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Highlights 
• First reported use of hyperspectral imaging to measure wastewater pollution 
• A combination of pixel classification and data-driven regression is used for pollution 

measurement 
• The model prediction for turbidity: R2 =0.967, and for COD: R2 =0.795 

 

Extended abstract 
Hyperspectral imaging is a good candidate to face the challenges of sewer pollution monitoring 
Pollution from urban drainage systems (UDS) are relevant, but largely unknown (Pistocchi 2020). This 

is, among other things because reliable online sensors are missing. Nowadays, the monitoring of UDS 

pollution is done either with automatic samplers or spectrophotometric probes (Gruber et al. 2006). 

Both approach are challenging to implement, and the data are often difficult to interpret because of 

systematic and random errors, often due to sensor fouling (Ort and Gujer 2006). Interestingly, there 

has been recent progress on non-contact pollution monitoring in wastewater.  

So far, all the research groups used spectrometers to measure diffuse reflectance of wastewater 

samples in laboratories, and established correlations with COD and suspended solids (Agustsson et al. 

2014; Xing et al. 2019) . Unfortunately, in real-world applications, external factors such as floating 

objects, direct light reglection, water depth and waves structure will influence the measurement. In 

this paper, we investigate for the first time how non-contact monitoring could be improved by 

hyperspectral imaging (HSI). This is a standard method for remote sensing of natural water bodies 

(Stuart, McGonigle, and Willmott 2019). However, to the best of our knowledge, it has not been 

applied for sewer wastewater pollution monitoring.  

 

Figure 1: Pixel classification implemented with hyperspectral data to extract the wastewater reflection spectrum 
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In comparison to spectrometers, hyperspectral cameras can better deal with the sewer variability, 
because they measure simultaneously spectral and spatial data. Results from perliminary trials (Figure 
1) demonstrate how a pixel classification can be implemented to isolate the spectra of wastewater 
(yellow and orange) from paper pieces (magenta), the cup borders and the background. In a similar 
way, the spatial information can be used to take into acount the influence of other external factors. 

In the future, pollution monitoring in the drainage system will contribute to improving the overall 
efficiency of urban water management, and therefore minimizing our impact on the environment. The 
emergence of new technologies, such as hyperspectral imaging, are promising. In this contribution, we 
will present the state of the art of non-contact monitoring of wastewater and share our current 
research. Specficially, we will present an experimental setup, data-processing approach and results. 
 
Experimental laboratory setup for diffuse light reflection measurement 

 

Figure 2: Experimetal setup for hyperspectral image aquisition 

The non-contact monitoring concept has been tested in laboratories. Sewer wastewater samples were 

taken at the inlet of the primary decanter of a wastewater treatment plant. Dilution and mixing of 8 

raw samples sampled at different times of the day, as well as the addition of a formazine turbidity 

standard, made it possible to generate a total of 144 wastewater samples. The raw samples were 

analysed with cuvette tests LCK314 for chemical oxygen demand (COD), LCK350 for orthophosphat 

(PO4-P), LCK303 for ammonium (NH4-N), with Ionenchromatography for phosphate and sulfate, with 

a Hach TL2300 for turbidity, with flow injection analysis photometrie for ammonium and with TOC-L 

analyser for dissolved organic carbon and total dissolved nitrogen. In addition, absorbtion spectra 

between 320 and 1000 nm were aquired with a Hach DR3800 spectrophotometer. The parameter used 

for further analysis are presented in Table 1. 

Table 1: Wastewater pollution parameter range 

 COD [mg/L] Turbidity NH4-N [mg/L] PO4-P [mg/L] 

Range 93 - 379 22 - 267 10 - 25 1.2 – 2,3 
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For the image acquisition, 200mL of each samples was placed in black cups. A picture of the setup is 

presented in figure 2. A magnetic stirrer ensured the stability of the suspended solids. A halogen light 

was used to illuminate the samples. The camera to aquire hyperspectral images is a MV.X. system from 

Headwall Photonics. It is able to measure 1020 spatial bands and 300 wavelength between 400 and 

888nm. The camera was previously optically calibrated with a grey calibration target, and the distance 

with the sample was determined by the focal distance of the lense. 

Data pre-processing and analysis 

To extract the diffuse reflection spectra from each hyperspectral acquisition, the PerClass Mira 

software was used. First, the different areas of few images were manually labelled. Based on these 

informations, PerClass Mira automatically labelled the pixels of all the images. Figure 1 is an example 

of the result of this procedure. Finally, the mean spectra of all the pixels corresponding to the diffuse 

reflectance was calculated as the diffuse reflectance spectra of each sample. The sklearn package of 

Python was used to create a data-driven model able to predict wastewater pollution from their 

reflectance spectra. After spectral normalization, a leave-one-out cross validation PLS model with 20 

components was developped for each pollution parameter.   

Results  
So for, only the results of the cuvette tests (COD, orthophosphat and ammonium) and the turbidity 

values were used. The results of the leave-one-out PLS models are shown in the following table: 

Table 2: results of the PLS regression 

 COD [mg/L] Turbidity NH4-N [mg/L] PO4-P [mg/L] 

R2 0.795 0.967 0.616 0.575 

RMSE 30.3 12.2 1.9 0.2 

 

Those first results are very promising. Similarely to other work, such as Agustsson et al. (R2=0.95 for 

turbidity and 0.69 for COD), the turbidity prediction is very good, probably because the reflection of 

light directly depends on the amount of suspended particles. For COD, the prediction are similar to 

Agustsson as well, which is interesting given the fact that they had access to ultraviolet wavelength, 

which was not possible with the MV.X. camera. Xing et al. also very good COD prediction (R2=0.95) 

without UV reflectance. An additionnal interesting result could therefore be to analyse the 

representative wavelength for the PLS model, to see how the UV is important in Agustsson’s data. 

There is as well a certain prediction potential for NH4 and PO4, despite the fact that NH4 or PO4 don’t 

interact with visible light. A possible explanation is that ammoniumand phosphate are correlated to 

another component which is causing reflectance. It is interesting to note that ammonium and 

phosphate are correlated together (Pearson’s p: =0.859), however they are not significantly correlated 

with COD or turbidity.  

Further work before the conference: 

The result have been obtained end July, and further analysis will be done in August. First, the full 

laboratory data will be investigated, including absorbance spectra, sulfate, total nitrogen and dissolved 

organic carbon. Second, other pre-processing methods (standard normal variate, linear and polynonial 

detrend) will be tested. Third, outlier detection will be implemented. Finally, other data-driven 

approach, such as multi-linear regression, random forest or support vector machine will be explored. 
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Figure 3: result of the LOO-PLS regression for COD and turbidity 
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