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S U M M A R Y
Fibre-optic sensing based on transmission offer an alternative to scattering-based distributed
acoustic sensing (DAS). The ability to interrogate fibres that are thousands of kilometres
long opens opportunities for studies of remote regions, including ocean basins. However, by
averaging deformation along the fibre, transmission systems produce integrated instead of
distributed measurements. They defy traditional interpretations in terms of simple seismic
phases, thereby inherently requiring a full-waveform approach. For this, we develop a formal-
ism to calculate sensitivity kernels of transmitted optical phase changes with respect to (Earth)
structure using optical phase delay measurements. We demonstrate that transmission-based
sensing can effectively provide distributed measurements when optical phase delays are anal-
ysed in different time windows. The extent to which a potentially useful sensitivity coverage
can be achieved depends on the fibre geometry, and specifically on its local curvature. This
work establishes a theoretical foundation for tomographic inversions and experimental design
using transmission-based optical sensing.
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1 I N T RO D U C T I O N

Distributed acoustic sensing (DAS) is an emerging family of technologies that permits seismic data acquisition with high spatio-temporal
resolution and large bandwidth using fibre-optic cables (e.g. Hartog 2017; Lindsey et al. 2020; Paitz et al. 2021). The relative ease of deploying
cables in challenging terrain, and opportunities to co-use existing telecommunication infrastructure, have enabled seismological applications
that would have been substantially more difficult or expensive using conventional seismic instruments (e.g. Lindsey et al. 2017; Martin et al.
2017; Walter et al. 2020; Klaasen et al. 2021). While Rayleigh back-scattering allows DAS to achieve distributed measurements with an
effective channel spacing in the centimetre range, it also limits the length of the fibre that can be interrogated to several tens of kilometres.

Alternative systems based on optical transmission overcome this limitation by measuring deformation-induced changes of phase (Marra
et al. 2018; Bogris et al. 2021, 2022; Bowden et al. 2022) or polarization (Mecozzi et al. 2021). Reaching interrogation distances of thousands
of kilometres, opens new opportunities to study seismic activity and Earth structure in remote regions, including ocean basins. The main
drawback of transmission-based systems lies in the averaging of deformation along the fibre. Hence, in contrast to DAS, the measurement is
not distributed but integrated. It therefore remains unclear if transmission measurements could be used at all to infer Earth structure.

In the following sections, we develop a formalism for the calculation of sensitivity kernels for measurements of deformation-induced
optical phase delays. Using simple conceptual examples, we demonstrate that dissecting the phase delay time-series can effectively enable
distributed measurements, thereby providing a theoretical foundation for tomographic inversions and optimal experimental design.
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Figure 1. Schematic illustration of fibre deformation. The undeformed fibre, shown as black curve, is represented by the position vector x̂(s), which is
parametrized in terms of the arc length s ∈ [0, L]. The displacement field u[x̂(s), t] in blue moves x̂(s) to x̂(s) + u[x̂(s)]. The result is the deformed fibre in
grey. The local tangent vector e(s) is displayed as a thick black arrow. Upon deformation, an optical signal, shown in orange, acquires a phase change �φ(t).

2 T H E O R E T I C A L D E V E L O P M E N T S

We consider a fibre with position x = x̂(s) parametrized in terms of the arc length s ∈ [0, L], where L is the total length, as illustrated in
Fig. 1. In terms of the effective refractive index r(s), the vacuum speed of light c, and the circular frequency ω of the optical signal, its
time-dependent phase change θ (t) = �ϕ̇(t) can be represented in two equivalent forms (Bowden et al. 2022; Fichtner et al. 2022),

θ (t) = ω

c

∫ L

s=0
r (s) ε̇[x̂(s), t] ds = −ω

c

∫ L

s=0

d

ds
[r (s) e(s)] · u̇[x̂(s), t] ds , (1)

where an overdot denotes a time derivative. Eq. (1) relates the optical phase change θ (t) to the deformation of the medium, expressed in terms
of the displacement field u(x, t) or the axial component ε = e · E · e of the strain tensor E = (∇u + ∇uT )/2. The first variant of eq. (1) allows
us to compare transmission measurements θ (t) to axial strain rate measurements ε̇[x̂(s), t] from DAS. The second variant of eq. (1), which we
will use in the following paragraphs, exhibits the dependence of θ (t) on fibre curvature and spatial variations of the effective refractive index.

The dynamic fields u and ε depend on the distribution of medium properties, such as wave speeds and density, collected in the model
vector m(x) and omitted in the notation to avoid clutter. To infer a plausible m(x) from the comparison of observed and calculated phase
changes, θ obs and θ , we require a suitable measurement functional. Among numerous available options (e.g. Gee & Jordan 1992; Fichtner
et al. 2008; Bozdağ et al. 2011) we choose the cross-correlation time-shift within a windowed section of the phase change time-series (Luo
& Schuster 1991). We define the windowed cross-correlation as

C(τ ) =
∫ ∞

t=−∞
w(t) θ obs(t) θ (t + τ ) dt , (2)

where w(t) denotes a window function that isolates a selected part of the time-series. The time-shift T between the windowed versions of θ obs

and θ is defined as the value of τ where C(τ ) reaches its global maximum. Hence, by differentiating (2), we obtain

0 = Ċ(T ) =
∫ ∞

t=−∞
w(t) θ obs(t) θ̇ (t + T ) dt = −

∫ ∞

t=−∞
θ̇ obs
w (t − T ) θ (t) dt , (3)

with the convenient definition of the windowed phase change θ obs
w = wθ obs. Eq. (3) defines the measurement functional T implicitly. Variations

δm(x) of medium parameters induce variations δT of the measurement. Invoking implicit function differentiation, we obtain

δT = −
∫ ∞

t=−∞
θ̇ obs
w (t − T ) δθ (t) dt /

∫ ∞

t=−∞
θ̈ obs
w (t − T ) θ (t) dt . (4)

Making the common assumption that θ obs
w is approximately a time-shifted version of θw, that is θ obs

w (t − T ) ≈ θw(t) (e.g. Luo & Schuster
1991; Dahlen et al. 2000), we can simplify eq. (4) to

δT = ||θ̇ ||−2
w

∫ ∞

t=−∞
θ̇w(t) δθ (t) dt , (5)

with the squared norm ||θ̇ ||2w = ∫ ∞
t=−∞ w(t) θ̇ 2(t) dt . To relate variations of the measurement functional δT to variations in medium parameters

δm(x), we substitute the variation of eq. (1) into (5),

δT = −||θ̇ ||−2
w

∫ ∞

t=−∞

∫ L

s=0
θ̈w(t) a(s) · δu[x̂(s), t] ds , (6)

where we defined the vector a(s) = (ω/c) d [r (s) e(s)] /ds for notational convenience. Since δu can in practice not be computed efficiently
for large numbers of arbitrary perturbations δm(x), we apply the adjoint method (e.g. Tromp et al. 2005; Fichtner et al. 2006). For this, we
write the (seismic) wave equation symbolically in terms of the wave equation operator L as L[u(m), m] = f, where f is the source term.
Multiplying the variation of the wave equation, δL[u(m), m] + L[δu(m), m] = 0 with an arbitrary field u† and integrating over time and the
spatial domain ⊕ ⊂ R3, yields∫ ∞

t=−∞

∫
⊕

u† · δL[u(m), m] dx dt +
∫ ∞

t=−∞

∫
⊕

u† · L[δu(m), m] dx dt = 0 . (7)

Invoking the adjoint L† of L and adding eq. (6) to eq. (7), we find

δT =
∫ ∞

t=−∞

∫
⊕

δu · [
L†(u†, m) − ||θ̇ ||−2

w θ̈w(t) a(s) δL (x)
]

dx dt +
∫ ∞

t=−∞

∫
⊕

u† · δL[u(m), m] dx dt . (8)
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Figure 2. Forward modelling example using two different fibre geometries with lengths of L = 1989 km (black) and L = 1065 km (red). The wavefield radiates
from an explosive source at the location of the star. A snapshot of the x-component is shown in the left-hand panel, together with the source–time function; a
Heaviside function filtered between 0.1 and 0.5 Hz. The resulting time-series θ (t) are shown to the right-hand panel, in the colour of the corresponding fibre
geometry.

In (8), the curve δ-distribution δL is defined as
∫ L

s=0 f [x̂(s)] ds = ∫
⊕ f (x) δL (x) dx for any function f in ⊕. We can now eliminate δu from (8)

by forcing the first term on the right-hand side to zero and thereby defining the adjoint field u† as the solution of the adjoint equation

L†(u†, m) = ||θ̇ ||−2
w θ̈w(t) a(s) δL (x) . (9)

The right-hand side of eq. (9) is the adjoint source, which δL localizes along the fibre. The time evolution of the adjoint source is controlled by
the second derivative of the windowed computed phase changes, θ̈w , and its position-dependent orientation is given by the vector a(s). What
is left of eq. (8) can be conveniently written in terms of the structural sensitivity kernel K, that is the volumetric sensitivity of the time-shift
T ,

δT =
∫ ∞

t=−∞

∫
⊕

u† · δL[u(m), m] dx dt =
∫

⊕
K(x) · δm . (10)

Explicit expressions of K for various medium parameters can be found, for example in Tromp et al. (2005) or Fichtner (2010), and will not
be repeated here.

3 C O N C E P T UA L E X A M P L E S

The following examples are intended to illustrate the generation of phase change signals θ (t) and their time-dependent sensitivity to medium
parameters. We make the plausible assumption that the effective refractive index r(s) is constant over a seismic wavelength, that is O(10)
km in our examples, thereby allowing us to ignore its derivative. Not trying to mimic a specific acquisition system, we set ωr/c = 1 m s–2

for simplicity. The normalization factor ||θ̇ ||−2
w in the adjoint source (9) ensures that traveltime kernels are unaffected by this choice, and

by any other amplitude scaling, for example via the seismic moment of the wavefield source. With this setting, the vector a(s) equals the
non-normalized normal vector de(s)/ds. To avoid any complications, the elastic medium for our calculations is unbounded, isotropic and
perfectly elastic, with P velocity α = 8000 m s–1, S velocity β = 5000 m s–1 and density ρ = 3000 kg m–3. Well-known analytical solutions
for moment tensor and single force sources may be found, for example in Aki & Richards (2002).

Starting with the simplest possible case, we consider an explosive source that only radiates a P wave, as shown in Fig. 2. The displacement
field u(x, t) deforms two different fibres, plotted as black and red curves, respectively. Since u(x, t) interacts with different parts of the fibres
at different times, the resulting phase changes θ (t) contain multiple oscillations that are more complex than the seismic P wavelet. Even
though the red fibre is only half as long as the black fibre, it produces phase changes of nearly the same amplitude, because θ (t) is proportional
to a(s) = de(s)/ds, that is to curvature. Hence, the example in Fig. 2 illustrates that larger curvature may compensate shorter length, and vice
versa.

Applying the formalism developed in Section 2, allows us to compute sensitivity kernels Kα for relative perturbations of P velocity,
δln α, some examples of which are displayed in Fig. 3. Using different windows w(t) for the time-shift measurements T , produces kernels with
different spatial coverage. They exhibit a Fresnel zone structure with vanishing sensitivity along the ray path, known from finite-frequency
traveltime measurements on seismometer recordings (e.g. Dahlen et al. 2000). In accord with eq. (1), the kernels connect the source to
segments of the fibre with large curvature.

Modifying the source from an explosion to a double-couple moment tensor generates S waves in addition to P waves. As illustrated in
Fig. 4, they also appear in the phase change time-series θ (t) as a sequence of oscillations produced by different fibre segments. The fibre
segment responsible for a specific oscillation can again be determined by sensitivity kernel analysis, now providing sensitivity with respect
to both P and S velocity. Fig. 4 corroborates that segments with large curvature behave similar to discrete, that is distributed measurement
points, thereby providing window-specific sensitivity coverage, despite the integrated nature of the phase change time-series.
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Figure 3. Sensitivity kernels Kα for relative P velocity perturbations δln α. Time-shift measurements T in different windows, shown in the lower panel,
produce kernels with different spatial coverage that indicate the section of the fibre where the signal has been primarily generated.

Figure 4. Sensitivity kernels Kα and Kβ for relative velocity perturbations δln α and δln β, respectively. The phase change time-series θ (t) and the different
measurement windows used to calculate kernels are shown in the lower panel.

4 D I S C U S S I O N A N D C O N C LU S I O N S

Using adjoint techniques for structural sensitivity analysis, we have shown with conceptual examples that optical sensing systems based on
the transmission of deformation-induced phase changes can effectively be used to make space-distributed measurements. For this, the fibre
must contain curved segments that behave similar to localized sensors because the sensitivity of a fibre segment to deformation is proportional
to its local curvature de(s)/ds. Provided that the spacing of curved segments is larger than a seismic wavelength, they can produce a sequence
of distinguishable wavelets in the phase change time-series θ (t), each representing local, that is distributed, deformation. According to eq. (1),
the fibre normal vector de(s)/ds should be roughly parallel to the displacement field polarization u.

In the presence of a suitably shaped fibre, the time-dependent analysis of θ (t) may provide a set of traveltime (or other) measurements
and sensitivity kernels that are useful for the solution of tomographic inverse problems. In this context, strongly curved fibre segments roughly
mimic a network of conventional seismic instruments. This may, indeed, be beneficial for imaging remote regions such as ocean basins, where
telecommunication cables already exist. For this, however, the fibre geometry, that is, the instrument response of the system, needs to be
known with sufficient accuracy, where the meaning of ‘sufficient’ is application-dependent.

It must, unfortunately, be suspected that developers of future telecommunications infrastructure might ignore the wishes of structural
seismologists and deploy cables in accord with economic and political boundary conditions, instead of maximizing curvature. Nevertheless,
the methods presented in Section 2 provide the theoretical foundation for optimal experimental cable design, as well as tools for the sensitivity
analysis of existing fibre-optic cable installations.

A C K N OW L E D G M E N T S

The authors would like to thank the editor in chief Jörg Renner and the reviewer Yann Capdeville for their constructive comments. Andreas
Fichtner gratefully acknowledges United Airlines for a 7-hr delay at New Orleans airport, which provided ample time to develop the forward
modelling theory, summarized in eq. (1). This work was partially funded by the RISE project under the European Union’s Horizon 2020
program (grant 821115).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/2/1040/6617639 by guest on 01 N

ovem
ber 2022



1044 A. Fichtner et al.

DATA AVA I L A B I L I T Y S TAT E M E N T

No data have been used for this research.

R E F E R E N C E S
Aki, K. & Richards, P., 2002. Quantitative Seismology, University Science

Books.
Bogris, A. et al., 2021. Microwave frequency dissemination systems as sen-

sitive and low-cost interferometers for earthquake detection on commer-
cially deployed fiber cables, preprint (arXiv:2111.02957) [physics.geo-
ph].

Bogris, A. et al., 2022. Sensitive seismic sensors based on microwave fre-
quency fiber interferometers in commercially deployed cables, Nature, in
review.

Bowden, D.C. et al., 2022. Linking distributed and integrated fiber-optic
sensing, preprint (arXiv:2205.11065).
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A., 2020. Distributed acoustic sensing of microseismic sources and wave
propagation in glaciated terrain, Nat. Commun., 11 , doi:10.1038/s41467–
020–15824.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/2/1040/6617639 by guest on 01 N

ovem
ber 2022

http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.2011.04970.x
http://dx.doi.org/https://doi.org/10.1046/j.1365-246X.2000.00070.x
http://dx.doi.org/https://doi.org/10.1016/j.pepi.2006.03.016
http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.2008.03923.x
http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.1992.tb00584.x
http://dx.doi.org/10.1029/2021JB022358
http://dx.doi.org/ https://doi.org/10.1002/2017GL075722
http://dx.doi.org/doi:10.1029/2019JB018145
http://dx.doi.org/https://doi.org/10.1190/1.1443081
http://dx.doi.org/DOI: 10.1126/science.aat4458
http://dx.doi.org/https://doi.org/10.1190/tle36121025.1
http://dx.doi.org/10.1364/OPTICA.424307
http://dx.doi.org/https://doi.org/10.1785/0120200185
http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.2004.02453.x
http://dx.doi.org/10.1038/s41467--020--15824

