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Abstract. We present a new explicit quasi-Lagrangian integration scheme with the three-dimensional 7 

cubic spline function transform (transform = fitting + interpolation, referred to as “spline format”) on a 8 

spherical quasi-uniform longitude-latitude grid. It is a consistent longitude-latitude grid, and to verify its 9 

feasibility, accuracy, convergence, and stability of the spline format interpolation scheme for the 10 

upstream point on the longitude-latitude grid, which may map a quasi-uniform longitude-latitude grid, a 11 

set of ideal, exact test schemes, which are recognized and effective internationally, are adopted. The 12 

equilibrium flow test, cross-polar flow test, and Rossby–Haurwitz wave test are used to illustrate the 13 

spline scheme uniformity to the linear scheme and to overcome the over-dense grid in the polar region 14 

and the non-singularity of the poles. The cross-polar flow test demonstrates that the geostrophic wind 15 

crosses the correctly polar area, including the South Pole and North Pole. A non-hydrostatic fully 16 

compressible dynamical core is used to complete the density flow test, demonstrating the existence of a 17 

time-varying reference atmosphere, and that the spline format can simulate highly nonlinear fine-scale 18 

transient flows. It can be compared for the two results of the density flow test between the solution of 19 

with spline format and the benchmark reference solution of with linear format. The non-hydrostatic 20 

dynamical core in the spline format is adopted: it can be successfully simulated for the flow over an ideal 21 

mountain, called “topographic gravity wave test”, which demonstrating the bicubic surface terrain and 22 

terrain-following height coordinates, time-split integration, and vector discrete decomposition method. 23 

These can serve as the foundation for the global, unified spline format, numerical model in future. 24 

 25 

1 Introduction 26 

Many countries (i.e., UK, US, Japan, Canada, and China) have developed plans to establish 27 

globally/regionally unified grid mesh numerical models with horizontal resolutions of 1-100km. 28 

However, the global grid point model’s forecast level has yet to outperform the currently widely adopted 29 

global spectral model. 30 



 2 

The spectral model’s mathematical foundation is a two-dimensional spectral (spherical harmonics) 31 

expansion, which calculates the horizontal upstream point “analytically”, whereas the grid point model 32 

generally uses some cubic function interpolation to calculate the upstream point. Such an approach raises 33 

a simple question: is it possible for the “cubic function” model to outperform the “spectral” model? 34 

What mathematical function should be used to fit some physical field as an unknown “primitive 35 

function”? First, let us look at pure mathematics. 36 

It is known that two-dimensional spectral expansion is only “convergent” and can achieve “optimal” 37 

least square error. However, the spectrum has a few mathematical shortcomings: 1) the horizontal vector 38 

field of the spectrum is mathematically singular at the poles (i.e., the spectral model does not forecast for 39 

the poles); 2) there are spurious peaks in the plane (called “Gibbs phenomenon”); 3) the spectrum is not 40 

suitable for the vertical format, fitting neither the upper and lower boundaries nor the side boundaries, and 41 

thus is not suitable as the global uniform numerical model; and finally, 4) the spectra calculation effort 42 

increases rapidly as resolution increases. 43 

There are two types of cubic function interpolation in mathematics, namely, Hermite “double 44 

osculating” cubic spline function and the Lagrangian cubic function. 45 

Cubic spline functions include cubic splines, bicubic surfaces (Fergusion, 1964), and tri cubic cubes, 46 

all of which have the following mathematical laws/properties: 47 

(1) Convergence to the primitive function and its first- and second-order derivatives (i.e., 48 

convergence); 49 

(2) Optimal approximation to the primitive function’s second-order derivative (i.e., optimality); 50 

(3) Second-order central difference being linear principal part, second-order accuracy difference + 51 

integration schemes (i.e., difference, integrality, accuracy); 52 

(4) Natural cubic splines with the least amount of total curvature (i.e., stability); 53 

(5) With periodic, unequally spaced cubic splines (i.e., periodicity, point selection); 54 

(6) With multiple cubic spline mathematical boundaries or concatenating other continuous functions 55 

(i.e., boundary adaptability, concatenation); 56 

(7) With the cubic spline smoothing function (i.e., smoothness), eliminating discontinuous cusps or 57 

wraps; 58 

(8) Preserving latitudinal and longitudinal symmetry, as well as polar and equatorial symmetry (i.e., 59 

symmetry, non-singular at poles). 60 
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For local interpolation, the Lagrangian cubic function is used. Bilinear interpolation, for example, 61 

refers to the 16-point fit and interpolation on a variable field, which is similar to the value obtained from 62 

the interpolation of cubic spline function. 63 

All the mathematical laws and properties of the cubic spline function are referred to as the “spline 64 

format,” and the spline format is appropriate for developing a globally accepted “grid point” numerical 65 

model (called a “spline model”). The spline model has a better mathematical foundation than the spectral 66 

model and it may be the best one because of the optimality of a mathematical law. Therefore, a global 67 

multiple nested spline model should replace a modern popular global spectral model + another mesoscale 68 

model in the future. 69 

Because the spline format has line, plane, and volume convergence as well as second-order 70 

derivative optimality, the physical fields and their first-order derivatives/slope, second-order 71 

derivatives/curvature, and second-order mixed partial derivatives/deflection are fitted so that each 72 

physical field (i.e., scalar and vector fields) is second-order derivative. This allows for the upstream point 73 

to be computed “analytically.” The “convergence” of the spline format implies that if the space-time 74 

resolution is high enough, the upstream point can always be obtained; in other words, “the weather is 75 

predictable”. 76 

Layton (2002) completed a three-time-level Euler integration semi-implicit scheme for the shallow 77 

water wave equation in the spline format, and the integration test demonstrated that it is a high-order, 78 

accurate, and computationally stable method. In comparison, the spectral method will encounter the 79 

Legendre transformation high-order complexity. 80 

In the description of atmospheric motion, the dynamic core of the numerical model (i.e., physical 81 

field spatial discretization, and time integration) determines the mathematical properties (including model 82 

accuracy), physical conservatism, and computational stability of the model. 83 

A non-hydrostatic and fully compressible dynamic core provides the most realistic description of the 84 

atmosphere’s strong convection weather system. Daley (1988) discovered that when computing normal 85 

mode harmonics for zonal waves with a number greater than 400, the hydrostatic and non-hydrostatic 86 

schemes differ significantly, implying that the hydrostatic scheme is not appropriate for describing waves 87 

with wavelengths less than 100 km. The fully compressible pressure equation, on the other hand, has 3D 88 

divergence, which invariably produces acoustic waves, so “calculating acoustic waves” is the key to 89 

forecasting the fully compressible pressure field. Durran and Blossey (2012) argued that the fast “acoustic 90 

wave,” which is not meteorologically significant, limits the integration step of the explicit temporal 91 

difference scheme, and that if the acoustic wave is retained, it is necessary to ensure that the “noise” of the 92 

barometric disturbance does not cause computational instability. 93 
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Dudhia (1993) created a non-hydrostatic mesoscale numerical model MM5 with multi-physics 94 

processes, which was followed by the introduction of a new generation of American numerical model 95 

Weather Research and Forecasting Model, both of which used a filter subprogram to filter out fast waves: 96 

Acoustic waves combined with small-scale gravity waves. 97 

In non-hydrostatic numerical models, generally, the “reference atmospheric profile” must be 98 

introduced, causing the “perturbed” barometric field wave on the “reference atmospheric profile”. A 99 

corresponding linear perturbation treatment on the pressure and temperature field must then be performed 100 

to deduct the vertical pressure gradient force and the reference atmosphere weight having a static 101 

constraint relationship with gravity, so that it becomes a non-hydrostatic perturbation balance. Overall, 102 

this should be done to improve the accuracy at which vertical pressure gradient force can be determined. 103 

It is generally accepted that the truncation error of spatial differentiation is much larger than that of 104 

temporal difference. Additionally, the quasi-Lagrangian integration scheme not only improves the 105 

calculation accuracy of spatial difference, but also bases the time step solely on the difference accuracy of 106 

the upstream point, rather than the differential stability. However, when compared to the Euler difference 107 

conservation scheme, the theoretical design of the quasi-Lagrangian difference conservation scheme has 108 

not been devised yet. 109 

Gu (2011) completed the derivation of the fourth-order space-time residual error with 110 

quasi-Lagrangian and Euler equations using Taylor series expansion. This demonstrated that using spline 111 

format to find the upstream point path of the quasi-Lagrangian method has the same mathematical basis 112 

as using a spline format slope, curvature, and deflection to find the Euler displacement, both the 113 

numerical solutions are second-order temporal and spatial accuracy, in addition, 4th-order temporal and 114 

spatial accuracy can be obtained, but the cubic spline fitting calculation volume grows exponentially. 115 

In numerical models, quasi-Lagrangian integration schemes are commonly used to describe 116 

everything from gravity waves to atmospheric long waves. For example, ① time-split integration 117 

scheme (KW scheme): a long step for horizontal displacement and short step for vertical displacement; 118 

② semi-implicit semi-Lagrangian integration scheme (SI-SL scheme). Robert et al. (1985) proposed an 119 

integration scheme combining the semi-Lagrangian method for advection terms and the semi-implicit 120 

scheme for gravity wave terms, and compared it to the Eulerian integration scheme at the same spatial 121 

resolution, where the former time step is taken to be ten times that of the latter, and the calculation results 122 

were comparable. The SI-SL integration scheme is thought to be capable of preserving a physical 123 

property that can be described as “non-hydrostatic and fully compressible” (Pinty et al. 1995). 124 

The GRAPES (Global/regional assimilation and prediction system) globally/regionally unified (grid 125 

point) numerical model, developed in China, uses Lagrangian cubic function “bilinear (local area) 126 

interpolation” to calculate the upstream point. This model has a large time step and avoids acoustic waves 127 
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by using SI-SL integration. However, the large step length causes large dispersion, which results in large 128 

truncation errors in the coupling of physical processes, as well as the need to solve the generalized 129 

conjugate residual Helmholtz equation of the 3D barometric perturbation, which necessitates a large 130 

computational volume. This results in a high-resolution numerical model and a reconsideration of explicit 131 

integration schemes. 132 

The horizontal pressure gradient force on the grid point terrain versus terrain-height coordinates has a 133 

large relative error. To extend the numerical stability limit over steep slopes, Günther Zängl (2012) 134 

developed a truly horizontal pressure-gradient discretization based on the ideas formulated by Mahrer in 135 

the 1980s, since the pressure gradient is evaluated in the terrain-following coordinate system, which 136 

necessitates a metric correction term that is prone to numerical instability if the height difference between 137 

adjacent grid points is larger than the vertical layer spacing. Gu (2013) introduced a second-order 138 

derivable bicubic surface terrain, with a constant slope, curvature, and deflection, and established the 139 

bicubic surface terrain, and the terrain-following height coordinates, calculated the horizontal barometric 140 

pressure gradient force over the bicubic surface terrain with second-order accuracy and inverted the sea 141 

level pressure field. 142 

Su et al. (2018) proposed a three-dimensional reference atmosphere for GRAPES_GFS to replace 143 

the one-dimensional reference atmosphere, the isothermal atmosphere, in order to reduce the order of 144 

magnitude of the model dynamic core nonlinear terms, re-derive the dynamical equations, and verify and 145 

improve dynamic core accuracy using the ideal test. Through testing the GRAPES, Liu et al. (2011) 146 

concluded that 6× grid spacing is an effective resolution scale for grid point topography. 147 

Cartesian coordinates are appropriate for describing Newtonian motion. When using spherical 148 

coordinates to describe atmospheric motion and calculating the motion of a continuous wind field, the 3D 149 

wind and displacement fields must be decomposed in unit vectors on spherical coordinates (called 150 

“vector discrete,” Bates et at. 1990). The traditional vector discretization method involves moving the air 151 

parcel from the upstream point to the Euler forecast point in the direction of the unit vector in the middle 152 

of the path; this clearly does not treat the wind field as a continuous vector field. 153 

As the core of the numerical model, the dynamic framework needs an effective and referable method 154 

to verify the correctness of its scientific scheme and programming. Doing exact test is an effective 155 

method and has been recognized and widely applied globally (Yang et al. 2007; Yang et al. 2008; 156 

Nunalee et al. 2015; Jacobs et al. 2015; Gavrilov et al. 2015; Li et al. 2022). All newly developed numerical 157 

forecast models should go through a similar ideal field test. The design of an ideal test scheme based on 158 

the characteristics of a model remains a challenge. The general strategy is to create ideal initial values for 159 

a specific reduced physical model or design some model initial values to satisfy specific kinetic 160 



 6 

constraints, turn off factors that are irrelevant to the process under consideration, and then test the 161 

accuracy and stability of the model’s dynamic core using ideal field integration tests. 162 

Since different numerical schemes are used for different models, the properties of the model to be 163 

validated need to be considered in the design of the ideal field test scheme. The following ideal field tests 164 

are created based on the GRAPES model’s non-hydrostatic, semi-implicit semi-Lagrangian, and 165 

multi-scale properties (Yang et al. 2007), for example: the equilibrium flow test is designed to check the 166 

accuracy of the semi-Lagrangian interpolation; the cross-polar flow test to evaluate the model’s discrete 167 

scheme at the poles; the density flow test to verify the ability of the non-hydrostatic model to simulate 168 

fine-scale and transient features, and the 3D topographic wave test to evaluate the model’s dynamic 169 

framework in simulating the horizontal and vertical propagation of cross-mountain flow gravity waves. 170 

Zuo et al. (2004) designed a global Euler differential grid model “IAP (Institute of Atmospheric 171 

Physics, Chinese Academy of Sciences) AGCM-III” with the time integration scheme of an improved 172 

nonlinear iterative, the wave phase velocity and pattern, and energy propagation in its dynamic 173 

framework are performed by the ideal field of Rossby–haurwitz wave test. 174 

The Rossby–Haurwitz wave ideal test with a T63L17 spectral model “spectral transformation” and 175 

integration of 80 d on the Gaussian grid produces an incorrect result of “partial/flat circle”, asymmetry 176 

concerning the pole in the polar region, and the horizontal vector field at the pole is a mathematical 177 

singularity when using the spectral expansion method. 178 

There is an industry-accepted, valid, and comparable set of ideal tests to test the feasibility, 179 

consistency, convergence, and accuracy of the non-hydrostatic fully compressible dynamic core. 180 

Fast-wave solutions of atmospheric motion, such as the elastic, acoustic wave solution and the 181 

gravity wave solution, are contained in the non-hydrostatic fully compressible dynamic core of the 182 

original atmospheric motion equation (Qian, et al. 1998; Benacchio, et al. 2014). The 3D gravity wave 183 

test checks the reasonableness and ability of “describing” gravity waves. Smith et al. (1980) successfully 184 

modeled and simulated a hydrostatic, non-compressible fluid (called “Boussinesq-approximation”) 185 

advection over a “bell-shaped” isolated mountain to form a gravity wave flow pattern. They did this by 186 

using Fourier analysis to present a linear theory of airflow perturbation and the terrain perturbation test for 187 

a steady airflow crossing over an isolated mountain in a stable stratification. The Fourier analytical 188 

solution was compared with the simulated numerical solution, and the gravity waves had a vertical 189 

propagation structure. The maximum wave amplitude was at the top of the mountain, and it was 190 

parabolic with downhill flow propagation and dispersion, forming “high pressure in front of the mountain, 191 

low pressure behind the mountain”, “dispersed, deflected, convergent”, and continuous lee wave flow 192 

pattern of advection above, and the lateral horizontal dispersion/convergence airflow attaining 193 

equilibrium with sinking /rising, warming /temperature reducing air layers. 194 
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The density flow test is the ideal test for verifying the non-hydrostatic model. To compare the 195 

consistency, convergence, and precision of the numerical solutions produced by the new format and the 196 

conventional monotone format, Straka et al. (1993) introduced a non-hydrostatic, fully compressible 197 

dynamic framework simulating nonlinear density flow, reference solutions with various resolutions, 198 

namely, benchmark standard solutions, but for the linear format represented by the central difference. 199 

Non-hydrostatic models developed by different countries all use the density flow test and 200 

cross-mountain flow gravity wave test as a model dynamic core to simulate the level of nonlinear flow, 201 

the results of which are compared with benchmark standard. For instance, the German Lokal model, the 202 

UK unified model, the US mesoscale model (Xue et al. 2000), and the Japanese Meteorological Institute 203 

NPD-NHM (Saito et al. 1998). 204 

Xu et al. (1996) performed numerical simulations to study the kinematics and dynamics of 205 

two-dimensional density currents propagating in a uniformly sheared environmental flow within a 206 

vertically confined channel. The physical properties of the numerical solutions relative to those of 207 

theoretical predictions and the initial cold pool depth and shear were chosen to be either similar to or 208 

significantly different than those prescribed by the theoretical steady-state model. Xue et al. (1997) 209 

extended the idealized two-fluid model of a density current in constant shear to the case where the inflow 210 

shear is confined to the low levels, in which an analytical solution must be determined by the 211 

conservation of mass, momentum, vorticity, and energy. 212 

Yang et al. (2008), for the GRAPES numerical model, completed a non-hydrostatic completely 213 

compressible dynamic core density flow test and a 3D gravity wave test. Gavrilov et al. (2015) performed 214 

high-resolution numerical simulations of nonlinear acoustic-gravity waves (AGWs) at altitudes 0–500km and 215 

compared them with analytical polarization relations of linear AGW theory. Li et al. (2022) develop a 216 

numerical model, ISWFoam with a modified k–ω SST model, to simulate internal solitary waves (ISWs) in 217 

continuously stratified, incompressible, viscous fluids based on a fully three- dimensional Navier–Stokes 218 

equation with the finite-volume method. ISWFoam can accurately simulate the waveform generation and 219 

evolution of ISWs, the ISW breaking phenomenon, and the interaction between ISWs and complex 220 

topography. 221 

An important difference between the density flow test and the gravity wave test is that the former is a 222 

downburst in a very unstable stratification, and the latter is a cross-mountain flow below the stable 223 

stratification. To calculate the acoustic wave, all the density flow tests adopted a very short time step (0.1 224 

s), while the gravity wave tests used a longer time step (10 s), then the latter should have a different 225 

acoustic wave calculation scheme. 226 

2 Basic numerical model equations 227 
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2.1 Atmospheric motion equations 228 

In atmospheric motion equations of “thin atmosphere” on spherical coordinates (longitude, latitude 229 

and geopotential height ),,( z , ]2,0[   , ]
2

,
2

[


  , distance from air parcel to the geo 230 

center zrr e  , mean radius of the Earth er , ),,cos(ˆ),,( rrrzyx   , assume 231 

frictionless, water vapor-free, and water vapor source–sink, time as t , air pressure as p , air temperature 232 

as T , specific humidity as q , 3D wind field ),,( wvuV  , sin2f , cos2
~

f , spin 233 

velocity of the Earth   and the gravitational constant as g , the air to gas constant R and the constant 234 

pressure specific heat as 
pC , and 

pR/C , “ ̂” is the defined symbol): 235 
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dt
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pa
dt

pd





 ˆ

1

1ln
V


                                    (4) 239 
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dt
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







 V                                (5) 240 

0
dt

dq
q                                                 (6) 241 

Let ),,,,,(ˆ wvuqTpP  , the first-order derivative (1st-order variability) of P is known to be 242 

a
dt

dP
̂ , and (1-3) equation ),,( wvu aaa  is the generalized Newtonian force per unit mass of air: the 243 

three components of the combined force of “barometric gradient force + gravity + Coriolis force + 244 

curvature force”; (4-5) equation ),( Tp aa  is the 3D dispersion adiabatic variability of the pressure and 245 

temperature field; and equation q is the water vapor source–sink and phase variability, which is zero 246 

during dry adiabatic process. 247 

Because u and the u-equation are not defined at the poles, while v and the v-equation are defined at 248 

the poles. In the north and south poles (denoted by subscripts N and S), define the parallel components of 249 

0°E ( 0 )u as Nu  and Su , and of 0°E v as Nv  and Sv , respectively, and for ),( NN vu  and 250 

),( SS vu , (or any horizontal vector), the following trigonometric function vector decomposition can be 251 

performed: 252 
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 253 

 sincos)( NNN vuu  ;  sincos)( NNN uvv   254 

 sincos)( SSS vuu  ;  sincos)( SSS uvv           (7) 255 

and with 
)2/3()0(ˆ NNN vuu   and 

)2/()0(ˆ SSS vuu  , similarly, then, horizontal baric 256 

gradients are: )2/3()
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( NN
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
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
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The Nv -equation and the Sv -equation can be derived by taking 
2


   in the v-equation 258 

(equation (2)), where: 0sincos)(limtan)
d

dcos
(limtanlim 22
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(high-order infinitesimal), whereas the Nu -equation and the Su -equation are derived by rotating the 260 

Nv -equation and the Sv -equation clockwise along the Earth’s axis by 90º, respectively, with: 261 
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
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Nv

e

N
NN

N a
r

wv
fu

y

p
T

dt
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r
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


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ln
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2.2 Terrain-following vertical coordinates and horizontal pressure gradient calculation 266 

Transforming the height (z) coordinate in atmospheric motion equations (equations (1–6)) to 267 

terrain-following height ( ẑ ) coordinate, the model introduces a second-order derivable “steady slope, 268 

curvature, and deflection” bicubic surface terrain, and defines the terrain-following vertical coordinates 269 

(called “ ẑ coordinates”, the bottom and top layers of the model are denoted by subscripts s and T, 270 

respectively, and let the terrain height be sz , the top layer height be Tz , Tz  isa constant, and 271 

sTs zzZ  ): 272 

T

sT

z
zz
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s

z
Z

zz




 s

, s

T

zz
z

Z
z 


 ˆs )ˆ0( Tzz           (12) 273 

The vertical velocity ( ŵ ) in ẑ  coordinates can be calculated as follows: 274 
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s

s

z

s

T w
Z

Z
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dt
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w
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

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In the above equation, y

s

x

sss zvzuzyxww  )ˆ,,(ˆ  and ),( y

s

x

s zz  are the terrain slopes, 276 

and sw  is known as the “terrain forced uplift speed”. 277 

According to (8), there is a one-to-one diagnostic relationship between ŵ  and ),,( wvu , at the 278 

ground level ( 0ˆ z ) 0ˆ sw  and at the top level ( Tzz ˆ ) 0ˆ Tw . 279 

From the z-coordinate to the ẑ -coordinate, through vertical derivative transformation (
s

ˆ

Z

z

z

z T







), 280 

the equation of static equilibrium is: 281 
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                                        (14) 282 

Through the horizontal derivative transformation, the horizontal barometric pressure gradient is 283 

decomposed into the ẑ -coordinate horizontal barometric pressure gradient, and the terrain slope 284 

barometric pressure difference (suppose zzZ Tz
ˆˆ  ):  285 
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The horizontal pressure gradient force in ẑ coordinates is calculated using the above equation. 287 

In addition, the three-dimensional divergence in ẑ  coordinates is calculated as follows: 288 

s
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




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ˆ
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)( ˆV                        (16) 289 

2.3 Time-varying reference atmosphere and vertical pressure gradient calculation 290 

For simplicity, only the z-coordinate is described. 291 

We can derive the time-varying / 4-dimensional reference atmosphere ),,,( zyxtp  from the 292 

w-equation ((3)) and suppose 0wa , it satisfies the following complete “static equilibrium equation”: 293 

T

g

z

p

R

ln





                                            (17) 294 

The above equation g
r

vu
ufgg 




22~
, shows that the time-varying reference atmosphere is 295 

a function of the air column’s “temperature, humidity (R), wind (weightlessness: rvu /)( 22  ), and 296 
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Coriolis force ( uf
~

 ) and gravity (g may not be a constant),” and if we take gg  , then p  is only 297 

determined by the temperature, humidity and constant gravity fields in the model atmosphere. 298 

The altitude difference integration is then performed for equation (17), using the top layer TT pp   299 

as a constant, we can find p , and p  is “each layer ‘static force’ weight”. 300 

Then suppose ppp  , 
z

p



 ln
 can be found, then the vertical pressure gradient and vertical 301 

pressure gradient force and vertical acceleration (aw) calculated as follows: 302 

z

p

z

p

z

p













 lnlnln

T

g

z

p

R

ln





                    (18) 303 

z

p
Taw






ln
R                                          (19) 304 

When altitude difference integration is used for the static equilibrium equation, the static pressure 305 

field-time-varying reference atmosphere is separated from the non-static pressure field, allowing the 306 

vertical pressure gradient force and displacement to be calculated accurately without the use of the 307 

atmospheric reference profile. 308 

2.4 Hydrostatic vertical displacement calculation 309 

Let, in layers, the model coordinate height be Z, and for the gravity balance equation (17), the static 310 

geopotential height of each layer can be found through pressure difference ( pps  ) integration from 311 

the bottom of the model upwards: 312 


sp

p
s p

g

T
zz lnd

R
                                        (20) 313 

Using equation (20), the vertical displacement Z zz  and vertical velocity tzw  /  314 

after hydrostatic horizontal advection of each layer in one t  are calculated. 315 

2.5 Hydrostatic and non-hydrostatic divergence separation 316 

The hydrostatic continuity equation (the “pressure coordinate” continuity equation, denoted by the 317 

subscript p, and defining the air pressure variability 
dt

dp
̂ , is given directly for simplicity (without the 318 

derivation) as: 319 

0
tan

)( 














r

v

y

v

x

u

p
p


                               (21) 320 

The ẑ  coordinate hydrostatic continuity equation (assuming the “coordinate transformation term”) 321 

is obtained by mathematical transforming the equation (21) from pressure coordinates to ẑ  coordinates: 322 
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zpz
x

p

p

u

x

u

x

u
ˆˆ )()()(


















, zpz

y

p

p

v

y

v

y

v
ˆˆ )()()(


















; substituting into the equation (21), it is obtained 323 

that zzz
y

p

p

v

x

p

p

u
D ˆˆˆ )()(ˆ

















 ): 324 

0
tan

)( ˆˆ 













zz D

r

v

y

v

x

u

p


                            (22) 325 

In equation (22), the hydrostatic horizontal divergence is defined as follows: 326 

zzsta D
r

v

y

v

x

u
D ˆˆ

tan
)(ˆ 












: 327 

staD
p





                                                 (23) 328 

The 3D divergence (Equation (16)) can be divided into two parts: the hydrostatic horizontal 329 

divergence term ( staD ) and the non-hydrostatic vertical divergence term ( insD , z

s

s D
Z

w

z

w
D ˆins

ˆ

ˆ
ˆ 







 ), 330 

yielding: inssta DD  V . 331 

We can find the air pressure variability of each layer by integrating the vertical pressure difference of 332 

equation (23), which is used to forecast the hydrostatic pressure and temperature field of each layer. 333 

As a result of the preceding formulation, the 3D divergence V  can directly act on the “fully 334 

compressible” gas block (so called “air parcel”), resulting in pressure and temperature increments for the 335 

adiabatic air parcel. When the divergence field is divided into hydrostatic and non-hydrostatic 336 

components, where the staD  term represents the “hydrostatic mass” acting / adding on each layer of the 337 

air parcel after the integration of the vertical pressure difference, the air parcel can be used to obtained the 338 

“hydrostatic” pressure and temperature increments; meanwhile, the non-hydrostatic process can be 339 

treated as an oscillation superimposed on the “hydrostatic equilibrium” pressure-temperature field during 340 

the time integration process, which derives from the term insD , i.e., from the topographic uplift term 341 

s

s

Z

w


, and is accompanied by the vertical divergence term 

z

w

ˆ

ˆ




 (

z

w

ˆ

ˆ




 also generates compressional 342 

waves - acoustic waves), note that staD  and insD  have coordinate transformation term with the 343 

opposite symbol zD ˆ , but the former requires vertical pressure difference integration before acting on the 344 

air parcel, whereas the latter acts directly on the air parcel. And in the gravity wave test in this study, we 345 

showed that zD ˆ  is a small magnitude term. 346 
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The above derivative “hydrostatic continuity equation” shows that under the assumption of static 347 

equilibrium, the term insD  disappears (canceled in the process of deriving the “hydrostatic continuity 348 

equation”), and its physical significance is: the topographic lift term 
s

s

Z

w


 acts on the air column first, 349 

and then the column tend to be in hydrostatic equilibrium (vertical acceleration 0wa ); and the 
z

w

ˆ

ˆ




 350 

term is the oscillation on the hydrostatic equilibrium, during which the oscillation “fast wave” tends to 351 

flatten out (when the air column reaches hydrostatic equilibrium 0wa ). 352 

As a physical concept, the “non-hydrostatic process” can be defined here: the oscillations of each 353 

layer of the column under the action of the non-hydrostatic insD  term, actually under the action of the 354 

pressure gradient force wa , can be flattened out in one-time step t . The physical “single pendulum” of 355 

each layer moves consistently from a position deviating from the hydrostatic equilibrium 0wa  to the 356 

hydrostatic equilibrium position 0wa  (hereinafter called “half-wave oscillation”), then “half-wave 357 

oscillation” can avoid the instability of the oscillation. Sound waves, for example, can have n oscillations 358 

in one-time step, whereas the “half-wave oscillation” only allows it to stay at the “hydrostatic equilibrium” 359 

position until 0ins D . 360 

The preceding derivation demonstrates that the physical basis of the quasi-Lagrangian “time-split” 361 

integration scheme is the separation of hydrostatic and non-hydrostatic three-dimensional divergence. 362 

Specifically, short steps are used to forecast non-hydrostatic fully compressible vertical convection and 363 

pressure and temperature fields, while long steps are used to forecast hydrostatic horizontal advection and 364 

pressure and temperature fields. 365 

3 Quasi-Lagrangian forecast equation 366 

3.1 Quasi-Lagrangian forecast equation with space-time second-order accuracy 367 

Given a time step t , forecast variable ),,,( zyxttP  , and a 2nd-order variability of P368 

)2(

2

2

ˆ
d

d

d

d
a

t

a

t

P
 , we can generalize the 2nd-order variability quasi-Lagrangian forecast equation as: 369 

 ),,,(),,,( zzyyxxtPzyxttP  370 

 tzzyyxxta ),,,(  371 

2
),,,(

2
)2( t

zzyyxxta


             (24) 372 
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Assume 3D upstream point ),,,(ˆ zzyyxxtPP  , with Taylor series 2nd order spatial 373 

residual taken for P  (similar with a  and )2(a ): 374 

















z

P
z

y

P
y

x

P
xzyxtPP ),,,(  375 

















2

22

2

22

2

22

222 z

Pz

y

Py

x

Px
 376 

zy

P
zy

zx

P
zx

yx

P
yx
















222

                   (25) 377 

If the high-order minima 
zx

P



 2

 and 
zy

P



2

 are omitted (
yx

P



2

 kept), for “thin atmosphere,” the 378 

above equation becomes: 379 

















z

P
z

y

P
y

x

P
xzyxtPP ),,,(  380 

yx

P
yx

z

Pz

y

Py

x

Px





















2

2

22

2

22

2

22

222
 381 

2

22

2 z

Pz

z

P
zP









                                 (26) 382 

The horizontal, two-dimensional upstream point in the preceding equation, 383 

),,,(ˆ zyyxxtPP  . 384 

3.2 Space-time second-order accuracy forecast equation in spline format 385 

The mathematical laws of convergence, optimality, periodicity, and boundary adaptability of the 386 

second-order derivative “difference + integral” are all present in the spline format. The P-field “line, 387 

surface, and volume” become second-order derivable by fitting the cubic spline function of the variable 388 

(P) field to obtain the slope xP , yP , zP , curvature xxP , yyP , zzP , and deflection xyP , xzP , yzP  389 

(obtained from the orthogonal cubic spline). The “spline format” entails considering the following 390 

derivatives: xP
x

P





, 

yP
y

P





, zP

z

P





, xxP

x

P





2

2

, yyP
y

P





2

2

, zzP
z

P





2

2

, 391 

xyP
yx

P




 2

, xzP
zx

P




 2

 and 
yzP

zy

P




2

, as a result, it is convenient to present the horizontal and 392 

vertical pressure gradients and divergence in the spline format. 393 

The 3D motion upstream point in spline format P  (as with a  and )2(a ) is as follows: 394 

 395 
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 zyx zPyPxPzyxtPP ),,,(  396 










 zzyyxx P
z

P
y

P
x

222

222

 397 

yzxzxy zPyzPxyPx   398 

zzz P
z

zPP
2

2
                                   (27) 399 

Therefore, in the “spline format (space-time discretization)” the general forecast equation ((24)) 400 

becomes the general second-order accuracy forecast equation. 401 

2/),,,(ˆ
2)2( tataPzyxttPP tt                 (28) 402 

The forecast equation above, shows that the upstream point generally follows a nonlinear path, 403 

whereas the equations (25-26) are along the “spline format” path in the time period t , where the air 404 

parcels arrive at the Euler points ),,( zyx  with all physical properties and subject to the respective 405 

variabilities. 406 

3.3 First-order variability (explicit) and second-order variability (implicit) forecast equations 407 

Because the second-order variability )2(a  is generally unknown, if we set 0)2( a  within the time 408 

period t , that is, the first-order variability ca  , c is a constant, then the equation (26) is only the 409 

first-order variability “(1 time level) explicit” forecast equation. 410 

taPP tt                                           (29) 411 

And if we set 0)2(  ca , c is a constant, unknown in t  time period, substituting into equation 412 

(25): 413 

2

2t
ctaPP tt 

                                    (30) 414 

Substituting aP  into the above equation and considering the 2nd order variability of P (1storder 415 

variability of a) as ca )2( , we get: 416 

tcataaa tt   )2(                               (31) 417 

The above equations a  and tta  represents the first-order variability of the upstream point at the 418 

initial and final moments of ttt  , and the average second-order variability 
t

aa
c

tt






 
 is 419 

obtained by substituting into equation (30), and the second-order variability “(2 time layers) implicit” 420 

forecast equation is obtained: 421 

t
aa

PP
tt

tt 







2

                               (32) 422 
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Clearly, the second-order variability “implicit” forecast equation has a higher accuracy than the 423 

first-order variability “explicit” forecast equation. 424 

The wind field forecast (equations (1–3)) uses the first-order variability forecast equation, whereas 425 

the pressure and temperature (humidity) field forecast (equations (4–6)) uses the second-order variability 426 

forecast equation, because the pressure and temperature (humidity) field variability is a 3D divergence 427 

field implied by the time-step 3D displacement, so it is still an explicit integration scheme. 428 

4 Quasi-Lagrangian time integration scheme 429 

4.1 Calculation of the upstream point 430 

(See Gu, 2011) on a “normal” geographic latitude-longitude grid mesh-orthogonal A-grid, the Coons 431 

bicubic surface fit of a variable field can be achieved, and the topological rectangular mesh of an A-grid 432 

patch corresponds to Hermite bicubic patches in one-to-one correspondence, with each “patch” 433 

consisting of four variable values ( 00P , 01P , 10P , 11P ), eight first-order partial derivatives ( xP00
, xP01

, 434 

xP10
, 

xP11 , yP00
, yP01

, yP10
, 

yP11 ), and four second-order mixed partial derivatives ( xyP00
, xyP01

, xyP10
, 435 

xyP11 ). Because the upstream point must fall on an A-grid patch, as a result, the horizontal upstream point 436 

( P ) coordinates and displacement, and variable values can be resolved and calculated. 437 

Simultaneously, the variable field’s vertical cubic spline fit is performed to calculate the coordinates, 438 

displacements, and variable values of the vertical upstream point ( P ). 439 

In comparison to the traditional linear format, the spline format can be used to calculate horizontal 440 

advection motion “slope”, bending motion “curvature”, and torsional motion “deflection”. After fitting all 441 

variable scalar and vector fields with “horizontal bicubic surface + vertical cubic spline”, each variable 442 

field is second-order derivable, and the upstream point can be obtained using the “spatial second-order 443 

accuracy” analytical method. 444 

4.2 Wind field forecast 445 

According to Newton’s law of motion, to find the “third motion” path-3D displacement of the 446 

upstream point and forecast variable values using explicit iterative interpolation, an implicit iteration 447 

should be performed to calculate the 3D displacement of the upstream point448 

)2/,2/,2/(),,( 222 tatwtatvtatuzyx wvu    in a “second-order derivable” 449 

continuous wind and acceleration field in spline formats, the initial values of the iteration may be 450 

currently taken as ),,,( zyxtu , ),,,( zyxtv , ),,,( zyxtw , ),,,( zyxtau , ),,,( zyxtav , 451 

),,,( zyxtaw . 452 
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Because the 3D wind and acceleration field is defined in spherical coordinates, and the 3D 453 

displacement is the motion of the upstream point to the Euler point, a straight line in Cartesian 454 

coordinates [here, we define Cartesian coordinates as )~,~,~( zyx , yx ~-~  plane as 0  plane, x~  axis 455 

as the intersection of two planes 0  and 0 , and the origin as the center of the sphere], the 456 

upstream point and the 3D displacement must be calculated using implicit iteration based on the 457 

correspondence between Cartesian coordinates and spherical coordinates. 458 

Let the upstream point be ),,( 000 r , the corresponding Cartesian coordinates be )~,~,~( 000 zyx , 459 

the forecast point be ),,( r , and ),,( r  is also the model grid point ),,( zyx . The 460 

correspondence between the right-angle coordinates and the spherical coordinates after the 3D 461 

displacement of the upstream point is: 462 

00000000 coscoscos)cossin(sincoscos~  rzyxrx      (33) 463 

00000000 sincossin)cossin(cossincos~  rzyxry      (34) 464 

00000 sinsincossin~  rzyrz                                 (35) 465 

Equations (33)-(35) represent a system of nonlinear equations for ),,( 000 r  and ),,( zyx  : a 466 

“dynamic” solution based on implicit iteration is required because the former (i.e., wind speed and 467 

acceleration at the upstream point) determines the latter (i.e., 3D displacement). 468 

Of the upstream point, the initial value of the 3D displacement, ),,( 000 zyx  , can be used to 469 

determine the initial guess values: ),,( 111 r  and )~,~,~( 111 zyx . 470 

Giving the “perturbation” values on the left side of equations (33)-(35): take 471 

),,(),,( 000 zyxzyx   and ),,(),,( 11000 rr   (left φ remains the same just at this time)to 472 

find ),,( 111 r  and )~,~,~( 111 zyx  on the right side, we have: 473 

111100101 coscoscos)cossin(sincoscos~  rzyxrx    (36) 474 

111100101 sincossin)cossin(cossincos~  rzyxry    (37) 475 

111 sinsincossin~  rzyrz                                   (38) 476 

Combining equations (36)-(38), since 11 cos)37(sin)36(   , we can first find 1 :477 

)
cos

arcsin( 0
1




r

x
 , and then substitute 1  back into equations (36)-(38) to get )~,~,~( 111 zyx , and 478 

we have: 
2

1

2

1

2

11
~~~ zyxr  , )

~
arcsin(

1

1
1

r

z
 . 479 
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Then, we can obtain )~,~,~( 222 zyx  as well as ),,( 222 r  and the corresponding 480 

),,( 222 zyx  ,… from ),,( 111 r  and the corresponding ),,( 111 zyx  . We can finally find the 481 

iterative convergent solutions ),,(lim),,( 000 nnn
n

rr 


  and ),,(lim),,( nnn
n

zyxzyx 


482 

by repeating this cycle, but only use n = 2in the actual calculation. 483 

In addition, the “forecast” wind field )ˆ,ˆ,ˆ( wvu  is obtained, 484 

),,()ˆ,ˆ,ˆ( tawtavtauwvu wvu   , and the unit vector “projection” decomposition of 485 

)ˆ,ˆ,ˆ( wvu  from the upstream point in spherical coordinates to the forecast point (called “vector discrete” 486 

decomposition) is required, and it is the same for the 3D displacement in the wind field. 487 

We can first decompose the upstream point )ˆ,ˆ,ˆ( wvu  in spherical coordinates into rectangular 488 

coordinates, and set the decomposition as )~,~,~( wvu , and then translate and decompose )~,~,~( wvu  to 489 

the forecast point in spherical coordinates, and set the decomposition as 
ttwvu ),,( . 490 

If for the forecast point ),,0( r , we have: 491 

uwvux ~cos)cosˆsinˆ(sinˆ:~
0000                    (39) 492 

vwvuy ~sin)cosˆsinˆ(cosˆ:~
0000                     (40) 493 

wwvz ~sinˆcosˆ:~
00                                    (41) 494 

Then, we have: 495 

vu tt ~                                                 (42) 496 

 cos~sin~ wuv tt 
                                  (43) 497 

 sin~cos~ wuw tt 
                                  (44) 498 

We can find 
ttwvu ),,(  for all forecast points ),,( r  using the above (equations (39)–(44)) 499 

similarly. 500 

In addition (as with finding 
ttwvu ),,( ), the 3D displacement ),,( zyx   of the upstream 501 

point is also decomposed to the forecast point as 
ttzyx  ),,(  (the superscript tt   is omitted 502 

below). 503 

Following the completion of the wind field forecast in a single time step, the 3D displacement 504 

divergence of spherical coordinates is obtained to complete the pressure and temperature field forecast. 505 

4.3 Pressure and temperature field forecast 506 

4.3.1 Space-time discretization of the divergence field 507 
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The pressure and temperature field variability is determined by the 3D divergence V  508 

(
s

s

e

z
Z

w

r

v

z

w

y

v

x

u



















tan

ˆ

ˆ
)( ˆV , y

s

x

ss zvzuw  ), which determines the pressure and 509 

temperature field forecast. 510 

First, we make a space-time discretization of V : first we take a time-step average 3D wind speed 511 

),,(),,(
t

z

t

y

t

x
wvu












 , and then perform cubic spline fitting of ),,( zyx  in ),,( z  512 

directions respectively; then, we take a time-step average terrain lifting speed 
t

zyzx

t

h y

s

x

s









ˆ , 513 

where h represent the terrain altitude difference corresponding to the horizontal upstream point to 514 

Euler forecast point ),,( zyx , then we take 
t

h
ws




 ; by zz ˆ  mathematical transformation, we 515 

can always get a time-step average 3D divergence in “ spline format”: 516 

s

zyx

Z

h

r

y
zyxt









tan
ˆ ˆ

V . Then, with hydrostatic horizontal divergence and 517 

non-hydrostatic vertical divergence separated: z

yx

sta D
r

y
yxtD ˆ

tan






, 518 

z

s

z

ins D
Z

h
ztD ˆ

ˆˆ 



 , here 

ypxp

z pypxD ˆ is the coordinate transformation term. 519 

4.3.2 Non-hydrostatic fully compressible pressure and temperature field forecast 520 

The 3D divergence V  is the one-time-step average of “starting point variability + endpoint 521 

variability” in the implicit forecast equation (equation (32)) of the upstream point, and it is used to 522 

forecast the “non-hydrostatic fully compressible” pressure field and temperature field as follows: 523 

)
1

exp(



 Vt

pp tt                                     (45) 524 

)
1

exp(







 Vt

TT tt                                     (46) 525 

For the density current test in this paper, the above “non-hydrostatic fully compressible” 526 

pressure-temperature field prediction equation is used. Because the 3D divergence V ranges from 527 

acoustic waves (acoustic waves are compressional waves with a wave speed of about 330 m/s) to gravity 528 

waves (wave speed of about 30 m/s), only very high spatial and temporal resolutions and very short time 529 

steps ( t  of the order of 0.1 s) can be employed. 530 

4.3.3 Hydrostatic pressure and temperature fields forecast 531 
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Based on the hydrostatic continuity equation staD
p





 (equation (23)) of ẑ -coordinate, cubic 532 

spline fit is performed on staD , with vertical integration of the barometric pressure difference from the 533 

top of the model down ( )ˆ(zppT  ), and top layer pressure is made a constant layer ( cpT   and its 534 

barometric pressure variability 0T ), then the barometric pressure variability  or pressure 535 

increment t  of each layer is obtained: 536 

pptDt
p

p
sta   ˆd

T

                                   (47) 537 

The pressure increment of each layer caused by the hydrostatic horizontal advection “divergence 538 

field” is represented by the above equation p . So, the hydrostatic pressure field forecast in each layer 539 

is then given as follows: 540 

ppp tt                                                (48) 541 

Then, the forecast surface pressure field is included in the above equation: 
ss

tt

s ppp   . 542 

The adiabatic warming of the air parcel p
p

T
T 




 is obtained from the hydrostatic horizontal 543 

advection pressurization, and the hydrostatic temperature field of each layer is forecasted: 544 

TTT tt                                                (49) 545 

The air pressure and temperature prediction equations presented above can describe a wide range of 546 

waves, from atmospheric long waves to gravity waves. 547 

4.3.4 Surface pressure field forecast and atmospheric mass conservation 548 

Though the previous equation (48) can be used to forecast the surface pressure field, the following 549 

surface pressure forecast equation can be even derived, to maintain atmospheric mass conservation. 550 

Since the variability of surface pressure is: 551 

y

p
v

x

p
u

t

p

dt

dps
s














 s

s
s

s
sˆ                              (50) 552 

After performing vertical integration for the hydrostatic continuity equation (equation (21)), we 553 

obtain (here let the atmosphere’s top layer 0Tp ): 554 

 










s

]d
tan

)[(
p

p
ps

T

p
r

v

y

v

x

u 
                          (51) 555 

The preceding equation is the integral form of the continuity equation, plugging it into equation (50) 556 

yields: 557 
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pT 
























s
s

s
s

s s

)d
tan

(


             (52) 558 

By swapping the integration and differentiation orders of the first term on the right side of the above 559 

equation, we get: 560 

)dcosd(
cos

1 sss

 











 p

p

p

p TT

pvpu
rt

p



                   (53) 561 

The global area A (  ddcosd 2rA  ) integrates to zero on the right side of the above equation 562 

i.e.,: 0dd 








 A

s
A

s Ap
t

A
t

p
, and the physical meaning of this equation is the conservation of the 563 

global atmospheric mass. 564 

In the following section, we derive the surface pressure forecast equation in the spline format while 565 

maintaining “atmospheric mass conservation.” 566 

After applying pressure difference cubic spline fitting and vertical integration to the model 567 

atmosphere of the equation (21) (here set the top of the model cpT  , 0T ), the equation (53) 568 

of the same form is obtained. 569 

Performing space-time discretization of the left side of equation (53): one-time-step average surface 570 

pressure increment 
t

pp

t

p t

s

tt

ss








 

 is taken, i.e., each time step 0d)( 


A

t

s

tt

s App  must be 571 

proved. 572 

Performing space-time discretization of the right side of equation (53): take a time step average 573 

horizontal wind speed 
t

yx
vu






),(
),(  and plug it into equation (53), and then perform pressure 574 

difference cubic spline fitting and vertical integration on the “model atmosphere” of ),( yx  , and 575 

define: 576 

    )d,d(
1

ˆ),(  



s

T

s

T

p

p

p

p
pypx

t
vu                              (54) 577 

The equation above    ),( vu represents the horizontal wind speed of one-time-step average and air 578 

pressure (air mass) weight. When  cosrx  and  ry , are considered, equation (53) 579 

becomes: 580 

         
r

v

y

v

x

uvu

rt

pp t

s

tt

s 







tan
)()

)cos(
(

cos

1


























   (55) 581 
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For the above equations  u  and   cosv , performing latitude circle and longitude circle periodic 582 

cubic spline, respectively, the following equations are converted to the spline format: 583 

   
   

 
r

v
vu

r

vu

t

pp yx
t

s

tt

s 



 
tan

)(
cos

)cos(









           (56) 584 

On the right side of the above equation, the global area integrates to zero, and we have: 585 

    0dd])cos([dA 







AA

t

s

tt

s rvu
t

pp
 

               (57) 586 

The above equation makes use of the periodic cubic spline’s mathematical property. Specifically, the 587 

wind field “slope” closure integrates to zero, the first term on the right side integrates to zero for the 588 

latitude circle, and the second term integrates to zero for the longitude circle. The equation (57) is then 589 

transformed into the “atmospheric mass conservation” surface pressure forecast equation: 590 

s

ttt ppp 

ss
,    

 
)

tan
(

r

v
vutp

yx

s


                (58) 591 

Because both calculate the 3D horizontal advection, the ideal test shows that the previous equation 592 

(48) is very similar to the above equation (58) in forecasting the surface pressure field (there is a slight 593 

difference between the two, which may be attributed to the rounding error in the summation of the 594 

vertical integration of equation (54). As a result, the former is transformed to the latter using the “Poisson 595 

equation,” and the surface pressure and temperature fields are redone to maintain the model’s 596 

atmospheric mass conservation. 597 

4.3.5 Time-split integration scheme 598 

In the atmosphere, there are stable and unstable stratifications, and the unstable stratifications are 599 

further subdivided into weakly and strongly unstable stratifications. 600 

Stable stratification (including neutral stratification): In the tmt  ( Mm ,...,2,1 , ttM  ) 601 

time process, horizontal advection remains in the ẑ  plane (where 0ˆ w ) and vertical convection 602 

remains as “half-wave oscillation”: the non-hydrostatic insD  term works  to forecast “fully 603 

compressible” pressure and temperature fields. It includes the topographic uplift item 
s

s

Z

w


, but, in a 604 

t , the oscillation the item 
z

w

ˆ

ˆ




 produced will recover and the air column tends to be in hydrostatic 605 

equilibrium (vertical divergence 0
ˆ

ˆ






z

w
 and vertical acceleration 0wa  in air column layers). 606 
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Weakly unstable stratification (with wet unstable stratification): In the tmt   time course, the 607 

stratification is adjusted to stable stratification by dry convection adjustment or wet convection 608 

adjustment, or it remains weakly unstable, so the “half-wave oscillation” can also be used to describe the 609 

“full compressible” pressure, temperature fields forecast of non-hydrostatic insD  term. The wet 610 

convection adjustment, on the other hand, entails “cumulus convection parameterization and 611 

precipitation,” “air mass (water vapor) source–sink and latent heat of phase change,” etc., all of which 612 

react to pressure and temperature fields. 613 

Strongly unstable stratification: Within a time step, under the action of pressure gradient force 614 

( 0wa ), there is always strong vertical motion, with strongly unstable stratification (such as the 615 

downburst, tornadoes, etc.) maintained, so the “half-wave oscillation” cannot be used to describe the 616 

strong vertical motion. Only 3D divergence V  can be used to directly forecast the “fully 617 

compressible” pressure and temperature field; as a result, the mesoscale model must be nested, acoustic 618 

waves must be distinguished, very short time steps must be taken, and the wet convection adjustment 619 

process must be incorporated. 620 

For “time-split”: if the vertical displacement is found by 
2

2t
atwz w


  (and thus ẑ  and 621 

vertical divergence zz
ˆˆ ), the time step should be very short because the non-hydrostatic equilibrium 622 

generates an acoustic wave that oscillates several times in one-time step ( wa  changes symbol several 623 

times); as a result, the hydrostatic vertical displacement Z zz  (“half-wave oscillation” process) is 624 

carried out instead of it to block the acoustic waves. 625 

The acoustic wave scheme calculation (“half-wave oscillation” process) is as follows: 626 

For the convenience of description, let the pressure and temperature field at time t be ),( tt Tp , 627 

which becomes ),( Tp  after a long time step ( t ) of horizontal advection and staD , and becomes 628 

),( tmttmt Tp  
 after a short time step ( t ) of vertical convection and insD , Mm ,...,2,1 . 629 

① By ),( Tp , the initial guess value )0(
1

ẑ

s

ins D
Z

h

M
tD 




  (all compressible “Poisson 630 

equation” process): )]
1

exp(),
1

exp([),( 0














 tD

T
tD

pTp insinstttt  is obtained; 631 
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② (hydrostatic equilibrium equation) 
0)R(

ln
ttT
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p






, by “half-wave oscillation,” it is 632 

obtained that: pd
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1
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

 
 , 633 

101

ˆ
)()( z

z

T
TT tttt 




   ; 634 

③ Replace “0” with “1”,…, “n-1” with “n”, repeat the ② process to obtain: 
2z  and635 

2),( tttt Tp  
, …, 

nz and
ntttt Tp ),(  

, which should theoretically take 636 

n),(lim),( tttt

n

tttt TpTp  



   and 0 nz ; 637 

The above ②-③ is the “implicit iteration” process for calculating the non-hydrostatic “half-wave 638 

oscillation” on the air column: based on the 
0),( tttt Tp  
 after the “full compressible” process, 639 

1),( tttt Tp  
in-process is calculated, …, 

ntttt Tp ),(  
. According to the calculations, this “implicit 640 

iteration” converges in the stable stratification, i.e., to the hydrostatic equilibrium: 641 

nttT

g

z

p

)R(

ln






 and 0 nz . Here ( z

Z

z
z

s

T 


ˆ ), if we set
t

z
w

n
n



ˆ
ˆ


 , then nŵ  is 642 

the vertical velocity in the “half-wave oscillation,” under the action of the pressure gradient force ( wa ), 643 

nŵ  turns from “full compressible” to zero in “hydrostatic equilibrium” ( 0ˆ nw , 0
ˆ

ˆ






z

w
 644 

disappears in “half-wave oscillation”). In the actual “implicit iteration,” only n = 2 is taken. 645 

④ Replace ),( Tp  with ),( tttt Tp  
, repeat the ①-③ process for M times to obtain 646 

),( 22 tttt Tp  
, …, ),( tttt Tp 

, thus completing the time-split integral in a time step ( t ). 647 

Obviously, the hydrostatic dynamic frame ( 0ins D ) does not require ① process. 648 

This acoustic wave calculation scheme maintains the physical mechanism of the “non-hydrostatic 649 

fully compressible” vertical motion from compressional wave “acoustic wave” to gravity wave, while 650 

effectively avoiding acoustic wave propagation. 651 

In this study, the gravity wave test is performed using the “hydrostatic and non-hydrostatic time-split 652 

and computational acoustic wave” integration scheme above. We show that in stable stratification 653 

conditions, the order of 10s can be taken for tt  , as if “time-split” is only a sufficient condition, not 654 

a necessary condition. 655 

 656 
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5 Model boundary with spline format 657 

Cubic spline mathematical boundary: (i) known boundary slope of the first-order derivative or 658 

boundary curvature of the second-order derivative; (ii) periodic cubic spline. The periodic cubic spline 659 

(no boundary) should be used in the horizontal direction for the global model, and the global model 660 

provides the boundary for the nested model. The forward/backward difference boundary can be used by 661 

the temperature, humidity, and wind / displacement fields at the top and bottom of the model, and the 662 

“hydrostatic equilibrium” boundary of the pressure field at the top and bottom layer can make the vertical 663 

acceleration at the top and bottom zero. The “fully compressible” boundary of wind/displacement bottom 664 

differential changes the surface pressure field, whereas the “non-compressible” boundary does not. 665 

The physical boundary of the rigid top layer of the model: set the air pressure at the top layer of the 666 

model cpT   as a constant layer, altitude czT   as a constant layer, temperature TT  as a constant 667 

temperature layer, 0Tq  as a water vapor-free layer, 0 TTT wvu  as a stationary layer, the 668 

top layer of the model has no mass exchange, no water vapor exchange, but with net energy in and out 669 

(the ideal tests in this paper use all the rigid top layer). 670 

6. Advection tests 671 

6.1 Longitude-latitude grid and quasi-uniform longitude-latitude grid 672 

In this study, a rectangle with spherical topology, a 1º×1º longitude-latitude grid, called an “A-grid”, 673 

is described. Grids with a higher resolution can then be extrapolated to scale. 674 

The 1º×1º A-grid (Table 1) has (0:360, -90:90) 65160 grid points. At the poles, 360 identical values 675 

are always allocated to the scalar field’s p, T, q, and the vertical vector fields w, and 360 “trigonometric” 676 

decomposition values are always assigned to the horizontal vector fields ),( vu  and ),( vu aa  reduced. 677 

Based on the A-grid, a quasi-uniform longitude-latitude grid, called “B-grid” (Table 1), is introduced, 678 

and the B-grid multiply reduces the forecast points in segments from the equator to the poles, and it is 679 

equidistant in latitude and coincides with the A-grid, that is AB , and the forecasts are solely made 680 

for the B-grid by performing a cubic spline fitting to every latitude, to interpolate and assign forecast 681 

values to the A-grid. 682 

 683 

 684 

 685 

 686 

 687 

 688 
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 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

Table 1. The global 1º•1º longitude-latitude grid (A-grid), the quasi-uniform longitude-latitude grid 704 

(B-grid): demote n as numbers of forecasting point in each degree of latitude, and d as latitudinal distance, 705 

e.g.:d=1, that is 1 degree distance at the equator or at a longitude. 706 

 707 

6.2 Equilibrium flow test 708 

To test the accuracy of the spline format and address the issue of an excessively dense grid in the 709 

polar region of the A-grid, the equilibrium flow test is carried out on the A-B grid by bicubic surface 710 

fitting and interpolation to find the horizontal motion path and forecast physical values of the upstream 711 

point. 712 

The equilibrium flow test initial value field is designed as 0 wvq , which satisfies the 713 

hydrostatic equilibrium and horizontal motion quasi-geostrophic equilibrium, and moves around the 714 

earth’s axis with a constant angular velocity, then we have (set 200 u ms−1): 715 

 cos),,( 0uzu                                    (59) 716 

The model atmosphere is set to a constant temperature lapse rate (let 005.0  Km−1): 717 






z

T
                                          (60) 718 

The pressure and temperature fields are solved as (let )2(G 0

0 ur
g

u
e 


): 719 

 2

0 sin
2

G
),,(  zTzT                          (61) 720 

N°/S° A-grid (n/d) B-grid (n/d) 

0-59 

60-74 

75-78 

79-80 

81-82 

83 

84 

85 

86 

87 

88 

89 

90 

360/1-0.52 

360/0.50-0.28 

360/0.26-0.21 

360/0.19-0.17 

360/0.16-0.14 

360/0.12 

360/0.10 

360/0.09 

360/0.07 

360/0.05 

360/0.03 

360/0.02 

360/0.00 

360/1-0.52 

180/1-0.55 

120/0.78-0.62 

90/0.76-0.69 

72/0.78-0.70 

60/0.73 

45/0.84 

40/0.78 

36/0.70 

30/0.79 

18/0.70 

12/0.52 

1/0.00 
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 R

0

0 )(),,(

g

T

T
pzp                                  (62) 721 

Above, let 10200 p  hPa and 15.3000 T K, 0p  and 0T  be the air pressure and temperature 722 

of the ground on the equator, respectively. 723 

After substituting the above p, T, q, u, v, w initial value fields into the atmospheric motion equation, it 724 

is not difficult to find a frictionless, water vapor-free process: 0
dt

dw

dt

dv

dt

du

dt

dT

dt

dp
, so the 725 

equilibrium flow test is the “eternal” motion of the model atmosphere in horizontal constant angular 726 

velocity. In the initial value field, p, T, and u fields are east-west parallel “straight lines” in any height 727 

layer (Figure 1a for the p field), because the path on the “straight line” flow field overlaps with the 728 

trajectory, the time integral p, T, u fields should remain unchanged. 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 
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 753 

(a) 754 

 755 

(b) 756 

 757 

Fig.1. Equilibrium flow tests. 758 

(a) initial pressure field (p: hPa, at 5749 gpm layer); (b) The same as (a), but for 30-day forecast field. 759 

 760 

Quasi-geostrophic equilibrium flow test results: on the A-B grid mapping a global 1º×1º mesh, from 761 

the pressure, temperature, and wind initial value fields to the 30d integration fields, with time steps of 762 

600s, they hardly change (Figure 1b for the p field) on any contour plane. The fact that atmospheric mass, 763 

energy, and momentum fields flow in parallel and uniformly, and the “cubic” advection is compatible 764 

with linear advection, shows that the nonlinear bicubic surface fitting of the linear pressure/mass), 765 

temperature/ energy, and wind/momentum fields can ensure that the horizontal path of the upstream point 766 

coincides with its trajectory. 767 

6.3 Cross-polar flow test 768 

We design an ideal horizontal, two-dimensional cross-polar flow test to examine the viability and 769 

accuracy of the upstream point in the spline format on the A-B grid, including the polar regions and the 770 
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poles, the correctness of the procedure of the horizontal motion equation at the North Pole and the South 771 

Pole, and to address the issues of the overly dense grid in the polar region and the singularity of the poles. 772 

Suppose the advection satisfies the geostrophic equilibrium and the initial perturbation pressure field 773 

is taken as: 774 

)sincossin
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pp e

                          (63) 775 

Suppose in the above equation, 10000 p  hPa,  3000 T K, 200 v  ms−1. 776 

Then the spline format horizontal geostrophic wind ),( gg vu  is: 777 
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0gg  vu     ( 0 )                                      (64) 779 

and the initial value of the horizontal geostrophic wind is obtained as: 780 

 sinsin)sincos3( 22

0g  vu  ,   cossin2

0g vv        (65) 781 

The cross-polar flow is characterized by (Figure 2): 0)( g Nu , 
0g )( vv N  at the North Pole;782 

0)( g Su , 
0g )( vv S   at the South Pole, which is consistent with the definition of horizontal wind at 783 

the pole; and 0gg  vu  the equator. 784 

From equation (6), it is found that the exact solution of the geostrophic wind keeps parallel / 785 

perpendicular to the perturbed pressure field contour / gradient, and the path of the upstream point 786 

obtained by the flow line should coincide with the trajectory, without change of the mass field. 787 

Log-pressure ( pln ) field of each layer is fitted to a spherical bicubic surface, allowing for a 788 

diagnosis of the horizontal geostrophic wind (Figure 2a). 789 

The cross-polar flow test with a horizontal resolution of 1º × 1º is designed (Table 2): 790 

 791 

 792 

 793 

 794 

 795 

 796 

Table 2. Cross-polar flow tests. 797 

 798 

 799 

Cross-polar flow 

tests 

Geostrophic wind Time 

step 

Integration 

time 

Test 1 

Test 2 

),( gg vu  

),cos5( gg vu   

300 s 

300 s 

10 d 

10 d 
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 800 

(a)                                            (b) 801 

 802 

 803 

(c) 804 

 805 

Fig. 2. Cross-polar flow test.  806 

(a) initial ground perturbation pressure field (p: hPa) and geostrophic wind field (m/s); (b) Test 1, 10 807 

d forecast field with ),( gg vu ; (c) Test 2, 10 d forecast field with ),cos5( gg vu  . 808 

 809 

The perturbation pressure/mass field should not change over time, and the geostrophic wind in Test 1 810 

should maintain its parallel alignment with the isobars; however, in Test 2, with a constant angular 811 

velocity applied ( cos5 ms−1), plus the effect of the advection, the perturbation pressure/mass field can 812 

only rotate uniformly.  813 

The results of the cross-polar flow test (see Figure 2 for the Northern Hemisphere): compared with 814 

the initial value field (Figure 2a), the wind and pressure fields in Test 1 hardly change with time (Figure 815 

2b); in Test 2, after being integrated for 10d (Figure 2c), the geostrophic wind and pressure field 816 
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relationship is maintained globally, including polar regions, and the perturbation pressure/mass field has 817 

little deformation, little mass change despite wind and pressure field rotation. 818 

6.4 Rossby–Haurwitzwave test 819 

The Rossby–Haurwitz wave, often known as the “R-H wave,” is an approximate solution to the 820 

linear barotropic vorticity equation that, given certain assumptions becomes an exact solution. 821 

If the Coriolis force ( sin2f ) changes slowly and only describes the R-H wave in the 822 

Northern Hemisphere, so f is set at 45°N and taken as )
4

sin(20


 ff then let the perturbed 823 

geopotential height field h of the R-H wave (the exact solution): 824 
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Where,   is a stream function, having a wind-pressure field relationship with the divergence-free 826 

wind ),(  vu : 827 

)
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vu                                     (67) 828 

According to the aforementioned equation (9), the path of the upstream point generated by the flow 829 

line will coincide with the trajectory, without changing the mass field. Similarly, the divergence-free wind 830 

stays exactly parallel / perpendicular to the stream function field contour / gradient. 831 

Suppose 0h ( 3000 h  gpm) be the disturbance amplitude, and take 200 u m/s, and let 832 

0

0C
fr

gh

e

 , and set the “4-latitudinal wave” stream function field   as: 833 

21ˆ)sin1()4cos(cosC 0

2   ure
                 (68) 834 

Substituting equation (68) into equation (67), we get: 835 

21  uuu   : )4cos()2sin(C1  u  ,  cos02 uu   836 

)4sin(cosC4  v                                       (69) 837 

Where,
2u  is the latitudinal constant angular velocity. 838 

  is fitted to a spherical bicubic surface before each time step integration to obtain its slope 
x  839 

and 
y , then we have a wind-pressure field relationship in “spline format” (compare with equation 840 

(67)): 841 

),(),( xyvu                                          (70) 842 
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Here, only two-dimensional, ground-level R-H wave advection tests are performed. 843 

First, the height amplitude 0h  is converted to “isothermal atmospheric” pressure amplitude 0p , 844 

that is, the geopotential height perturbation field is converted to pressure perturbation field, then we have 845 

(let 840Np  hPa, 15.273NT  K, Np , NT  be the ground North Pole pressure and temperature, 846 

NT  also be the isothermal atmospheric temperature): 847 
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Here, three R-H wave tests are designed (Table 3): 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

Table 3. Rossby–Haurwitz wave tests.  857 
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 861 

 862 

 863 

 864 

 865 
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 867 

 868 

 869 

 870 

 871 

 872 

Rossby-Haurwitz 

wave 

Divergence-free wind field Time 

step 

Time 

integral 

Test 1 

Test 2 

Test 3 

Test 4 

),cos20( 1   vu  m/s 

),cos30( 1   vu  m/s 

),cos30( 1   vu  m/s 

),cos30( 1   vu  m/s 

600 s 

600 s 

600 s 

60 s 

100 d 

100 d 

300 d 

300 d 
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(a)                                        (b) 873 

 874 

(c)                                        (d) 875 

 876 

(e) 877 

 878 

Fig. 3. Rossby–Haurwitz wave test. 879 

(a) Initial sea level pressure field and horizontal divergence-free wind field; (b) Test 1, 100d forecast 880 

field with ),cos20( 1   vu  m/s and st 600 ; (c) Test 2, 100d forecast field with ),cos30( 1   vu 881 

m/s and st 600 ; (d) Test 3, The same as Test 2, but for 300d forecast field; (e) Test 4, The same as 882 

Test 3, but for st 60  883 
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Results of the R-H wave test (see Figure 3 for the Northern Hemisphere and Figure 3a for the initial 884 

value field): 885 

Test 1 flow field has a constant equal latitudinal angular velocity  cos202 u (m/s). The path of 886 

the upstream point remains parallel to the trajectory, the forecast flow function or mass field does not 887 

rotate, and bicubic surface fitting can preserve the spherical symmetry of the original flow field, and 100d 888 

integrated perturbed pressure/mass field has insignificant deformation and error. Additionally, the 889 

divergence-free wind-pressure field relationship is maintained (Figure 3b). 890 

Tests 2-4 all added another cos10 (m/s) of equal latitudinal angular velocity: they turn as891 

 cos302 u (m/s) (Table 3). In Test 2, under the action of the advection ),cos30( 1   vu  m/s, 892 

the pressure / mass field rotates due to the addition of the zonal angular velocity, and the deformation of 893 

the 100d integrated “rotating” mass field (Figure 3c) is a lot larger than that in Test 1 (Figure 3b), and 894 

when the integration is extended to 300d in Test 3, the pressure field has closely become “round” (Figure 895 

3d). The 300d predicted air pressure field in Test 4 (Figure 3e) has much more “fidelity” than that in Test 896 

3 (Figure 3d), but with a time step of the 60s, that is 10 times higher time precision while the computation 897 

volume also grows by 10 times. 898 

The R-H wave test proved that using spline forecast, the amplitude error of wave, that can be 899 

pressure field becomes “round”, is monotonically bounded, and correct fluctuation phase propagation, 900 

which means that phase propagation is independent of spatial resolution, is maintained, and there is 901 

convergence between fidelity and time resolution. 902 

7 Density flow test 903 

7.1 Initial value field 904 

The divergence field comprises acoustic wave propagation, and the density flow test calculates the 905 

non-hydrostatic fully compressible air parcel displacement, divergence, and pressure and temperature 906 

field fluctuation. 907 

The density flow test is a two-dimensional ),( zx  ideal field test, the initial value field is still taken 908 

as a 3D model atmosphere, but only the middle vertical cross-section grid points in the y-direction is used 909 

for the time integration, and each time step is given the same forecast values for the other grid points in 910 

the y-direction, then it is set 0 xyy PP . The typical density flow test has a spatial resolution of 911 

100 zx m without topography, ),,( zyx the area is taken as (0:512, −4:4,0:53) , then it always is 912 

set ),0,(),,( zxPzyxP  . 913 
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The x-direction is a periodic cubic spline, which means that there are no boundaries; the y-direction is 914 

the rigid boundary 0yP ; the z-direction top and bottom layer: the air pressure and the perturbation 915 

pressure are the hydrostatic equilibrium boundary, making the top and bottom layer 0 waw . While 916 

temperature, wind, and displacement are all the forward and backward difference boundaries, which 917 

make the divergence act on and change the surface pressure and temperature field on the bottom layer, to 918 

cause the surface pressure to become completely elastic, yet the top layer air pressure, temperature ,and 919 

wind all remain constant. 920 

The undisturbed initial value field is the dry hydrostatic atmosphere, 0 wvuq , the 921 

ground pressure is 1000 hPa, and the model atmospheric initial potential temperature ( ) field is 300 K, 922 

then the ground layer temperature is 300 K. 923 

In the center of the undisturbed initial value field, a circular, cross-section cold surge is placed (Figure 924 

4), that is, set: 925 
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here (Figure 4), take c c( , ) (256 100 m, 30 100 m)x z     as the cold surge center point, 928 

(r , r ) (40 100 m, 20 100 m)x z     is the cold surge ),( zx  direction radius, in the cold surge center 929 

point: 0L  ,  =-15 K. Using the hydrostatic force equation and the potential temperature 930 

conservation Poisson equation, the perturbation initial value field pressure and temperature distribution 931 

are obtained. Because of the cold surge, the initial value of the air pressure field changes a little; for 932 

example, the ground pressure directly below the cold surge center reaches 1013.21 hPa. 933 

Using the separation hydrostatic pressure method, the “time-varying reference atmosphere” and 934 

vertical acceleration wa  is calculated at each time step, and then the initial value field wa is a non-null 935 

distribution only in the cold surge. 936 

 937 

 938 

 939 

 940 

 941 
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 942 

 943 

Fig. 4. Density flow test. 944 

Initial value field: height (solid line: hPa), temperature (dotted line: K), and potential temperature 945 

(dashed line: K) for Test 1 with time step 0.1 s and Test 2 with 0.125 s. 946 

 947 

7.2 Temporal resolution and spatial smoothing 948 

The density flow test benchmark reference solution takes a time step of 0.1s, with a time integration 949 

of 900s. 950 

Density flow Test 1 (Figure 5), with a time step of 0.1s; three-point spatial smoothing with a vertical 951 

wind field coefficient of 1/3, and the three-point smoothing with a horizontal pressure field coefficient of 952 

1/2 are performed every three-time steps (0.3s). In the smoothing of the barometric field, corresponding 953 

Poisson equation “adiabatic temperature change” smoothing is performed on the temperature field (called 954 

“potential temperature conservation” pressure, temperature field smoothing). 955 

Similar to Test 1, but with a 0.125s time step, is the density flow Test 2 (Figure 6). A vertical wind 956 

field smoothing, a pressure and temperature field “potential temperature conservation” smoothing; and 957 

three-point smoothing with divergence field horizontal and vertical coefficients of 1/2 are also carried out 958 

every time step (0.125 s), respectively, to prevent the growth and propagation of the acoustic waves. 959 

Density flow Test 1 and Test 2 both extend the integration to 1200s, and the results of both tests are 960 

roughly similar (Figures 5 and 6). 961 

In addition to the benchmark reference solution being in a higher-order precision spline format (its 962 

linear principal part is second-order central difference), they also have different boundary conditions and 963 

spatial smoothing schemes. Straka et al. (1993) proposed the density flow test benchmark reference 964 

solution n linear format with various resolutions. 965 
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7.3 Density flow test analysis 966 

A highly nonlinear density flow test revealed the whole “cold surge sinking → bottom cold air 967 

accumulation → Kelvin-Helmholtz horizontal wind shear formation at cold front → unstable vortex 968 

formation” evolution process, and it is an “acoustic + gravity wave” propagation process. 969 

Density flow test (Figures 5 and 6): under negative buoyancy of the vertical pressure gradient force, 970 

the cold surge accelerated sinking, and cold surge accumulates after hitting the bottom, forming sinking 971 

divergence “cold front” air flow. The cold air is divided into two (for a 3D test, cold air shall be in circular 972 

fluctuation) symmetric cold fronts on the left and right (Figures 5 and 6 only show a forward movement 973 

along x). 974 

Results of the density flow test show that after 300 s of integration, the cold surge main body reaches 975 

the bottom, forming a strong horizontal wind vertical shear in front of the cold front, achieving 976 

Kelvin-Helmholtz shear instability. This forms the first front vortex (Figures 3① and 4①); after 600 s of 977 

integration, the first vortex rapidly intensified, with “multi-vortex” rolling on the back, while the front 978 

forms a second vortex (Figures 3② and 4②); integrated for 900 s, the first vortex has developed into a 979 

circular vortex, and the second vortex is still developing, followed by the development of a third vortex 980 

(Figures 3③ and 4③); integrated for the 1200 s, the cold front continues to move forward, with 981 

three-vortex pattern maintained roughly (Figures 3④ and 4④). 982 

(Figures 7 and 8) Before the cold surge reaches the bottom, the ground pressure directly below the 983 

cold surge center drops rapidly, once down to about 1002 hPa. During this process, the layer of near- 984 

ground 900 m keeps in sinking motion, with vertical wind speed reaching about -14 ms-1 when being 985 

integrated into for 200s. The cold surge process is divided into forward compression and rebound (the 986 

so-called “fully compressible” = “fully elastic”); when the cold surge hits the bottom for the first time, the 987 

surface pressure once again increased to 1013 hPa, then first rebounds, the pressure goes back to about 988 

1005 hPa, with a big shock wave amplitude of about 7-8 hPa, shock process about the 30 s, followed by a 989 

number of small “fully elastic” waves with an amplitude of about 3 hPa. The big shock wave is a gravity 990 

wave, with an interval of about 150 s, and it weakens toward “undisturbed surface pressure of 1000 hPa.” 991 

Similar to the surface pressure changes directly below the cold surge center, the surface pressure 10km 992 

right of the cold surge also presents shock wave evolution with wave amplitude from about 4 hPa to 993 

about 1hPa, and interval of about 75 s; that is, the latter has smaller amplitude but the higher frequency, 994 

which shows the gravity wave horizontal propagation and divergence characteristics. At the same time, 995 

the maximum vertical wind at 900 m above 10 km in front of the cold surge is 7.5 ms-1 when a cold front 996 

passes, then, the rising wind speed is rapidly reduced, too -1 ms-1 sinking motion once, and back to 5.5 997 

ms-1 rising motion when the secondary cold front passes. 998 
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(Figure 9) The surface horizontal wind directly below the cold surge presents acoustic vibration, with 999 

an acoustic amplitude of about 0.002 ms-1, and the surface horizontal wind 10km ahead of the cold surge 1000 

shows gravity wave characteristics; corresponding to the addition of the aforementioned vertical wind, 1001 

the horizontal wind speed gradually increased before the passage of the cold front, reaching a maximum 1002 

speed of 23 ms-1 when the front passed after being integrated for 600s. It is clear that the evolution of 1003 

horizontal wind includes the propagation of acoustic and gravity waves, with the gravity “fast” wave 1004 

having a 1 ms-1 periodic oscillation amplitude superimposed. 1005 
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 1036 

Fig. 5. Density flow Test 1. Time step 0.1 s, potential temperature (solid line: K) forecast field (only 1037 

shows a forward movement of symmetrical motion along x): integrated for ①300 s; ②600 s; ③900 s; 1038 

④1200 s. 1039 

 1040 

 1041 

Fig. 6. Density flow Test 2. Time step 0.125 s, the forecast field is the same as that of density flow 1042 

Test 1, but with different spatial smoothing schemes. 1043 

 1044 
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 1045 

 1046 

Fig. 7. Ground pressure change curve diagram of the density flow Test 1. 1047 

Simulating surface pressure at the cold surge center (solid line: hPa), simulating surface pressure 10 1048 

km to the right of the cold surge (dashed line: hPa), integrated for 900 s. 1049 

 1050 

 1051 

Fig.8. Vertical wind change curve diagram of the density flow Test 1. 1052 

Near-ground 900 m vertical wind at the cold surge center (solid line: 1sm  ), near-ground 900 m 1053 

vertical wind 10 km to the right of the cold surge (dashed line: 1sm  ), integrated for 900 s. 1054 

 1055 
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 1056 

Fig.9. Surface horizontal wind change curve diagram of the density flow Test 1. 1057 

Surface horizontal wind at the cold surge center (solid line: 1-4 sm10  ), surface horizontal wind 10 1058 

km to the right of the cold surge (dashed line: 1sm  ), integrated for 900 s. 1059 

 1060 

8 Gravity wave test 1061 

3D gravity wave test is performed to test the topographic perturbation caused gravity wave process of 1062 

hydrostatic, non-hydrostatic dynamic core, and comparable results. 1063 

8.1 Initial value field 1064 

The initial value field of gravity wave test is also an equilibrium flow that satisfies hydrostatic 1065 

equilibrium and proves to be horizontal motion quasi-geostrophic equilibrium.  1066 

The stable stratification constant frequency of buoyancy oscillation in the atmosphere N (take 1067 

42 104.1N  , N is also called Brunt-Väisällä frequency), because 
z

g





ln
N2  (θ is the 1068 

potential temperature), it has the following established relationship with the temperature lapse rate 1069 

(equation (60)) (let 0T  be a constant): 1070 
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2N
                                      (73) 1071 

Combining the hydrostatic equilibrium equation, quasi-geostrophic equilibrium and the constant temperature lapse 1072 

rate (equation (73)), the “solution” of the initial value field of ẑ  coordinates can be obtained (let 1073 
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In the above equation, take 10200 p  hPa, 15.2900 T K as the equatorial surface pressure and 1077 

temperature, respectively, and take the initial value field 8u ms-1, 0ˆ  qwv , because 1078 
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 , then each ẑ  layer can be obtained 

T

z
s

z

Z
ww ˆ

  by diagnosis. 1079 

8.2 Bicubic surface “bell-shaped” terrain 1080 

Suppose the ideal “bell-shaped” terrain be: 1081 
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                                          (76) 1082 

H is the highest height of the central point of the terrain, x, y denote the east-west and north-south 1083 

distances from the central part of the terrain, Lx, Ly denote the half-width of the terrain in the east-west and 1084 

north-south directions, respectively, and take Lx = 5Δx, Ly = 5Δy. 1085 

The “bell-shaped” terrain is placed in the south-north center and western part along the west-east 1086 

direction of the simulation area, and there is no terrain in the other areas, and the height field of the 1087 

surface layer is fitted to the bicubic surface to form an overall “second-order derivative” bicubic surface 1088 

terrain (Figure 10). 1089 

8.3 Simulation area and boundary 1090 

Simulation area 1 (Figure 10): horizontal resolution: 0.1º×0.1º, grid spacing: Δx≈Δy=11.12km, 1091 

horizontal area (0:10°E, 5°S:5°N), a total of (0:100, −50:50) 10201 grid points. The 42-layer vertical 1092 

stratification is carried out by converting the air pressure difference using the hydrostatic equilibrium 1093 

equation (0:41) Δp = 25hPa (top layer Δp = 19hPa) to height difference z , atmospheric pressure layers: 1094 

1020, 995, 970, …, 45, 20, 1 (hPa), corresponding height layers: 0, 210, 422, … 15007, 16654, 19662 1095 

geopotential meter, and then converted to ẑ  coordinate stratification. 1096 

Simulation area 2: the horizontal resolution of 0.05º×0.05º, grid spacing Δx≈Δy=5.56km, horizontal 1097 

area (0:5°E, 2.5°S:2.5°N), a total of (0:100, −50:50) 10201 grid points, vertical stratification is the same 1098 

as simulation area 1. 1099 
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Simulation area 3: the horizontal resolution of 0.01º×0.01º, grid spacing Δx≈Δy=1112 m, horizontal 1100 

area (0:1°E, 0.5°S:0.5°N), a total of (0:100, −50:50) 10201 grid points, vertical stratification is the same 1101 

as simulation area 1. 1102 

The x-direction is the periodic cubic spline; the y-direction is the rigid boundary ( 0yP ); the top 1103 

and bottom layers in the z-direction: pressure field are both the hydrostatic equilibrium boundaries, while 1104 

temperature, wind, displacement, and divergence fields are all the forward and backward difference 1105 

boundaries. 1106 

 1107 

 1108 

Fig. 10. Gravity wave test. 1109 

Simulation area 1 and the bell-shaped terrain (h: m, Δh: 100 m) for the gravity wave Test 1. 1110 

 1111 

8.4 Gravity wave test analysis 1112 

①Test 1 (in the simulation area 1) 1113 

Non-hydrostatic dynamic core, the central height of terrain H = 600 m, its central point is (40,0) 1114 

(Figure 10), s15 tt  , integrated for 3h, (Test 1 shows: with stable atmospheric stratification and 1115 

no water vapor evaporation and condensation precipitation, the no time separation is appropriated). 1116 

Test 1, if H = 0 m, which means that there is no terrain, becomes another “equilibrium flow test” in 1117 

the limited area: when integrated for 3h, the pressure, temperature, and wind fields almost remain 1118 

unaltered (figure omitted). 1119 

The u-v wind field ( m210ˆ z ): (0–3h integration, Figure 11), the horizontal airflow passes around 1120 

or over mountain when meeting the terrain, divides into north and south branches on the windward slope, 1121 

and after bypassing the terrain, converges into a flat airflow on the leeward slope (Figure 11 for 1h 1122 
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integration). But the test shows that the terrain forces the airflow to lift, making the general divergence 1123 

field over the terrain, gradually forming a low pressure on the ground (Figure 12). The wind field adjusts 1124 

to the pressure field, forming a gravity wave wind field with the leeward slope as the convergence center, 1125 

“convergence-divergence-convergence-…” stationary wave propagating in all directions, with the 1126 

leeward wave amplitude being most noticeable; (see Figure 11 for 2.5h integration), the gravity wave 1127 

wind field propagation has reached the south and north boundaries, and crossed the east and west 1128 

boundaries; however, since the periodic cubic spline is present, there are no East and West boundaries, so 1129 

the gravity wave wind field becomes a “closed” annular wind tunnel flow. 1130 

 1131 

 1132 

Fig. 11. Gravity wave test 1. 1133 

Simulated u-v field, 0.1º × 0.1º, Δx≈Δy≈11.12 km, m210ˆ z , Δt = δt = 15 s, T = 0–3h. 1134 

 1135 

Surface pressure field: from the initial value field of 949.90 hPa at the summit and 995.20 hPa at the 1136 

windward and leeward slopes to 938.33 hPa at the summit with 2.5h integration, 1000.26 hPa at the 1137 

windward slope, and 989.31hPa at the leeward slope (Figure 12①); it transforms into a gravity wave 1138 

pressure field with the terrain acting as the low-pressure center, there the leeward slope has a relatively 1139 

low pressure while the windward slope has relatively high pressure, a stationary wave propagating in all 1140 

directions with the leeward wave amplitude being the most noticeable, and the gravity wave pressure 1141 

field’s wavelength being calculable through diagnosis. 1142 

v-wind field ( ˆ 2103mz  ): (Figure 12②, 2.5h integration), presenting a v-field formed by the 1143 

bypass flow, symmetric concerning the topography, revealing the standing wave-like pressure field and 1144 
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the horizontal gravity wave train. The perturbation has a closed wave number horizontal and vertical tilt 1145 

structure. 1146 

 1147 

(a)                                         (b)    1148 

 1149 

Fig. 12. Gravity wave Test 1. 1150 

(a) simulating surface pressure field, m0ˆ z , T = 2.5 h; (b) simulating the v field, m2103ˆ z , 1151 

T=2.5 h 1152 

 1153 

 1154 

w-wind field: (see Figure 13, that is equatorial vertical cross-section) Figure 13①, 2.5h integration, 1155 

shows the vertical structure of gravity wave propagation around the terrain, upwind and downwind, but 1156 

the amplitude of the leeward wave is most noticeable on the downwind side. This motion wave train 1157 

corresponds to the topographically disturbed standing wave type pressure field formed by the “fully 1158 

compressible” equilibrium flow crossing the mountain for a long time. 1159 

Test 1 shows that the “horizontal hydrostatic, but vertical non-hydrostatic” dynamic core can 1160 

simulate the terrain gravity wave pressure, temperature, and u-v-w wind field. They differ in time-space 1161 

propagation, and intensity of the simulated terrain gravity waves, and have significantly different 1162 

mountain front vertical velocities when compared to the w-wind field simulation utilizing the vertical 1163 

hydrostatic dynamic core (Figure 13②, 2.5h integration). 1164 

 1165 

 1166 

 1167 

 1168 

 1169 

 1170 
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 1171 

①                                      ② 1172 

 1173 

③                                      ④ 1174 

 1175 

Fig. 13. Gravity wave Test 1, Test 2, and Test 1. 1176 

①Gravity wave Test 1, simulating w-field, equatorial zx ˆ  profile, of0.1º×0.1º, Δx≈Δy≈11.12km, 1177 

Δt=δt=15s, T = 2.5h; ②is the same as ① but for the hydrostatic dynamic core; ③gravity wave Test 2, 1178 

simulating w-field, equatorial zx ˆ  profile, but of 0.05º×0.05º, Δx≈Δy≈5.56 km, Δt=δt=6s, T = 90 min; 1179 

④gravity wave Test 3, simulating w-field, equatorial zx ˆ  profile, but of 0.01º×0.01º, Δx≈Δy≈1112 m, 1180 

Δt=δt=1s, T = 20 min. 1181 

 1182 

②Test 2 (in the simulation area 2) 1183 

Non-hydrostatic dynamic core, the central height of terrain H=200m, central point (80,0), 1184 

s6 tt  , integrated for 108 min. Test 2 has a half grid, four times smaller terrain extent and twice as 1185 

high spatial resolution as Test 1. 1186 

u-v wind field (figure omitted): similar to Test 1, but integrated for 96 min, the gravity wave wind 1187 

field extends to and crosses the east and west boundaries as well as the south and north boundaries. 1188 

w-wind field: Figure 13③, 90 min integration, demonstrates the gravity wave train and the vertical 1189 

velocity distribution.  1190 

③Test 3 (in the simulation area 3) 1191 

Non-hydrostatic dynamic core, the central height of terrain H=100m, central point (80,0), 1192 

s1 tt  , integrated for 30 min. Test 3 has a 10 times smaller grid (100 times smaller terrain extent) 1193 

and 10 times higher spatial resolution than Test 1. 1194 
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u-v wind field (figure omitted): similar to Test 1, the gravity wave wind field crosses the east and 1195 

west borders and propagates to the south and north boundaries despite only being integrated for 26 1196 

minutes. 1197 

w-wind field: Figure 13④, 20 min integration, demonstrates the gravity wave train and the vertical 1198 

velocity distribution. 1199 

9 Conclusion and discussion 1200 

(1) In spherical coordinates, the “thin atmosphere” atmospheric motion equation, including the north 1201 

and south poles, is given. 1202 

(2) The general space-time discretization 1st-order and 2nd-order accuracy forecast equations in the 1203 

spline format are provided. 1204 

(3) There is 3D divergence separation: 3D divergence = hydrostatic horizontal divergence + 1205 

non-hydrostatic vertical divergence, which serves as the physical foundation for the time-split integration 1206 

scheme. The non-hydrostatic dynamic core is completed by using long steps for hydrostatic horizontal 1207 

advection and short steps for non-hydrostatic vertical convection. 1208 

(4) The methods for calculating bicubic surface terrain and terrain-following vertical coordinates and 1209 

horizontal pressure gradient force in spline format, the time-varying reference atmosphere and vertical 1210 

pressure gradient force calculation method in spline format, and the space-time discretization 3D 1211 

“displacement” divergence in spline format. There are two types of divergence, namely, hydrostatic 1212 

horizontal “displacement” divergence and non-hydrostatic vertical “displacement” divergence. 1213 

(5) The vector discrete decomposition method is given: based on the correspondence between the 1214 

“upstream point of spherical coordinates - 3D displacement of Cartesian coordinates - spherical 1215 

coordinate forecast point” 3D wind and displacement field are solved using implicit iteration based on the 1216 

correspondence between Cartesian coordinates and spherical coordinates. 1217 

(6) The forecast equation of a “non-hydrostatic fully compressible” pressure-temperature field is 1218 

provided, but with a time step of only 0.1s. 1219 

(7) The physical concept of “half-wave oscillation” is proposed. Under the action of vertical pressure 1220 

gradient force, the layers of the air column shift to hydrostatic equilibrium (the oscillating pendulum 1221 

reaches the equilibrium point) within the one-time step, and the corresponding acoustic calculation 1222 

scheme. Calculating the vertical displacement of each layer of non-hydrostatic vertical motion 1223 

“half-wave oscillation” and the “full compressible” pressure and temperature field by implicit iteration 1224 

not only preserves the physical mechanism of compression wave vertical motion “acoustic + gravity 1225 

wave,” but also effectively avoids acoustic propagation. 1226 
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(8) With a time step of 10s, a quasi-Lagrangian time-split integration scheme is given. Hydrostatic 1227 

horizontal advection + “half-wave oscillation” non-hydrostatic vertical convection, while maintaining 1228 

atmospheric mass conservation in the model. 1229 

(9) Mathematically, the spline format is a second-order derivable format, and its linear principal part 1230 

is the second-order central difference. It is simple to demonstrate that the second-order central difference, 1231 

compared to the first-order central difference, has half the spatial truncation error, the phase velocity of 1232 

propagation, and the group velocity of dispersion errors. The ideal field tests show that the spline format 1233 

describes the fluctuation phase velocity and phase without error, but there is amplitude decay and energy 1234 

dispersion error. The second-order spatial residual of the cubic spline and the upstream point path’s 1235 

truncation calculation error, for the path does not reach the exact trajectory, are the two causes of 1236 

inaccuracy in the spline format. 1237 

The equilibrium flow test demonstrates that the spline format and the linear format can be 1238 

“compatible”, but the spectrum is not compatible with the linear format, such as the Gibbs phenomenon. 1239 

The R-H wave test demonstrates that the spline format’s spatial resolution only demonstrates 1240 

identification, and that fidelity can only be ensured when the spatial and temporal resolutions are 1241 

superimposed. The spline format error also shows amplitude decay as the spatial and temporal resolutions 1242 

increase. The pressure field tends to become “round” as a result of the amplitude decay in erroneous error, 1243 

which possesses spherical symmetry. It should be noted that the earth’s rotation and atmospheric 1244 

geostrophic motion are spherically symmetric, and the spline format forecasted waves becoming “round” 1245 

and linear motion is consistent with the wave energy dispersion, When the variable field is becoming 1246 

“round,” a new equilibrium flow is formed due to momentum dissipation, the “round” ground rotation 1247 

motion, and this amplitude decay error, which is convergent, monotonic, and bounded. 1248 

(10) Longitude-latitude grid (A-grid) - quasi-uniform longitude-latitude grid (B-grid) spline format 1249 

transformation: the scalar and vector fields, such as pressure, temperature, humidity, wind, and 1250 

generalized Newtonian force fields, are fitted to a bicubic surface on the A-grid, and on B-grid points, 1251 

only advection forecasts are made, and the upstream point’s horizontal motion routes and variable values 1252 

are determined via implicit iteration, and all A-grid points are given “forecast values” using cubic spline 1253 

interpolation of the forecast variables. The spline format interpolation can solve the classical problems of 1254 

the over-dense grid in the polar region and singularity at the poles. 1255 

The cross-polar flow test confirms that the geostrophic advection and the A-B longitude-latitude grid 1256 

spline format transformation can cross the polar region and the pole correctly, and it demonstrates that the 1257 

north and south poles’ horizontal motion equations are accurate. 1258 
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In the R-H wave test, the “round” result of the A-B longitude-latitude grid spline format 1259 

transformation when integrated for 300 d is contrasted with the “partially round” result of the Gaussian 1260 

grid spectral transformation when integrated for 80 d, because the spectral expansion for wind field is 1261 

undefined at the poles and asymmetric concerning the poles. 1262 

(11) In the density flow test, the density flow is “acoustic + gravity wave”, it is safe to assume that the 1263 

spline format will outperform/not be inferior to the linear format. This is because it simulates the highly 1264 

nonlinear, fine-scale, transient “pressure-temperature-wind” field characteristics of the density flow, like a 1265 

downburst, and because the simulation results are similar to the benchmark linear format reference results. 1266 

The density flow test uses “non-hydrostatic full compressible” 3D divergence to act on and predict the 1267 

pressure and temperature field directly, so there is sound wave propagation, and the time step is only 0.1 1268 

s. 1269 

(12) The gravity wave test simulated the equilibrium flow and terrain interaction, forming 1270 

cross-mountain airflow terrain gravity wave pressure and temperature fields, and wave horizontal and 1271 

vertical propagation. It adopts the time-split integration scheme, and the time step can be 10 s. The time 1272 

separation is not needed under stable stratification conditions, i.e., the time separation can be used only for 1273 

the physical process of “cumulus convection parameterization and precipitation”. However, the test 1274 

results of this paper and those of Yang et al. (2008), who completed the gravity wave tests for the 1275 

GRAPES model non-hydrostatic fully compressible dynamic core, summarized that the results of the 1276 

gravity wave tests for other non-hydrostatic fully compressible dynamic cores, differ noticeably. One 1277 

possible explanation is the stepped topography when the linear format is used, while we introduced the 1278 

“bicubic surface” second-order derivative terrain. 1279 

The gravity wave test demonstrated the “hydrostatic/non- hydrostatic dynamic core with space-time 1280 

second-order precision” preliminarily: quasi-Lagrangian time-split integration scheme + bicubic surface 1281 

terrain-following vertical coordinates + “half-wave oscillation” acoustic wave calculation scheme + 1282 

“spherical coordinate - rectangular coordinate - spherical coordinate” vector discretization method. 1283 

(13) The ideal field tests show that the stability of the spline format depends on proper smoothing of 1284 

the variable field, and smoothing is also a source of error. If it is always with the spline format to match 1285 

wind field to the second-order derivable, that is mathematically incompatible because the wind field is 1286 

frequently zero-order continuous: shear lines commonly emerge on wind fields, such as cold / warm 1287 

fronts and frontal cyclones. 1288 

Future research will focus on how to combine different functions or step-down functions of variable 1289 

fields, or to smooth a lot of points / single point of variable fields; especially in the case of wind fields, 1290 

based on the spline fit’s curvatures judgment, as well as how to easily find the smooth domain/point a 1291 
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second-order derivable patch to get rid of redundant inflection points, discontinuous cusps or wraps (that 1292 

is like that "sprays" in river tend to be smooth), are to be studied in the future. 1293 

(14) The ideal field tests confirm the viability, consistency with the linear format, second-order 1294 

accuracy, and stability of the spline format in computing the “three-time motion” path of the upstream 1295 

point. For the spline format’s hydrostatic / non-hydrostatic dynamic core, physical process 1296 

parameterization schemes and synoptic verification are to be introduced to ultimately develop into a 1297 

globally unified, multiple nested grid mesh numerical model prediction system. 1298 
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