− π
	 (3)

for k∈[0, ,11] . The values of  X k[ ]  are referred to as Fourier coefficients, or simply coefficients. 
The zeroeth coefficient X[0]  is always equal to the sum of  x . By symmetry, the coefficients for 

Figure 3.  The first four bars of Bach’s Prelude in C major.

Figure 4.  Visualization of the hierarchy of segments given by P .
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k∈[1, ,5]  are conjugate to the ones for k∈[11, ,7]  while the sixth coefficient is its own 
conjugate, X k X k[ ]= [12 ]−  for k∈[1, ,11] . Therefore, we consider only the coefficients 1 to 6 
in accordance with previous research (Amiot, 2007; Yust, 2019a).

Since Fourier coefficients are complex numbers, they can be described in polar coordinates 
by their magnitude µk (i.e., the distance to zero) and their phase φk  (i.e., the angle in counter-
clockwise orientation starting from 3 o’clock),

X k ek
i k[ ]= µ φ⋅ .

	 (4)

Consider for instance again the PCV of  the example shown in Figure 3, 
x=(14,0,9,0,9,2,0,3,0,1,0,4). Its fifth Fourier coefficient X[5]  has phase φ π5 =0.29 , and 
magnitude µ5 =24.19.

Color mapping of Fourier coefficients

To visualize the Fourier coefficients of  PCVs, we represent them in polar coordinates and map 
their phases and magnitudes to colors. Given the periodic nature of  the phase, it can be assigned 
to a color through a circular hue. We choose the hue function h : [0,2 [ [0,1]3π →  that maps φk  
to a triple ( , , )r g b , representing the strengths of  the red, green and blue components of  the color 
(Ong & Khoo, 2014):
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	 (5)

This color mapping is visualized in Figure 5.
The magnitude µk of  a Fourier coefficient can be mapped to an opacity3 value α µ= / [0]k X  

by normalizing it with the sum of  PCV x , given by its zeroeth coefficient X[0].4 The normaliza-
tion of  the magnitude also facilitates the comparison of  different PCVs with one another.

We represent the phase and magnitude mappings by a coloring function Ck,

C X r g bk :
12 3[0,1] [0,1], (( , , ), ),→ ×  α 	 (6)

which selects the k-th coefficient of  X  and uses the previous mappings on its phase and mag-
nitude to return a color:
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C X h
Xk k

k( )= ( ),
[0]

φ
µ







 	 (7)

Wavescapes

In summary, a pitch-class vector can be colored by successively applying the DFT F  and the 
coloring Ck. Together with P , these mappings define an arrangement of  colors for a given piece 
of  music that we call a wavescape. More precisely, the wavescape for the k-th Fourier coefficient 
is expressed by

W W m n C F P m nk k k:2 3[0,1] [0,1], [ , ]= ( )[ , ],→ ×   	 (8)

for segment indices m n, ∈  with 0 ≤ m ≤ n < N. According to the hierarchical structure 
shown in Figure 4, wavescapes are displayed as colored triangles similar to keyscapes (see 
Figures 1 and 2).

There are six wavescapes for any given piece (one per Fourier coefficient, k∈[1, ,6] ) and 
each of  them may show interesting properties for music analysis. In order to determine on 
which wavescape to concentrate our analyses, we focus on those with the largest average nor-
malized magnitude (denoted by αk  for coefficient k) in the section “Analytical case studies.”

In connection with this article, we provide an implementation of  the methods described 
above in a Python library that is freely available at https://github.com/DCMLab/wavescapes. It 
can be used to reproduce the results in this study and, more generally, to generate wavescape 
plots from MIDI, MusicXML or audio input. See the README file for more instructions.

Prototypes and their interpretation

The previous section presented how a PCV can be mapped to six colors that visualize the phase 
and normalized magnitude of  its Fourier coefficients. In this section, we describe how those 

Figure 5.  Color space defined by the color mapping Ck.

https://github.com/DCMLab/wavescapes
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colors are interpreted with respect to the music in order to explain the role of  the DFT in music 
theory. We begin by investigating a number of  music-theoretically relevant pitch-class sets and 
scales (Harasim et al., 2021). A pitch-class set y y ym={ , , }1   is a set of  any number of  the 12 
pitch classes. The D minor triad is for example given by {2,5,9}. We represent pitch-class sets 
by a PCV x∈{0,1}12  in which ones and zeros indicate the presence and absence of  pitch classes, 
respectively. Thus, the D minor triad is represented by the PCV x=(0,0,1,0,0,1,0,0,0,1,0,0).

For any pitch-class set, the (normalized) magnitudes of  the DFT are invariant under trans-
position and inversion (Amiot, 2016). To describe the intuition behind such magnitudes, we 
therefore consider equivalence classes of  pitch-class sets under transposition and inversion, 
such as scales, triads and symmetric chords (e.g., augmented triads and fully diminished 
chords), and call them set classes (Forte, 1977).

The normalized magnitudes of  selected set classes are shown in Figure 6. Notably, the normal-
ized magnitudes α  are maximal (α =1 , black) for some combinations of  pitch-class sets and 
coefficients, and minimal (α =0 , white) for others. The pitch-class sets that maximize the nor-
malized magnitudes suggest how the respective Fourier coefficients representing the music  
can be interpreted. For example, tritones maximize the normalized magnitudes for k =2,4,6, 
augmented triads for k =3,6, fully-diminished chords for k =4, and finally whole-tone scales for 
k =6 . The normalized magnitudes of  all coefficients are moreover maximal for singleton sets.

In general, the normalized magnitude of  the k -th coefficient is maximal for binary PCVs x  
that represent an equal division of  the octave if  the number of  its non-zero components is a 
common divisor of  k  and 12. Quinn (2006, 2007) calls these PCVs prototypes.5 Since only the 
coefficients 1 through 6 are considered (see “Methodology”), the fifth coefficient is the only one 
whose index ( k =5 ) cannot be divided evenly by 12  (Clough & Douthett, 1991). Therefore, its 
normalized magnitude is maximized only by singletons.

Figure 6 shows a variety of  non-prototypical set classes as well. For instance, major and minor 
triads have rather large but not maximal values for coefficients k =3,4,5 . The normalized mag-
nitudes of  the dominant-seventh and half-diminished chords are largest for the fourth coefficient, 
while the normalized magnitude for the major seventh chord is largest for the third coefficient. 
For all coefficients, the magnitude of  the chromatic pitch-class set =(1,1,1,1,1,1,1,1,1,1,1,1)  
equals 0.

Some symmetrical scales also suggest interpretations of  the Fourier coefficients whose mag-
nitudes they maximize.6 For instance, hexatonic scales such as H0,3 = (1,0,0,1,1,0,0,1,1,0,0,1)  
have a non-zero magnitude only for the third coefficient while octatonic scales such as 
O0,1 = (1,1,0,1,1,0,1,1,0,1,1,0)  are non-zero only for the fourth coefficient (see Figure 6). The 
whole-tone scale, as mentioned before, is non-zero and maximal for the sixth coefficient. 
Observing large magnitudes on the wavescapes for those coefficients suggests that the corre-
sponding segments of  a piece are largely organized by these particular scales.

We use the following notation for the prototypes: Hi j,  is a hexatonic scale, Oi j,  is an octa-
tonic scale, WTi  is a whole-tone scale, and Ti  is a tritone, where i j,  refer to non-zero pitch-
classes that these pitch-class vectors contain. Diatonic scales (major and natural minor) are 
denoted by the number of  flats and sharps in their key signatures, for instance 3♭ for E♭ 
major/C minor, ♮ for C major/A minor, and 2♯ for D major/B minor (Gárdonyi & Nordhoff, 
2002). Augmented triads are notated as C+, D+, etc., and diminished seventh chords as Cº7 , 
Dº7 , etc.

Because the magnitudes are identical for all members of  a set class, it is interesting to observe 
how the phases of  these members change. The transposition of  a pitch-class set is directly 
related to a phase change. For example, transposing an augmented triad upwards by a semitone 
corresponds to a phase change of  +π2

 in the third coefficient (see Figure 7c).

Ω



10	 Musicae Scientiae 00(0)

Figure 6.  Normalized magnitudes of the Fourier coefficients for different chords and scales.
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For each coefficient, Figure 7 shows how its prototypes and other relevant pitch-class sets 
are mapped to a magnitude, a phase, and thus, a color (see “Methodology”). Each subplot shows 
the chromatic pitch-class set Ω in the center. The DFT maps the phases of  the singleton proto-
types for the first coefficient to clockwise ascending chromatic order (top left), like the tritones 
for the second coefficient (top right). The prototypes of  the third coefficient—the four aug-
mented triads—are mapped onto the real and imaginary axes, and the hexatonic scales are 
mapped exactly between the two augmented triads that they contain (middle left). Analogously, 
for the fourth coefficient, the three fully diminished chords are the prototypes of  the fourth 
coefficient and the three octatonic scales lie between their two constituting diminished chords 
(middle right). In the sixth coefficient, the two whole-tone scales are mapped to the real poles 
(bottom right).

A number of  common musical scales such as the diatonic scale, the pentatonic scale, and 
Guido’s natural hexachord (Reisenweaver, 2013) are contiguous subsegments of  the circle of  
fifths.7 The fifth coefficient maps these scales as well as the singletons along the circle of  fifths in 
counter-clockwise ascending order (bottom left, only diatonic scales and singletons are shown). 
Note that each diatonic scale spans six fifths on this circle, for example B♭-F-C-G-D-E-A in the 
case of  F major/D minor. Since G is its center on the circle of  fifths, the phases for this diatonic 
scale and the singleton G are identical. The pitch-class sets of  F major and D natural minor 
are mapped to the same point in the Fourier coefficients because they are identical (♭ ≡ 
(1,0,1,0,1,1,0,1,0,1,1,0) ). The larger cardinality of  the diatonic scales leads to smaller nor-
malized magnitudes than for the singletons and thus to brighter colors.

The tonal material of  (segments of) actual pieces of  music does not generally correspond to 
the prototypes that represent abstract music-theoretical concepts such as certain chords or 
scales. PCVs rather have small but positive weights for out-of-scale notes and larger weights for 
in-scale notes. Their highest weight is commonly at the local tonic. Figure 8 visualizes the fifth 
coefficients of  all 24 major and minor keys, using the weights provided by Albrecht and 
Shanahan (2013). A comparison of  Figures 7e and 8 shows how the fifth coefficient differs 
between diatonic scales and keys. The root and the fifth are particularly prominent in major 
and minor keys, and minor keys tend to be more chromatic due to the notes from the dominant 
key such as the leading tone. Therefore, minor keys are pulled away counter-clockwise from 
their scale, while major keys are pulled away in the clockwise direction.

In sum, the interpretations of  the six coefficients resonate well with music-theoretical 
descriptions (Amiot, 2016; Lewin, 2001; Yust, 2019b) and empirical findings (Honingh & Bod, 
2010, 2011), as the chromatic circle and the circle of  fifths are fundamental structures for 
Western classical music and jazz (Aldwell et al., 2010; Rohrmeier, 2020). Furthermore, the 
highly dissonant harmonies of  post- and atonal music (Straus, 2005) maximize magnitudes for 
the first two coefficients. In contrast, hexatonic and octatonic scales are in frequent usage in 
late Romantic music (Cohn, 2012; Lendvai, 1971), and the whole-tone scales are emblematic 
for 20th-century impressionism (Tresize, 2017).

Analytical case studies

To show the applicability and interpretability of  wavescapes, we use them to analyze eight 
pieces, namely

1.	 Liszt’s Faust Symphony, S. 108
2.	 Josquin’s motet Ave Maria
3.	 Bach’s Prelude in C major BWV 846 no. 1
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Figure 7.  Prototypes for the different coefficients.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.
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4.	 Chopin’s Prelude in A minor op. 28 no. 2
5.	 Scriabin’s Prelude op. 74 no. 2
6.	 Coltrane’s Giant Steps
7.	 Webern’s Variations for Piano no. 1
8.	 Ligeti’s Études pour Piano no. 2

The examples are not presented in historical order; the focus of  each case study is rather to 
highlight interesting analytical details of  the individual pieces. Also, not all pieces are discussed 
at the same level of  detail. The Faust Symphony is discussed most extensively. For the remaining 
case studies, we present selected observations and show only the corresponding wavescapes in 
the main text. The wavescapes for all six coefficients and all pieces are shown in Figures 19–26 
in the Appendix. Moreover, Table 1 in the Appendix shows the average normalized magnitudes 
for all pieces and coefficients.

Liszt’s Faust Symphony, S. 108

The opening of  the first movement of  Liszt’s Faust Symphony (bars 1–22, Lento assai, 4/4 time 
signature) presents harmonic material that reflects Liszt’s shift from a diatonic towards a chro-
matic conception of  tonality during the second half  of  the 19th century.8 For the visualization 
in the wavescapes we chose a resolution of  one quarter-note.

Previous analyses of  this symphony likewise focus on the first movement and consider its 
global structure to be determined by three main pitches, C, E and A♭(Longyear & Covington, 
1986), which together form the A♭augmented triad. Since augmented triads are not contained 
in the natural diatonic scale (Bribitzer-Stull, 2006; Weitzmann, 1853), keyscapes that rely on 
on diatonic key-finding algorithms do not generate a satisfying analysis of  this piece (see Figure 
2 and the discussion there).

Figure 8.  Fifth coefficients for diatonic major and minor keys.
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In contrast to Longyear and Covington (1986), Cohn (2012) and Argentino (2018) 
analyze the opening as an example for the usage of  hexatonic scales, composed of  the two 
augmented triads A♭-C-E and C♯-F-A. The wavescapes can help to evaluate these similar 
but different analyses. Augmented triads are prototypes for the third and sixth coefficient 
(see “Prototypes and their musical interpretation”). If  the augmented triad were the most 
significant harmonic structure, one would expect maximal magnitudes for both the third 
and sixth coefficients (Figures 9a and 9b). A comparison of  the average normalized magni-
tudes of  these coefficients (α3 =.652  and α6 =.172 ) reveals that the third coefficient is 
more relevant, as indicated by the overall high opacity in Figure 9a. This color represents 
the hexatonic scale H0,1 = (1,1,0,0,1,1,0,0,1,1,0,0) , which supports the hexatonic 
analysis.

For the other coefficients (see Figure 19 in the Appendix), the wavescapes increasingly fade 
out towards the upper levels. This implies that larger and larger segments of  the opening 
become dissimilar to the prototypes for all coefficients except the third. The large-scale struc-
ture of  the opening is thus governed by the hexatonic scale H0,1 .

In order to illustrate the analytical usefulness of  wavescapes also on local levels, we now focus 
on bars 1–2 (without upbeat) and bars 3–4, which introduce the main motive of  the first move-
ment that represents the character of  Faust. These regions are highlighted in Figure 9a by black 
triangles and shown individually in Figures 10a and 10b, alongside a piano transcription.

The first two measures are remarkable in that they use all 12 pitch classes in a very system-
atic fashion. With the exception of  the initial A♭, the Faust motive comprises four augmented 
triads that together form the chromatic scale, effectively resulting in a 12-tone row. Each seg-
ment at the bottom of  the wavescape shown in Figure 10a corresponds to the duration of  an 
eighth-note. Segments that correspond to the single notes as well as to augmented triads are 
completely opaque since both maximize the normalized magnitudes for the third coefficient. 
Moreover, notes that belong to a common augmented triad are colored identically. The colors 

Figure 9.  Wavescape for Liszt’s Faust Symphony (S. 108), third and sixth coefficient (resolution of an 
eighth-note).
(a) Third coefficient.
(b) Sixth coefficient.
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green, cyan, purple, and red correspond to D+ (φ π3 = ), D♯+ (φ π3 =
3
2

), C+ (φ3 =0 ), and 

C♯+ (φ π3 =
1
2

), respectively (see Figure 7). Bar 1 contains the augmented triads D♯+ and D +  

that together form the hexatonic scale H2,3 = (0,0,1,1,0,0,1,1,0,0,1,1) . The diamond that cor-
responds to bar 1 is therefore colored turquoise (see Figure 7c). Analogously, bar 2 expresses 
H0,1 = (1,1,0,0,1,1,0,0,1,1,0,0)  and is colored pink. Moreover, these hexatonic scales are com-
plementary; they partition the full chromatic scale. Consequently, the leftmost diamond on 
third topmost row that represents the entire first two bars (except the final C) is completely 
white with a normalized magnitude of  0 .9 Including the final C produces the light red color of  
the topmost diamond in Figure 10a.

Bars 3 and 4 consist almost entirely of  an arpeggiation of  C+, followed by C♯ + in the sec-
ond half  of  bar 4. As before, those are reflected in the maximal opacity of  the corresponding red 
and purple areas in the wavescape in Figure 10b. Together, these augmented triads form the 
hexatonic scale H0,1  whose phase corresponds to pink. As mentioned above, this pink hue is 
also the dominating color for the opening of  the symphony. In contrast to the first two bars (see 
Figure 10a) where Liszt rotates through all augmented triads, the tonal material used in bars 
3–4 presents the overall tonality of  the piece (Longyear & Covington, 1986; Cohn, 2012; 
Argentino, 2018), so that the initial four bars of  the first movement can be interpreted as estab-
lishing a hexatonic tonality, in analogy to the establishment of  a key at the beginning of  tonal 
pieces (e.g. Bach’s C-major prelude, see Figure 3 and the analysis below).

The motivic material of  bars 1–11 is repeated in bars 12–22 in a transposed version. 
Specifically, the repetition of  bars 1–2 in bars 12–13 is transposed down a major third. In bar 
14, the repetition of  the arpeggiated C+ from bar 3, Liszt repeats the penultimate note, which 

Figure 10.  Wavescape and scores for the opening of Liszt’s Faust Symphony (S. 108), third coefficient 
(resolution of an eighth-note).
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results in the transposition of  the subsequent material by a major third up. The changes 
obtained by major-third transpositions are not visible in the wavescape for the third coefficient 
in Figure 9a because they remain within the same hexatonic and thus do not change the over-
all tonality.

However, the major-third transpositions are clearly visible through the wavescape of  the first 
coefficient (Figure 11) that represents the chromatic circle. The main pitch classes A♭, E, and 
C correspond to the green, blue, and red areas, respectively, according to the color mapping in 
Figure 7a. The upper part of  the first coefficient’s wavescape fades into white because the main 
pitch classes form a symmetric chord (an augmented triad) and are used similarly often in the 
opening bars—they cancel each other out.

Josquin: Motet Ave Maria (1475)

Josquin’s motet Ave Maria serves as a model for for Renaissance counterpoint.10 The time signa-
ture of  this piece is 2/1 and it consists of  163 bars in modern notation; we chose a resolution of  
one breve (two whole-notes) for the wavescape plots of  this motet. As one would expect, the 
tonal material in this piece is largely diatonic with some exceptions where accidentals (ficta) are 
used for particular cadential circumstances, for instance to strengthen leading-tone tensions.

Consequently, the fifth coefficient has the strongest average normalized magnitude (α5 =.61 ). 
This indicates that the piece’s tonal material is predominantly drawn from Guido’s hexachord 
(α5 =.64 ) rather than from a diatonic scale (α5 =.53 ; see Figure 7). This value is large in 
comparison with the other excerpts, only rivalled by the value for the third coefficient of  the 
Faust Symphony (α3 =.65 ). As we have seen above, the introduction of  the symphony is par-
ticularly systematic in its use of  the augmented triad, reflecting early characteristics of  Liszt’s 
“experimental idiom” (Forte, 1977, p. 209). In the case of  Josquin’s motet, the relatively high 
average normalized magnitude indicates that it is an almost entirely diatonic composition. 
This, of  course, is highly conventional for the Renaissance.

The overall tonal unity of  the piece, its close adherence to a single diatonic scale, and the lack 
of  modulations are immediately evident in Figure 12 as shown by the dominance of  the orange 

Figure 11.  Wavescape for Liszt’s Faust Symphony (S. 108), first coefficient (resolution of an eighth-note).
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color. On the lower levels of  the wavescape one can see patches of  red and green. While the 
overall key of  this piece is C major, its internal cadences may refer to scale degrees other than 
the tonic. Moreover, cadences in the Renaissance often conclude on perfect sonorities such as 
octaves or fifths and not on major or minor triads as in later epochs. The bright green and red 
areas correspond to local cadences on E and C, respectively, where the pitch-class set consists 
only of  a perfect fifth (E-B and C-G, see Figure 7e). The latter is particularly prominent at the 
end of  the piece where the fifth C-G is held for six entire bars. Note that the coloring of  this 
interval is different than the one for the C major key (see Figure 8). Anticipating what the anal-
yses of  the following pieces will show, we conclude that this piece is very homogeneous with 
only some minor local deviations from the key of  C major that governs its overall structure.

Bach: Prelude in C major BWV 846 (1722)

Bach’s Prelude in C major from the Well-Tempered Clavier I (1722) is a popular piece for analy-
sis (e.g., Schenker, 1933).11 Its time signature is 4/4 and it consists of  35 bars. We focus our 
analysis on the fifth coefficient using a resolution of  one quarter-note. This coefficient has 
highest average normalized magnitude (α5 =.533 , see also Table 1) because the prelude is a 
largely diatonic piece. Figure 13a shows the wavescape for the fifth coefficient of  the prelude; 
it resembles that of  Josquin’s Ave Maria, in particular on the higher levels colored in bright 
orange.

However, the harmonic structure of  the two pieces differs in several details, which become 
apparent upon a closer look at the more local levels of  the wavescapes. The initial four bars of  
the prelude consist of  a cadence in C major, thus establishing its main key, which is then pro-
longed in the following bars until another cadence in the tonic key in bar 19. The correspond-
ing section of  the wavescape in Figure 13a displays a yellow sub-triangle, visualizing the key of  
C major with some green parts which stand for dominant chords or tonicizations of  G major 
(see Figure 7e). The overall color of  this section is yellow or a very bright orange, as one would 
expect from a Baroque piece in C major. Subsequently, the piece shifts to the plagal side of  C 
(towards F) in bars 20–21, shown in bright red. A similar shift appears again shortly before the 
end of  the piece in bars 32–33 before the final cadence on the global tonic. An other interesting 

Figure 12.  Wavescape for Josquin’s Ave Maria (c. 1484), fifth coefficient (resolution of a whole-note).
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detail is that the wavescape distinguishes between the modulation to G major in bars 5–11 
(shown in yellow-green) and the extended dominant in bars 24–31 (shown in orange-red), 
caused by the presence of  F# and F natural, respectively.

The wavescapes for the third and fourth coefficients (Figures 13b and 13c, respectively) pro-
vide further analytical insights about the local harmonic structure of  the prelude. Even though 
the global opacity of  the colors is generally lower than in the fifth coefficient, the lower levels 
have very high opacities. This indicates that almost each bar in the piece contains a triad or a 
seventh chord (see Figure 6). Moreover, these two wavescapes show much more frequent phase 

Figure 13.  Wavescape for Bach’s Prelude in C major Prelude (BWV 846), fifth, third, fourth and first 
coefficient (resolution of a quarter-note).
(a) Fifth coefficient.
(b) Third coefficient.
(c) Fourth coefficient.
(d) First coefficient.
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changes, reflecting the fast harmonic rhythm (change of  harmony every bar, applied domi-
nants, etc.).

The pedal point on G in bars 24–31 leads in the third coefficient to a large greenish region 
towards the end of  the piece. In accordance with Schenkerian theory (Cadwallader & Gagné, 
1998), this represents the harmonic function of  a prolonged dominant of  the chords involved. 
Whereas this region was not prominent in the fifth coefficient because the G7 chord is part of  
the main key of  the piece, it does stand out in the third coefficient because here we observe local 
changes between triads.

A final insight into the harmonic structure of  this piece can be drawn from the wavescapes 
of  the first coefficient. It shows a smooth color transition from pink in bar 1 to dark blue in bar 
16 (see Figure 13d), encompassing all the colors on the spectrum between these two poles in a 
counter-clockwise phase change (see Figure 7a). This transition is mainly caused by the dia-
tonically descending line in the bass and tenor (left hand). The pattern is broken in bars 9–10 
and 17–18 where G major and C major are approached by two falling fifths to strengthen the 
cadential arrivals on the dominant and the tonic, respectively.

Chopin’s Prelude in A minor op. 28 no. 2

Chopin’s Prelude op. 28 no. 2 is an unusual piece. With only 23 bars in a 4/4 time signature, it 
is one of  the shortest of  Chopin’s preludes.12 Its key signature is A minor but the tonality of  the 
piece is notoriously difficult to determine (Hoyt, 1985). For the visualization in the wavescapes 
we chose a resolution of  one quarter-note. The wavescapes with the highest normalized mag-
nitudes for the Prelude are the fourth (α4 =.329 ) and the fifth (α5 =.451 ) coefficients.

The fourth coefficient (Figure 14a) displays few colors with strong opacity which are, from 
left to right, blue, green-cyan, red, green, and finally pink. These hues indicate the dimin-
ished seventh chords or octatonic scales that the respective segments resemble most closely 

Figure 14.  Wavescape for Chopin’s Prelude in A minor op. 28 no. 2, fourth and fifth coefficient 
(resolution of a quarter-note).
(a) Fourth coefficient.
(b) Fifth coefficient.
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(see Figure 7). For example, the blue area in bars 1–3 is an E minor chord plus an A♯that can 
also be seen as a diminished triad on E plus B. The segment in bars 4–8 is more heterogeneous 
on the local level but on higher levels groups to a green-cyan part of  the wavescape, indicat-
ing that the diminished chord on D is salient in this region. The subsequent red section from 
bar 9 to bar 15 is largely governed by pitch classes from the diminished chord C-D♯-F♯-A. 
This chord never occurs in its entirety in this section but only in parts, and the wavescape 
reveals how its member notes tie the segment together in bars 9–15, even though they are 
never present at the same time. This diminished chord thus lies at a structurally higher level 
than the surface of  the music. The following green region in bars 17–22 is relatively strong, 
which indicates that the pitch classes F, D and B occur relatively frequently. The A minor 
chord that concludes the piece in bar 23 is shown in pink.

The wavescape for the fourth coefficient shows the existence of  a mirror axis around the the 
center of  the piece (only approximately, since the pink parts of  the end do not mirror the blue 
parts of  the beginning). This symmetry is easy to overlook in a traditional analysis of  the score 
since it is somewhat disguised by different textures. Because wavescapes only consider the tonal 
content, they abstract from the concrete realizations of  the musical material and are able to 
capture more general relations.

The fifth coefficient shown in Figure 14b displays mainly green and yellow colors. This indi-
cates the use of  notes predominantly from the keys of  A minor and E minor (see Figure 8). Bar 
17 stands out with its bright red color. The melodic line in this bar contains the pitch classes F, A, 
C and G, which form an F major triad (plus ninth) that is not part of  the E minor scale. This seg-
ment thus deviates strongly from the overall green color. The deviation marks an important 
point in the piece, which is further supported by a change of  texture to a monophonic line in the 
right hand.

As mentioned before, the prelude is known for being ambiguous in terms of  its key. While its 
key signature indicates A minor, its first bars appear to be in E minor, the right-hand melody 
does not emphasize a tonal center clearly, and triadic harmonies are perturbed by chromatic 
neighbor notes (except in the final bars of  the piece). However, the relatively homogeneous 
color of  the wavescape for the fifth coefficient indicates that the pitch-class content of  A minor 
is used on multiple levels in the prelude. This supports the view that the piece can be regarded, 
overall, as being in A minor.

Scriabin’s Prelude op. 74 no. 2

Scriabin’s Prelude op. 74 no. 2 for piano (Très lent, contemplatif)13 was written in 1914, shortly 
before the composer’s death. Its time signature is 4/8 and it consists of  17 bars. For the visuali-
zation in the wavescapes, we chose a resolution of  one quarter-note. Overall, this short piece 
has a homogeneous tonality and largely features unconventional harmonies and melodic lines. 
Both aspects are expressed in the particular color patterns of  the corresponding wavescapes 
that reveal many details of  the tonal structure of  the piece. The largest average normalized 
magnitudes is α4 =.375  (see Table 1 in the Appendix). Visually, this corresponds to the high 
opacity of  the fourth coefficient’s wavescape shown in Figure 15a.

The high magnitude α4  suggests that diminished seventh chords and octatonic scales 
are of  high relevance for the tonal structure of  the piece. The score of  the prelude shows 
that, indeed, the piece is governed by an overarching octatonic scale, namely 
O0,1 = (1,1,0,1,1,0,1,1,0,1,1,0) . The fact that the wavescape of  the fourth coefficient is rela-
tively homogeneous both in hue and opacity confirms that an octatonic scale governs this 
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piece on virtually all hierarchical levels. The dominant pink color in this wavescape corre-
sponds exactly to the mentioned octatonic scale, as can be seen in Figure 7d. Additionally, 
there are four pitch classes that are not part of  the octatonic scale O0,1

, namely B, D, F and 
G♯, all of  which do eventually occur in the piece. Those pitch classes form a fully diminished 
triad D7  that is exactly opposite to O0,1

 according to the fourth coefficient, as shown in 
Figure 7d.

One might be misled by the almost uniform character of  the piece to overlook some of  the 
more intricate harmonic aspects that become apparent upon a closer look at the wavescape. 
Figure 15b shows the wavescape for bars 8–11 of  Scriabin’s prelude. The members of  the D 
diminished-seventh chord appear in those bars, but the wavescape of  the section does not con-
tain any shades of  green—the color of  Dº 7  for the fourth coefficient (see Figure 7d). Instead, 
some triangles are colored in shades of  purple and orange. A close reading of  the pitch-class 
content of  bars 10 and 11 explains the absence of  a green hue despite the presence of  out-of-
scale pitch classes. The second half  of  bar 10 contains G♯, E♯and D, thus all members of  Dº 7  
except B, whereas the first half  of  bar 11 contains B, E♯ and D, thus all members of  the fully 
diminished chord except G♯. The members of  the diminished chord pull the color from the 
octatonic pink in the green direction towards the white center (see Figure 7d). The absence of  
pitch classes B and G♯corresponds to a slightly leftward (in the blue direction, resulting in a 
purple hue) and rightward (in the red direction, resulting in an orange hue) direction, 
respectively.

While this piece is locally volatile and features chromatic passing notes and fluctuations 
between the octatonic scale and its complementary diminished seventh chord, its overall tonal 
stability is remarkable and clearly expressed by the homogeneous color of  the wavescape for the 
fourth coefficient.

Figure 15.  Wavescape for Scriabin’s Prelude op. 74 no. 2, fourth coefficient (resolution of a quarter-
note).
(a) Fourth coefficient.
(b) Zoom-in to mm. 8–11.
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Coltrane’s Giant Steps

The next case study focuses on the jazz tune Giant Steps by John Coltrane.14 The time signature 
is 4/4 and one chorus consists of  16 bars. For the visualization of  the wavescapes, a resolution 
of  one quarter-note was chosen. Similarly to the Faust Symphony, the wavescape standing out 
the most is the one of  the third coefficient with an average normalized magnitude of  α3 =.333. 
The second strongest is the fifth coefficient with α5 =.215 . We therefore concentrate our 
analysis on those two wavescapes.

The harmonic structure of  the piece is very regular. It consists of  ii-V-I progressions in the 
keys of  G, E♭ and B which are related by major thirds, to which the title of  the piece might 
allude (Weiskopf  & Ricker, 1991; Goodheart, 2001). Since each ii-V-I progression establishes a 
local key, the PCVs representing those progressions each have a homogeneous but distinct col-
oring for the fifth coefficient. They are clearly visible as regularly alternating green, purple and 
blue areas on the lower levels of  Figure 16a.

The almost uniform coloring of  the wavescape for the third coefficient shown in Figure 16b 
is remarkable. The tonics of  the local keys form an augmented triad—the prototype of  the third 
coefficient—which explains the large average magnitude α3 . The augmented triad E♭-G-B 
corresponds to the mint color (see Figure 7c) and the wavescape elegantly visualizes the extent 
to which this triad is characteristic of  the piece.

Webern and Ligeti

We now investigate whether the wavescape visualizations are useful for the analysis of  20th-cen-
tury post-tonal music. Specifically, we compare the wavescapes of  Webern’s serial composition 
Variations for Piano op. 27 no. 1 (Sehr mäßig),15 and Ligeti’s Études pour Piano no. 2 (Cordes à vide).16

Webern’s piece has a time signature of  3/16 with 54 bars in total and we chose a resolution 
of  one 16th note. For Ligeti’s piece, which has no written time signature but contains 39 bars 
of  a 4/4 duration,17 we chose a resolution of  one quarter-note.

Figure 16.  Wavescape for Coltrane’s Giant Steps, fifth and third coefficient (resolution of a quarter-note).
(a) Fifth coefficient.
(b) Third coefficient.
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The purpose of  the 12-tone technique, employed in Webern’s Variations, is to avoid estab-
lishing a key or any sense of  key. In the words of  Schoenberg, “[a] style based on this premise 
treats dissonances like consonances and renounces a tonal center” (Schoenberg, 1950,  
p. 105). This compositional technique defines the succession of  all 12 pitch classes a priori 
without any further tonal considerations such as consonance, dissonance, or stacked thirds 
(Covach, 2002; Wason, 1987). Consequently, the average normalized magnitude for the 
fifth coefficient is very small (α5 =.046 ) and indeed minimal among all the coefficients for 
this piece (see Table 1).

Since each 12-tone row consists of  all chromatic pitch classes, their corresponding color is 
almost white (not entirely due to varying note durations). This also affects the overall opacity of  
all wavescapes for this piece; the largest average normalized magnitude is α2 =.080  and the 
smallest is α5 =.046  (shown in Figure 17 for comparison with Ligeti). Only on a very local 
level can one observe larger magnitudes, caused by consonant co-occurrences of  certain pitch-
classes. The colored patches at the lower levels of  this composition do not extend to larger time 
spans because their tonal material is not diatonic (in contrast to previous analyses of  the fifth 
coefficient). The keyscape analyses of  this piece by Sapp (2001, 2005) also show a lack of  struc-
ture. Our approach generalizes this finding by showing that the piece does not lead to high 
magnitudes for any of  the Fourier coefficients.

The wavescapes for Ligeti’s étude look very similar at first sight (compare Figures 26 and 25 
in the Appendix). All wavescapes are rather faded out due to overall small average normalized 
magnitudes (largest: α5 =.105 , smallest: α6 =.037 ). This is somewhat surprising since the 
étude largely consists of  chains of  perfect fifths (Polth, 2016) that should give rise to high mag-
nitudes in the fifth coefficient. For example, the first group of  notes in the right hand is A-D-G-
D-A-D, and the first one in the left hand is C-F-E♭-B♭. Although the union of  these two chains 
would fit perfectly into the diatonic scale of  B♭ major, longer chains as well as the superposi-
tion of  several chains introduce chromatic steps that obfuscate the underlying organization by 
fifths. The only exception occurs in the final two bars (37–38), where the left hand plays alone 
and the magnitudes are very high (see Figure 18) because they contain only the notes B♭-F-
E-A. These notes span the F major diatonic scale B♭-F-C-G-D-E-A. Since G is in its center, the 
hue of  the wavescape in these two bars corresponds to the hue for G (see Figure 7e).

Figure 17.  Wavescape for Webern’s Variations for Piano, fifth coefficient (resolution of a 16th note).
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A limitation of  the present approach is caused by the vertical partitioning of  the pieces into 
contiguous segments in time, which fragments horizontal structures such as the chains of  
fifths in Ligeti’s étude and the 12-tone rows in Webern’s variation. However, because chains of  
fifths generally have high magnitudes in the fifth coefficient (see Figure 7e), the respective 
wavescape shows a succession of  colors that loosely corresponds to the structure of  the étude 
(see also the wavescape of  the first coefficient, shown in Figure 25 in the Appendix). In con-
trast, Webern’s 12-tone rows cause lower magnitudes already on low levels of  the fifth coeffi-
cient (shown in Figure 17). Furthermore, none of  the coefficients for Webern’s variation exhibit 
high magnitudes because of  the equal usage of  all twelve pitch classes in this piece. If  it were 
additionally the case that, for some segments, each pitch class would also have the same dura-
tion, the corresponding parts of  the wavescape would be perfectly white. We expect other serial 
compositions to have similarly transparent and colorful wavescapes. More insightful analyses 
thus require additional tools such as set theory or voice-leading analysis (e.g., Straus, 2005).

Discussion

As the case studies have demonstrated, wavescapes extend the methodological toolkit of  music 
analysis in several ways. They combine the hierarchical representation of  a piece of  music 
(such as in keyscapes) with the insights obtained from the application of  the DFT to pitch-class 
sets. Since the DFT maps pitch-class sets to a continuous color space, wavescape plots are more 
fine-grained than keyscapes based on templates that rely on categorical labels. Wavescapes 
offer a new methodology for analyzing the tonality of  a piece without relying on predefined 
templates (such as major/minor key profiles) and thus expand the application also to extended 
tonal styles. As such, they do not rely on relatively narrow music-theoretical concepts that are 
most appropriate only for the common-practice era (such as “key”) but offer a more general 
approach to the tonality of  pieces through the different Fourier coefficients.

However, the wavescape methodology is somewhat limited in the scope of  its possible appli-
cations. For example, it might not provide many insights into atonal works or musical styles 
that are based on musical properties other than pitch, for instance rhythm or timbre. 
Furthermore, the quality and thus the interpretability of  wavescapes relies on an accurate 

Figure 18.  Wavescape for Ligeti’s Études pour Piano no. 2, fifth coefficient (resolution of a quarter-note).
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representation of  the pitch-class content of  a piece which can either be extracted directly from 
a symbolic encoding or inferred from audio data. Whether one considers note durations or 
counts can also influence the wavescapes considerably.

A quantitative comparison of  multiple wavescapes—either of  different coefficients for the 
same piece or of  the same coefficient for different pieces—might also be challenging. While 
wavescapes are derived deterministically from their pitch-class input, they are difficult to inter-
pret on their own, and one is often required to consult the score or a recording of  the piece. 
Moreover, the DFT requires a circular representation such as pitch classes for its input. This 
entails the assumption of  octave and enharmonic equivalence, which might be a serious limita-
tion for some music-analytical aims.

However, the fact that the DFT is applied to circular data enables the potential application of  
wavescapes to other domains, in particular meter and rhythm where circular representations 
are commonplace (Milne et al., 2015, 2017). The perceptual relevance of  the DFT for rhythms 
has been demonstrated by Milne and Herff  (2020) and it is promising to apply the DFT in psy-
chological studies in the domain of  pitch. The cognitive relevance of  the DFT in this domain is 
plausible because it separates the transpositionally invariant structure of  chords and scales 
form their realization in absolute pitches.

One can also conceive of  further benefits of  wavescapes apart from visualization. The colors 
of  the segments in a wavescape provide numerical values for the phases and magnitudes of  the 
involved pitch-class sets from which a number of  statistics can be derived (see e.g., Table 1 in the 
Appendix for the average normalized magnitudes). This can constitute a basis for large-scale 
corpus studies and applications of  more rigorous statistical methods, for example to compare 
composers and historical periods (for a related approach based on interval classes, see Weiß 
et al., 2019, and Harasim et al., 2021).

Another possible adaptation could be applications to music that are based on tuning systems 
other than 12-tone equal temperament or that divide the octave by numbers other than 12. This 
would result in new prototypes for the coefficients, as they would represent new even chords in 
those tuning systems and might provide novel insights into non-Western musical styles.

Conclusion

This article presented a novel visualization method for hierarchical music analysis using the 
discrete Fourier transform (DFT) called wavescapes. Wavescapes permit the relevance of  par-
ticular tonal structures in pieces of  music to be observed easily at several hierarchical levels. 
This bottom-up approach augments and complements detailed analyses of  a score. With the 
added knowledge of  the interpretations of  the respective Fourier coefficients, the tonality of  a 
composition can be understood by comparing the wavescapes for the different coefficients. In 
particular, it is possible to disentangle complementary aspects of  a piece by considering several 
wavescapes. Since the DFT is a deterministic mapping from pitch-class content into Fourier 
space, it provides an objective summary of  the piece. However, music-theoretical expertise is 
still required for analysis and interpretation. Finally, we provide a free open-source visualization 
library that enables this method to be used easily, for example by music theorists in their own 
research or students in the classroom.

Acknowledgements

The authors thank Christoph Finkensiep, Johannes Hentschel, Steffen Herff, Robert Lieck and Andrew 
McLeod, as well as Thomas Noll and Jason Yust for their support and valuable feedback. We also thank 
the editor Jane Ginsborg and two anonymous reviewers for their helpful comments and suggestions.



26	 Musicae Scientiae 00(0)

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or 
publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or 
publication of this article: This project has received partial funding from the European Research Council 
(ERC) under the European Union’s Horizon 2020 research and innovation program under grant agree-
ment no. 760081-PMSB. It was also partially funded through the Swiss National Science Foundation 
(SNF) within the project “Distant Listening – The Development of Harmony over Three Centuries (1700–
2000)” (grant no. 182811). The authors thank Claude Latour for supporting this research through the 
Latour Chair in Digital Musicology at EPFL.

ORCID iDs

Cédric Viaccoz  https://orcid.org/0000-0001-6825-1082

Fabian C. Moss  https://orcid.org/0000-0001-9377-2066

Notes

  1.	 This figure was created using the method presented by Sapp (2005) with a modified color scheme.
  2.	 Note that the pitch scape representation introduced by Lieck and Rohrmeier (2020) provides an inher-

ently time-continuous approach to modeling hierarchies of  pitch-class vectors.
  3.	 A saturation mapping is also possible, but produces visualizations of  inferior quality, overall, in visual 

quality compared to the opacity mapping.
  4.	 Amiot (2020) uses the normalization αk j

X k X j=| [ ]|  / | [ ]|2

=1

11 2∑  for k =1, ,11 .

  5.	 There are finer distinctions to be made. For example, Quinn (2006, 2007) introduces primary, sec-
ondary and tertiary prototypes. This differentiation is not relevant in the present context but may be 
explored in more detail in the future. Here, we always refer to first order prototypes.

  6.	 Some of  these scales have been identified by Messiaen (1944) as modes of  limited transposition.
  7.	 The natural hexachord has the largest unnormalized magnitude of  all pitch-class sets, which is why 

some authors consider it to be the prototype for this coefficient (Noll, 2019).
  8.	 The score can be found at https://imslp.org/wiki/Special:ReverseLookup/9300.
  9.	 Since C and A♭belong to the same augmented triad, removing the final C in bar 2 results in a per-

fectly balanced distribution of  pitch classes in which each augmented triad has a total duration of  a 
dotted quarter-note.

10.	 The score can be found at https://imslp.org/wiki/Special:ReverseLookup/499533.
11.	 The score can be found at https://musescore.com/classicman/scores/210606.
12.	 The score can be found at https://imslp.org/wiki/Special:ReverseLookup/85374.
13.	 The score can be found at https://imslp.org/wiki/Special:ReverseLookup/75281.
14.	 There exist no authoritative scores or transcriptions for many jazz pieces from which one could gener-

ate wavescapes. For this reason, we took a publicly available arrangement of  this piece for jazz trio. 
The score is available at https://musescore.com/user/3142241/scores/1646501.

15.	 The score can be found at https://musescore.com/r_d/scores/5522950.
16.	 Ligeti’s Études are still subject to copyright. We commissioned a professional transcription of  the sec-

ond étude for our analysis.
17.	 The final bar of  the piece is empty. For this reason, it is not displayed in the wavescapes because it does 

not have any pitch-class content.
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Appendix

Table 1.  Average normalized magnitudes αk
 ( ±  standard deviations) for Fourier coefficients k =1, ,6  

and all analyzed examples.

k 1 2 3 4 5 6

Liszt .179( .031)± .157( .028)± .652( .014)± .188( .022)± .163( .021)± .172( .047)±

Josquin .127( .012)± .272( .006)± .322( .009)± .117( .012)± .611( .002)± .094( .014)±

Bach .228( .018)± .245( .017)± .252( .023)± .191( .023)± .533( .009)± .138( .023)±

Chopin .098( .015)± .224( .013)± .309( .023)± .329( .028)± .451( .013)± .175( .016)±

Scriabin .093( .003)± .302( .014)± .234( .007)± .375( .003)± .120( .018)± .220( .006)±

Coltrane .081( .004)± .097( .009)± .333( .006)± .088( .005)± .215( .028)± .151( .009)±

Ligeti .055( .004)± .078( .008)± .062( .007)± .053( .004)± .105( .015)± .037( .003)±

Webern .082( .014)± .092( .020)± .068( .010)± .068( .013)± .056( .009)± .078( .013)±
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Figure 19.  Wavescapes for Liszt’s Faust Symphony (S. 108), resolution of an eighth-note.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.
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Figure 20.  Wavescape for Josquin’s Ave Maria, resolution of a whole-note.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.
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Figure 21.  Wavescape for Bach’s Prelude in C major, resolution of a quarter-note.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.
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Figure 22.  Wavescape for Chopin’s Prelude in A minor op. 28 no. 2, resolution of a quarter-note.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.
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Figure 23.  Wavescape for Scriabin’s Prelude op. 74 no. 2, resolution of a quarter-note.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.
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Figure 24.  Wavescape for Coltrane’s Giant Steps, resolution of a quarter-note.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.
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Figure 25.  Wavescape for Ligeti’s Études pour Piano, no. 2, resolution of a quarter-note.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.
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Figure 26.  Wavescape for Webern’s Variations for Piano no. 1, resolution of a 16th note.
(a) First coefficient.
(b) Second coefficient.
(c) Third coefficient.
(d) Fourth coefficient.
(e) Fifth coefficient.
(f) Sixth coefficient.


