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JIMWLK evolution equation

Basic facts
JIMWLK equation describes the non-linear small-x evolution
it uses Wilson lines as fundamental degrees of freedom
two-point correlation function ⟨U†(x)U(y)⟩ gives the dipole
amplitude
two-point correlation functions with derivatives provide a basis for
small-x TMD structure functions
initial condition corresponds to a configuration of Wilson lines
numerically useful reformulation as a Langevin equation

Langevin formulation

U(x,s+δ s) = exp

(
−
√

δ s∑
y
U(y,s)(K(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)× exp

(
√

δ s∑
y

K(x−y) ·ξ (y)

)
.
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Initial condition from the McLerran-Venugopalan model

Numerical prescription

discretize the transverse plane with a lattice spacing a

introduce finite volume L by imposing periodic boundary conditions
on each lattice site generate ρ(x) = ρ(x)aλ a such that
g2⟨ρ(x)aρ(y)b⟩= δ abδ nlδ (x−y)g4µ2

solve the Yang-Mills equations (Poisson equation) to get the Wilson
lines

Uab(x) = exp
(
−igAab(x)

)
= exp

(
−i

gρab(x)
∇2−m2

)
,

Parameters

dimensionful physical parameters: g2µ, L, m, a
dimensionless combinations:

a g2µ

L g2µ

m/g2µ

use g2µ as units, later should be obtained from fit to data as Λ/g2µ
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Initial condition from the McLerran-Venugopalan model

MV model on a small torus
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Figure: Dipole amplitude in the MV model on a small torus. Lg2µ = 30.72,
L/a= 512.
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Initial condition from the McLerran-Venugopalan model

MV model on a large torus
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Figure: Dipole amplitude in the MV model on a large torus. Lg2µ = 983.04,
L/a= 16384.

Dipole amplitude with collinearly improved JIMWLK 5/ 14



Initial condition from the McLerran-Venugopalan model

Convergence of the dipole amplitude with volume
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Figure: Volume dependence of the dipole amplitude in the MV model on the
torus. Increasing torus size pushes the distribution to the left.
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Initial condition from the McLerran-Venugopalan model

Convergence of the saturation radius with volume
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Figure: Volume dependence of the dipole amplitude in the MV model on the
torus. Extrapolation of the saturation radius to the infinite volume limit.
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Initial condition from the McLerran-Venugopalan model

Improved implementation
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Figure: Volume dependence of the dipole amplitude in the MV model on the
torus. The new method shows negligible finite size and lattice spacing effects.
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Including the evolution

Including the running coupling constant

U(x,s+δ s) = exp

(
−
√

δσ ∑
y
U(y,s)(

√
αK(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)× exp

(
√

δσ ∑
y

√
αK(x−y) ·ξ (y)

)

where
√

δ s =
√

δσ
√

α(|x−y|).

Coupling constant

αs(r) =
4π

β0 ln
{[( R2

initialµ
2
0

R2
initialΛ

2
QCD

) 1
c +
(R2

initial
r2

4e−2γE

R2
initialΛ

2
QCD

) 1
c
]c} ,

Summary of parameters

RinitialΛ with Rinitialg
2µ ≈ 1, Rinitialµ0, and Λ which provides the units.
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Saturation scale evolution speed

JIMWLK with running coupling
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Figure: RinitialΛ is the only parameter of the initial condition and of the
evolution. Coinciding data from evolution for different values of RinitialΛ
corresponds to geometrical scaling.
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JIMWLK evolution equation with collinear improvement

Collinear improvement

All order resummation of corrections enhanced by kinematical
constraints. Known from BFKL studies to be important to correctly
describe phenomenology.

Langevin equation formulation from Hatta, Iancu (2016)

At each point of the discretized transverse plane a Wilson line exists with
an additional index: the scale at which the final correlator is evaluated.

U(x,R,s+δ s) =

exp
(
−
√

δε ∑
y

√
αsθ(s−ρ

R
xy)U(y, R̂,s−∆R

xy )
[
Kxy ·ξ (y)

]
U†(y, R̂,s−∆R

xy )
)

×U(x,R,s)×

exp
(√

δε ∑
y

√
αsθ(s−ρ

R
xy)Kxy ·ξ (y)

)
,

ρR
xy = ln (x−y)2

R2 , ∆R
xy = θ

(
|x−y |−R

)
ρR

xy, R̂ =max(|x−y |,R), s = εαs .
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Saturation scale evolution speed
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Saturation scale evolution speed

JIMWLK with collinear improvement
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Figure: Preliminary results for the saturation scale evolution speed at
RinitialΛ = 0.1875 for different discretizations. Much lower intercept than
without the collinear improvement. Evolution at scales shorter than a should be
performed with another approach.
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Conclusions

Summary

JIMWLK equation provides a way to describe DIS data deep in the
low-x regime
numerical implementation and solution possible using the
reformulation in terms of Langevin equation
many systematic effects/ambiguities have to be studied and
understood
collinear resummation in place; rapidity evolution rate of the
saturation scale factor 3 smaller!

Outlook

collinear resummation/kinematical constraint in place and under
testing
phenomenological implications/applications in progress!
porting to GPGPU using openMP 5.0 offloading in progress!
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