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Abstract

In this technical report, a comprehensive testing theory for model-based

testing against symbolic �nite state machines (SFSM) is presented. It cov-

ers both conformance testing for language equivalence (the input/output

language observable at the interface of the system under test (SUT) should

be the same as the language of the reference model) and property-oriented

testing (the SUT should ful�l a set of properties that are also ful�lled by

the reference model).

Part I describes the general theory for arbitrary nondeterministic SF-

SMs. It presents an exhaustive testing strategy (every erroneous SUT from

a given fault domain fails at least one test case) for property-oriented testing.

It is shown that the property-oriented testing theory provides a complete

(the SUT fails at least one test case if and only if it violates language

equivalence) test strategy for language equivalence testing as a corollary. In

Part II, the class of admissible reference SFSMs is specialised to machines

with separable alphabets. While this restriction still contains practically

relevant models, it allows for a re�ned testing strategy proving language

equivalence with signi�cantly smaller test suites than those induced by the

general theory.

Part I of this document has been submitted in similar form to the Soft-

ware and Systems Modeling (https://www.springer.com/journal/10270)
journal and is currently under review. Part II has been submitted in

abridged form to the Fundamentals of Software Engineering conference

FSEN 2023 (http://fsen.ir/2023/).

https://www.springer.com/journal/10270
http://fsen.ir/2023/
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Abstract

We advocate a fusion of property-oriented testing (POT) and model-based

testing (MBT). The existence of a symbolic �nite state machine (SFSM)

model ful�lling the properties of interest is exploited for property-directed

test data generation and to create a test oracle. A new test generation strat-

egy is presented for verifying that the system under test (SUT) satis�es the

same LTL safety conditions over a given set of atomic propositions as the

model. We prove that this strategy is exhaustive in the sense that any SUT

violating at least one of these formulae will fail at least one test case of

the generated suite. It is shown that the existence of a model allows for

signi�cantly smaller exhaustive test suites as would be necessary for POT

without reference models. As a corollary, the main theorem also gener-

alises a known result about SFSM-based conformance testing for language

equivalence. Our approach �ts well to industrial development processes for

(potentially safety-critical) cyber-physical systems, where both models and

properties representing system requirements are elaborated for development,

veri�cation, and validation.

Keywords: Model-based testing; property-oriented testing; symbolic �nite

state machines; exhaustive tests; complete tests



Chapter 1

Introduction

1.1 Problem Statement

In this technical report, we advocate a fusion of property-oriented test-

ing (POT) and model-based testing (MBT). Properties are speci�cations

(described by linear temporal logic LTL [7]) to be ful�lled by the system

under test (SUT). Models (represented by symbolic �nite state machines

(SFSM) [42]) describe (parts of) the expected SUT behaviour; they are

used to guide the test case generation process and to achieve exhaustive-

ness of the test suite under certain hypotheses, in the sense that passing the

test suite guarantees that the SUT ful�ls the properties under consideration.

The main objective of this technical report is to establish a su�cient black-

box test condition for an implementation to satisfy all LTL safety properties

over a given set of atomic propositions that are ful�lled by the model.

The existence of a model is also exploited to create a test oracle which

checks more than just the given property: if another violation of the ex-

pected implementation behaviour is detected while testing whether the

property is ful�lled, this is a \welcome side e�ect". This approach de-

liberately deviates from the \standard approach" to check only for formula

violations using, for example, the �nite LTL encoding presented in [3] or

observers based on some variant of automaton [14].
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1.2 Background: Property-oriented Testing and
Model-based Testing

In the �eld of testing, two main directions have been investigated until today.

(1) In property-oriented testing [13, 31], test data is created with the objec-

tive to check whether an implementation ful�ls a given property which may

be speci�ed by �rst order expressions (e.g. invariants, pre-/post-conditions)

or more complex temporal formulae. (2) In model-based testing [44], a ref-

erence model expressing the desired behaviour of an implementation is used

for generating the test data and for checking the implementation behaviour

observed during test executions. In the MBT research communities, the

objective of MBT is usually to investigate whether an implementation con-

forms to the model according to some pre-de�ned equivalence or re�nement

relation; this is also called conformance testing.

Reference models represented as SFSMs extend �nite state machines

(FSMs) in Mealy format by input and output variables, guard conditions,

and output expressions. Recently, SFSMs have become quite popular in

MBT [40, 42], because they can specify more complex data types than

FSMs and can be regarded as a simpli�ed variant of UML/SysML state

machines [34, 35]. Also, they are easier to analyse than the more general

Kripke structures which have been investigated in model checking [7], as

well as in the context of MBT, for example in [19, 20]. In contrast to Kripke

structures, SFSMs only allow for a �nite state space. This fact can be lever-

aged in test generation algorithms by enumerating all states and performing

more e�cient operations on this set of states instead of a potentially in�nite

one.

Initially, the POT approach used the property speci�cation itself to cre-

ate suitable test cases [13, 29, 31]. Moreover, an explicit objective was to

reduce the e�ort in comparison to model-based conformance testing or any

other test approach aiming at general behavioural correctness of the system

under test (SUT). In recent years, the POT approach has received much

attention for the purpose of practical software testing1: using some vari-

ant of random test data generation, the software under test is checked with

respect to correctness properties inserted into the code as assertions [32].

In coverage guided fuzz testing [33], the random test data generation is

directed towards maximising the code coverage, so that the explored code

1In this context, the term property-based testing (PBT) is usually preferred.
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portion is continuously increased. Despite its impressive bug-�nding history

{ in particular, in the �eld of security testing, but also in other domains [33]

{, POT based on any type of random data generation su�ers from several

well-known shortcomings [32].

1. Random test cases are frequently invalid in the sense that the actual

data sequence cannot occur in the real operational context.

2. The number of test cases to be produced for detecting errors is very

high, so that POT with random test case generation quickly becomes

infeasible in hardware-in-the-loop testing or system testing of con-

trollers, where test case executions takes a considerable amount of

time because \slow" physical processes are controlled.

3. The randomly generated test cases leading to an error are usually not

the shortest paths to the error state (tools like QuickCheck, however,

have implemented a methodology to create shorter test cases revealing

the same error [25]).

4. Complex path conditions are hard to be ful�lled by randomly gen-

erated test data: test experiments with control systems have shown

that naive random testing usually uncovers an insu�cient amount of

errors [24].

5. All POT approaches referenced above are \bug �nders", that is, a

failure to detect further bugs does not guarantee their absence.

In industry, testing of cyber-physical systems is usually performed by a

hybrid approach, involving both properties and models. Requirements are

speci�ed as properties, and models are used as starting points of system

and software design [36, 37]. It is checked by review or by model checking

that the models re
ect the required properties in the correct way. Due to

the complexity of large embedded systems like railway and avionic control

systems, testing for model conformance only happens on sub-system or even

module level, while testing on system integration level or system level is

property-based, though models are available. In particular during regression

testing, test cases are selected to check speci�c requirements (i.e. properties),

and hardly ever to establish full model conformance. Indeed, standards for

safety-critical systems only accept test suites whose cases can be traced back

to individual requirements [55, 56].
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1.3 Main Contributions and Relation to Previous
Work

The main contributions of Part I if this technical report are as follows.

� We present a test case generation procedure which inputs a set of

atomic propositions AP and an SFSM as reference model to guide the

generation process and serve as a test oracle. The reference model

may be nondeterministic and operate on in�nite input and output

domains. The generated test suite is used to verify whether the SUT

satis�es every LTL safety property over atomic propositions from AP

that is satis�ed by the model.

� A theorem is presented, proven, and explained, stating that test suites

generated by this procedure are exhaustive in the sense that every

implementation violating any safety property over AP that is satis�ed

by the model will fail at least one test case, provided that the true

implementation behaviour is re
ected by another SFSM contained in

a well-de�ned fault-domain. This hypothesis is necessary in black-

box testing, because hidden internal states cannot be monitored [41,

45]. A complexity analysis shows that the model-based POT approach

requires signi�cantly smaller exhaustive test suites in comparison to

simple exhaustive POT where no models are available.

� As a corollary, the main theorem generalises known results by Pe-

trenko [40, 42] concerning conformance testing of SFSMs with respect

to language equivalence: we now admit nondeterministic transition

guards (that is, several guards may evaluate to true for a given input

in a certain SFSM state) and nondeterministic output expressions.

To the best of our knowledge, this mixed property-based and model-

based approach to POT has not been investigated before outside the �eld of

�nite state machines. Only for the latter, strategies for testing simpler prop-

erties with additional FSM models have been treated by the authors [21, 22].

The approach presented in this technical report is distinguished from the

results elaborated for FSMs by operating on potentially nondeterministic

SFSMs and by using LTL formulae as the speci�cation formalism for prop-

erties. SFSMs are considerably more expressive than FSMs for modelling

complex reactive systems. Specifying properties in LTL is more general,
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intuitive, and elegant than the FSM-speci�c restricted speci�cation styles

used before.

An initial, more restricted version of the results presented here has been

published on SEFM 20212 conference [27]. This initial version is extended

here as follows.

� The test suite generation strategy has been considerably simpli�ed.

� The prerequisites to be ful�lled by the reference SFSM in order to

guarantee exhaustiveness of the test suites have been simpli�ed and

weakened.

� A new, simpli�ed proof strategy has been developed, and full proofs

for all lemmas and theorems are provided for the �rst time.

� The corollary on SFSM conformance testing for language equivalence

is new.

� An open source library has been made available, allowing to create

exhaustive test suites for SFSMs according to the strategy presented

here.

1.4 Tool Support for Property Oriented, SFSM-
Based Testing

The testing theory elaborated in this technical report is supported by an

open source tool chain available under

https://gitlab.informatik.uni-bremen.de/projects/29053.

1.5 Overview

In the next Chapter 2, a simple example is presented to illustrate the whole

approach to property-oriented model-based testing. All aspects are ex-

plained in an intuitive way, without the necessity to study formal de�nitions,

theorems, and proofs. We expect that this is helpful for readers wishing to

assess whether the testing method advocated here is appropriate for their

objectives. Moreover, the presentation is structured according to the formal

2https://sefm-conference.github.io
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description of the testing method which follows in Chapter 3 to Chapter 5.

In Chapter 3, SFSMs and their semantics are de�ned. To make this tech-

nical report self-contained, basic facts about the linear temporal logic LTL

are presented in Chapter 4. LTL is used for specifying safety properties to

be veri�ed by exhaustive test suites. Chapter 5 contains the main contri-

bution of this technical report: a property-oriented test generation strategy

is introduced, and its exhaustiveness is proven. The corollary on complete

conformance testing against SFSM models is stated and proven. Chapter 6

contains conclusions and sketches future work.

In Chapter 14 of Part II, we discuss related work in relationship to the

results presented in both parts of this technical report.
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Chapter 2

Introductory Example

In this chapter, the approach to model-based property-oriented testing is

introduced by means of an example, and without formal de�nitions, theo-

rems and proofs. The latter will be presented in the subsequent sections,

together with comprehensive references to related work.

s0 s1

s2

x = v/y ∈ [B0, B1]

x < v/y = 0

x
>
v/
y
=
B 2

+
(x
−
v)
/c

x
<
v−
δ/
y
=
0

x
>
v/y

=
B
2 +

(x−
v)/c

x ≤ v/y = 0 x = v/y ∈ [B0, B1]

x ≥ v− δ/y = B2 + (x− v)/c

Constants. v = 200, δ = 10, B0 = 0.9, B1 = 1.1, B2 = 2, c = 100

Figure 2.1: Braking system BRAKE.
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2.1 Symbolic Finite State Machine Example: a
Braking System

Consider the SFSM BRAKE that is graphically represented in Fig. 2.1 (the

formal de�nition of SFSMs is given in Chapter 3). It describes a (�ctitious)

braking assistance system to be deployed in modern vehicles. Input variable

x ∈ [0, 400] is the actual vehicle speed that should not exceed v = 200[km/h].
As long as the speed limit is not violated, the system remains in state s0
and does not interfere with the brakes: the brake force output1 y ∈ R≥0 is
set to 0. When the speed exceeds v, guard condition x > v evaluates to true,

and a transition s0 −→ s2 is performed. This transition sets the braking

force y to

y = B2 + (x− v)/c (2.1)

with constants B2 = 2 and c = 100. The resulting brake force y to be

applied is greater than 2, and it is increased linearly according to the extent

that x exceeds the allowed threshold v. For the maximal speed x = 400 that

is physically possible for this vehicle type, the maximal brake force y = 4 is

applied. Note that the output expressions do not represent assignments, but

quanti�er free �rst-order expressions involving at least one output variable

and optional input variables.

While in state s2, the brake force is adapted according to the changing

speed by means of Formula (2.1). To avoid repeated alternation between

releasing and activating the brakes when the speed varies around v, the

system remains in state s2 while x ≥ v − δ with constant δ = 10. As a

consequence, the braking force is decreased down to B2 − 0.1 = 1.9 while

the vehicle slows down to x = v − δ. As soon as the speed is below v − δ,

the braking system releases the brakes (y = 0) and returns to state s0.

When BRAKE is in state s0 and the speed equals v, a nondeterministic

system reaction is admissible. Either the system stays in state s0 without

any braking intervention, or it transits to state s1 while applying a low brake

force y ∈ [B0, B1] with B0 = 0.9, B1 = 1.1 (we allow nondeterministic output

expressions). This nondeterminism could be due to an abstraction hiding

implementation details. While in state s1, this nondeterministic brake force

in range [B0, B1] is applied, until either the speed is increased above v (this

1This output y is a scalar value, to be multiplied with a constant to obtain the braking

force in physical unit Newton.

9



triggers the same reaction as in state s0), or the speed is decreased below v,

which results in a transition s1 −→ s0.

2.2 Property Specifications

In the context of property-oriented black-box testing, the test objective is

to verify whether a system under test (SUT) ful�ls a certain property spec-

i�ed over input and output variables. In model-based POT, an auxiliary

reference model ful�lling this property is also available. In this example, the

reference model is the SFSM BRAKE introduced above. We will see below,

how the existence of a model can be exploited to prove exhaustiveness of a

test suite and to uncover additional errors in the SUT that are unrelated to

the property under investigation.

The testing method described here is applicable to safety properties spec-

i�ed in linear temporal logic LTL (see formal introduction in Chapter 4).

Recall that safety properties are characterised by the fact that a �nite ob-

servational trace (sequence of inputs and outputs) { the so-called bad pre�x

{ su�ces to uncover a property violation.

For the example discussed here, we consider two safety properties. In

natural language they are formulated as the two requirements

R1. As long as the value of x does not exceed threshold v, any

braking intervention will apply a force that is less or equal to

B1.

R2. If a brake force greater or equal than B2 − 0.1 is applied,

this will also be the case in the next step, unless the actual speed

is decreased below v− δ.

In LTL, these requirements are formalised by the formulae

Φ1 ≡ (y ≤ B1)W(x > v), (2.2)

Φ2 ≡ G
(
y ≥ B2 − 0.1 (2.3)

=⇒ X(y ≥ B2 − 0.1∨ x < v− δ)
)
.

According to the de�nition of the weak until operator W, formula Φ1 ex-
presses that either (x > v) never occurs and (y < B1) holds globally on
in�nite observation traces, or (x > v) �nally occurs on such a trace, but

10



then (y < B1) is guaranteed to hold at least on the pre�x of π ending ex-
actly before the (x > v)-occurrence. The atomic propositions occurring in
these formulae are

AP = {y ≤ B1, x > v, y ≥ B2 − 0.1, x < v− δ} (2.4)

It is fairly easy to see that BRAKE ful�ls Φ1, because as long as the speed

ful�ls x ≤ v, the system can only perform transitions s0 −→ s0, s0 −→ s1,

s1 −→ s1, s1 −→ s0 (or a subset thereof) in various orders. With these

transitions, the outputs remain in range y ∈ {0} ∪ [B0, B1].

It is also easy to see that BRAKE satis�es Φ2, since y ≥ B2 − 0.1 implies

that BRAKE is in state s2, and the guard of transition s2 −→ s0 requires

x < v− δ.

s0 s1

s2

x = v/y ∈ [B0, B1]

x < v/y = 0

x
>
v/
y
=
B 2

+
(x
−
v)
/c

x
≤ v

−
δ/
y
=
0

x
>
v/y

=
B
2 +

(x−
v) 2
/c

x ≤ v/y = 0 x = v/y ∈ [B0, B1]

x ≥ v− δ/y = B2 + (x− v)/c

Figure 2.2: SFSM IBRAKE representing the behaviour of a faulty implemen-

tation of the braking system BRAKE. Faulty expressions have been under-

lined.

2.3 Fault Domains and SUT

In black-box testing, assumptions about the ways in which a system under

test (SUT) can fail need to be made, in order to guarantee that a test suite

su�ces to uncover every conformance or property violation. Without addi-

tional assumptions, it would be impossible to determine the length of test

traces needed to explore every hidden state of the SUT. These assumptions
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are usually speci�ed by means of a fault domain D. In the context of Part I

of this technical report, D is a set of SFSMs whose behaviour may or may

not conform to the reference model (the reference model is always a member

of D), as long as certain hypotheses are ful�lled. These hypotheses are

� Each member of D, when represented as an observable SFSM (see

Section 3.5), has at most m ≥ n distinguishable states, where n is the

number of distinguishable states in the reference model.

� Each member of D uses guard conditions of the same input alphabet

ΣI.

� Each member of D uses output expressions from the same output

alphabet ΣO.

Note that it is not required that a member of D actually uses every guard in

ΣI and output expression from ΣO: they may use subsets thereof. Therefore,

we can extend the input and output alphabet of the reference model with

mutations of guards and output expressions, representing potential errors

in the SUT. Note further that the guards and output expressions in the

alphabets may occur at any transition, so an SUT whose true behaviour

is captured by D may exchange guards and outputs in an arbitrary way.

Finally, an SUT captured by the fault domain may aggregate di�erent tran-

sitions by building disjunctions of guards in ΣI and/or output expressions in

ΣO. Summarising, the SFSMs captured by D can be faulty in the following

ways.

1. Usage of up to (m− n) additional distinguishable states.

2. Removal, addition, and re-direction of transitions (so-called transfer

faults).

3. Use of guard mutations, disjunction of di�erent guards, and exchange

of guards between transitions.

4. Use of output mutations, output disjunctions, and exchange of outputs

between transitions.

For the BRAKE reference model and its possibly faulty implementations,

let us assume that m = (n+ 1) = 4, and extend the input alphabet to

ΣI = {x < v− δ, x ≤ v− δ, x < v,
x ≤ v, x ≥ v− δ, x = v, x > v}, (2.5)
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with guard mutation x ≤ v− δ. The output alphabet used is

ΣO = {y = 0, y ∈ [B0, B1], y = B2 + (x− v)/c,

y = B2 + (x− v)2/c}, (2.6)

so we assume that possible implementations in D might use the non-linear

term y = B2+(x−v)2/c instead of the modelled output expression y = B2+

(x− v)/c. Moreover, implementations in D could attach the guards from ΣI
and output expressions from ΣO to any transitions, which can cause further

erroneous behaviour, even if the implementation only uses expressions also

occurring in the reference model.

Of course, for a real-world test campaign, many more mutations would

be considered; we keep their number here small so that the example is easy

to follow.

The SFSM IBRAKE shown in Fig. 2.2 is a member of this fault domain,

describing the true behaviour of a �ctitious erroneous implementation. The

mutated guards and output expressions used by IBRAKE are underlined in

Fig. 2.2.

2.4 I/O Equivalence Classes

Since we need to be able to test control systems with conceptually in�nite

input and output domains (like real numbers for speed and braking pres-

sure in model BRAKE), it will usually be infeasible to apply test strategies

enumerating all possible input interface valuation and checking every pos-

sible output interface value of the SUT, even if in�nite sets in the model

(like intervals of R) are implemented with �nite data types (like float or

double). Therefore, it is necessary to partition the input/output domain

into �nitely many subsets called input/output equivalence classes, such that

two members of the same class

� are guaranteed to exercise the same transitions (in the nondeterminis-

tic case possibly more than one) with the same guard conditions and

output expressions, when occurring in the same state, and

� ful�l exactly the same subset of atomic propositions occurring in the

LTL formula to be veri�ed.
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Table 2.1: Construction method for I/O equivalence classes

1. Let Σ = ΣI∪ΣO∪AP be the set of all �rst-order formulae occurring in guard

conditions, output expressions, and in the property speci�cation.

2. For P ∈ 2Σ, de�ne a new �rst-order formula which is a conjunction of for-

mulae from P and negated formulae from Σ \ P:

φP ≡
∧
e∈P

e∧
∧

e∈Σ\P

¬e. (2.7)

3. Let P ⊆ 2Σ be the set of all formulae φ that have been constructed according

to Equation (2.7) and that possess at least one valuation function σ ∈ DVar

as model, so that σ |= φ.

4. For each φ ∈ P, de�ne an input/output equivalence class io(φ) by

io(φ) = {σ ∈ DVar | σ |= φ}.

5. Let A = {io(φ) | φ ∈ P} denote the set of all input/output equivalence

classes.

Since the SUT may use faulty guards and/or exchanged guard expres-

sions, it does not su�ce just to use the subsets created by the guards oc-

curring in the reference model as input classes. Moreover, di�erent atomic

propositions in (potentially mutated) output expressions may apply to dif-

ferent inputs ful�lling the same guard conditions. Consequently, the cal-

culation of input/output equivalence classes depends on the full input and

output alphabets assumed for the fault domain, as well as on the atomic

propositions occurring in the formula; these formulae are contained in the

set

Σ = ΣI ∪ ΣO ∪AP,

as speci�ed for our example in Equation (2.5), (2.6), and (2.4), which results

in the symbolic alphabet Σ listed in Table 2.2. Note that the expressions

listed there have been re�ned by the data ranges x ∈ [0, 400] and y ∈ R≥0,
and the constants have been replaced by their concrete values.

An input/output partition is created by building all conjunctions of pos-

14



Table 2.2: Elements of Σ = {g1, . . . , g7, e1, . . . , e4, a1, . . . , a4}.

ΣI ΣO AP

g1 x = 200 e1 y = 0 a1 = g4 x ∈ (200, 400]

g2 x ∈ [0, 200) e2 y ∈ [0.9, 1.1] a2 = g6 x ∈ [0, 190)

g3 x ∈ [0, 200] e3 y = x/100 a3 y ∈ [0, 1.1]

g4 x ∈ (200, 400] e4 y = 2+ (x− 200)2/100 a4 y ≥ 1.9
g5 x ∈ [190, 400]

g6 x ∈ [0, 190)

g7 x ∈ [0, 190]

itive or negated formulae in Σ. In this process, only conjunctions possessing

a solution are kept.

The formalised rules for this construction of input/output equivalence

classes are listed in Table 2.1. These rules guarantee that two members of the

same input/output equivalence class satisfy exactly the same subset of guard

conditions, output expressions, and atomic propositions of the formula. If

two traces are equivalent in the sense that they have the same length, and

each pair of trace members located in the same trace position are contained

in the same equivalence class, these traces ful�l and violate exactly the

same LTL formulae over atomic propositions from AP. While the number

of input/output equivalence classes grows exponentially with the size of Σ

in the worst case, the actual number of classes is often smaller, since not all

conjunctions of positive and negated Σ-elements possess a model. For our

example alphabet Σ from Table 2.2, the resulting I/O equivalence classes

are listed in Table 2.3.

As an example, consider I/O equivalence class io34 which has been cre-

ated according to the construction method from Table 2.1 using formula
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(see also Table 2.2 for the de�nition of gi, ej, ak)

φ{g4,g5,e3,a1,a4} ≡ g4 ∧ g5 ∧ e3 ∧ a1 ∧ a4 ∧

¬g1 ∧ ¬g2 ∧ ¬g3 ∧ ¬g6 ∧ ¬g7 ∧

¬e1 ∧ ¬e2 ∧ ¬e4 ∧ ¬a2 ∧ ¬a3

≡ x ∈ (200, 400]∧ y = x/100∧

y 6= 2+ (x− 200)2/100∧ y ≥ 1.9
≡ x ∈ (200, 400] \ {201} ∧ y = x/100

Therefore, the I/O equivalence class contains the valuation functions

io34 = {σ ∈ (R≥0){x,y} | σ(x) ∈ (200, 400] \ {201} ∧ σ(y) = σ(x)/100}

We use the abbreviated symbolic notation

io34 =
(
x ∈ (200, 400] \ {201}

)
/
(
y = x/400

)
,

where the �rst sub-expression of φP (in this example φ{g4,g5,e3,a1,a4}) is al-

ways over input variables only, while the second expression, following after

the \/" symbol, contains at least one output variable (see Section 3.4).

2.5 Exhaustive Test Suite

With an input/output equivalence class partition A at hand, the test suite

construction speci�ed in Table 2.4 is exhaustive in the sense that every

implementation captured by the fault domain will fail at least one test case

of suite TS if it violates an LTL property over atomic propositions from AP

that is ful�lled by the reference model.

The test suite is speci�ed symbolically as a set of sequences of in-

put/output classes. This means, that each symbolic test case is an element

of A∗.
For practical testing, of course, the class sequences of TS are �rst pro-

jected to concrete input traces, by selecting concrete input representatives

from each input/output class, such that associated outputs exist making the

class coverage feasible. Note that a concrete input can be a representative

of more than one input/output class. For our example, a possible selection

of representatives from the input/output classes listed in Table 2.3 leads to

the input valuation functions

A = {σ1, . . . , σ9}
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speci�ed in Table 2.5. Then these concrete input traces are executed against

the SUT, it is checked whether all input/output sequences observed in these

executions are contained in L(M). If this is the case, the test suite is passed

by the SUT.

We will now explain the 5 steps of symbolic test suite construction spec-

i�ed in Table 2.4. In Step 1, a minimal state cover V ⊆ A∗ is constructed:
this is a set of sequences of input/output classes suitable to reach every state

in the reference model. Each sequence of this kind is called a symbolic trace,

if it can be performed by the SFSM (see Section 3.4). The empty sequence

ε is always used to reach the initial state. For our example reference model

BRAKE, state s1 is reached from s0 by means of the one-element symbolic

trace io3 = (x = 200)/(y ∈ [0.9, 1.1]) (see Table 2.3), and state s2 is reached

by symbolic trace io30 = (x = 201)/(y = 2.01), so V = {ε, io3, io30}.

In Step 2, a symbolic distinguishing trace γ must be found for every

pair of distinct symbolic traces α,β ∈ V. Input/output trace γ is chosen in

such a way that all concrete input/output traces of α.γ are in T (M), but

all concrete traces of β.γ are not in T (M) or vice versa. Expression ∆(α,β)

denotes the set of all symbolic traces γ distinguishing α and β.

For our example, states s0 and s1, and, therefore, traces ε, io3 ∈ V

are distinguished by single-element symbolic trace γ = io2: when applying

input `200' to state s0, output 0 is possible, so the condition x = 200∧y = 0

of class io2 is applicable. This, however, can never occur when applying

input `200' to state s1: the output will always be y ∈ [B0, B1], so condition

x = 200∧ y = 0 can never be satis�ed. Therefore, io3.io2 6∈ T (M).

Other possible distinguishing traces would be io3 or io5. States s0 and s2
(and, therefore, traces ε, io30 ∈ V) are also distinguished by io2, or by io3 or

io4. States s1 and s2 (i.e. traces io3 and io30) are distinguished, for example,

by io3. Summarising, we add {io2, io3.io2, io30.io2, io3.io3, io30.io3} to the

test suite TS.
The objective of the test cases created in Step 1 and 2 is to check whether

the state cover of M also reaches n states in the implementation M ′, dis-

tinguishable by the same γ that are used for the reference model. If this is

not the case, the test fails, because the internal state and transition struc-

ture of the implementation di�ers so much from the reference model that

(a) the implementation is certainly not language equivalent to the model,

and (b) the test suite constructed here cannot be applied to test for the

desired property, because exhaustiveness cannot be guaranteed. Instead, a
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signi�cantly larger test suite with longer test cases needs to be applied, as

explained in Section 5.6.

In Step 3, the test suite is extended by a set T of symbolic traces, each

trace consisting of a pre�x from V, followed by a symbolic trace su�x con-

sisting of arbitrary sequences over classes from A, the sequence length vary-

ing from 1 to m − n + 1 elements. Provided that the SUT passes the test

cases constructed in Step 1 and 2, the trace subset

V ∪ V.
(m−n⋃
i=1

Ai
)
⊆ TS

su�ces to reach every implementation state, assuming that the implemen-

tation is a member of the fault domain and, therefore, has at most m states.

Moreover, T ensures that in each state reached every input/output class that

is applicable will be exercised. This allows us to conclude that, if the SUT

passes all test cases created in Step 1 to 3, the SUT is free of output faults.

It is important to note that for the practical tests, only input traces

derived from projections of symbolic input/output traces will be used, and

that one input valuation can be a representative for several classes in A.
Moreover, traces in the test suite that are just pre�xes of longer test cases

can be removed, and some elements of T may coincide with traces already

created in Step 2. Consequently, T adds at most

|V.
(
Am−n+1)| = n · |A|m−n+1

test cases to TS. In our example, A has cardinality 38, but these classes are

covered by only 9 input representatives

A = {σ1, . . . , σ9}

speci�ed in Table 2.5. Assuming, for example, thatm = 4, this would result

in 3 · 92 = 243 additional test cases, and the test cases constructed in Step 2

are fully contained in T .

It remains to test for transfer faults in the SUT that might lead to

the violation of a formula over AP that is ful�lled by the reference model.

This is investigated by the test cases created in Step 4 and Step 5. In

principle, the concept of distinguishing traces already applied in Step 2 is

applied here for the longer traces that are not contained in V. Additionally,

however, a propositional abstraction function ω is introduced (the details
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are explained below in Section 4.2). This abstraction maps input/output

traces to sequences of subsets from AP, each sequence element containing

the atomic propositions from AP that are ful�lled by the original trace

element. The intuition behind this is that traces from T leading to states

that are indistinguishable under the ω-abstraction need not be equipped

with distinguishing traces. The details are proven in Section 5.5.

For the set AP (Table 2.2) used in our example, the abstraction of in-

put/output classes under ω is speci�ed in Table 2.6, and Table 2.7 shows

that states s0 and s1 are indistinguishable under ω. Therefore, distinguish-

ing traces only needed to be appended to traces α,β ∈ T reaching s0 and

s2, respectively, or s1 and s2.

2.6 Test Strength – Illustration

To illustrate some aspects of the test strength of TS constructed according

Table 2.4, we check whether it su�ces to uncover the errors in SFSM IBRAKE
shown in Fig. 2.2. The erroneous output expression in transition s1 → s2 is

uncovered, for example, by input sequence `200.300' projected from io3.io34
which is an element of T ⊆ TS. Due to nondeterministic behaviour, it may be

necessary to execute this test case several times, until input `200' triggers the

transition s0 −→ s1. Then input `300' covers I/O equivalence class io34 in

the reference model (see Table 2.3), but it covers class io35 in implementation

IBRAKE. Regardless of the input representative chosen, these two classes will
always result in distinguishable outputs: reference model BRAKE provides

output `3' for input `300', because class io34 contains all valuation functions

σ satisfying σ(x) ∈ (200, 400] \ {201} ∧ σ(y) = σ(x)/100. Implementation

IBRAKE produces output `102' for input `300', because class io35 contains

all valuation functions σ ′ satisfying σ ′(x) ∈ (200, 400] \ {201} ∧ σ ′(y) =

(σ ′(x) − 200)2/100. On this input value range (200, 400] \ {201} the correct

output expression x/100 and the faulty expression (x − 200)2/100 never

produce the same value, so the error is always uncovered, regardless of the

input value chosen.

Note that the construction method for input/output equivalence classes

described in Table 2.1 guarantees that there are always such classes where

the inputs g allow to distinguish the correct output expressions e from the

faulty ones e ′, since the method will create both classes g∧· · ·∧e∧¬e ′∧. . .

and g∧ · · ·∧ ¬e∧ e ′ ∧ . . . .
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Regarding the atomic propositions contained in the two LTL speci�ca-

tions Φ1, Φ2 de�ned in Formula (2.2) and (2.4),

Φ1 ≡ a3Wa1, (2.8)

Φ2 ≡ G
(
a4 =⇒ X(a4 ∨ a2)

)
, (2.9)

we observe that both input/output trace (200/y ∈ [0.9, 1.1]).(300/3) pro-

duced by the reference model and (200/y ∈ [0.9, 1.1]).(300/102) produced

by the implementation cover the sequences of AP-sets α = {a3}.{a1, a4}.

Therefore, the error uncovered by test case `200.300' is only a violation of

input/output equivalence, but not a violation of Φ1 or Φ2. Indeed, α is

a model of Φ1. Moreover, any violation of Φ2 with length 2 would have

to satisfy a4 in the �rst element, so that the X-term can be evaluated on

the second element. Since the �rst element of α does not contain a4, this

sequence of AP-sets cannot (yet) indicate a violation of Φ2.

Regarding the second implementation error in the transition s2 −→ s0,

any test case starting with `201.190' will uncover the erroneous guard condi-

tion in transition s2 −→ s0, again possibly after several test case executions,

because implementation state s2 is nondeterministic for value `190'. The er-

ror is uncovered when the implementation covers I/O classes io30.io16, pro-

ducing output sequence (2.01).0, while the reference model covers io30.io19,

resulting in outputs (2.01).3.

Abstracting these concrete input/output traces results in sequences of

AP-sets α1 = {a1, a4}.{a4} for the reference model and α2 = {a1, a4}.{a3} for

the implementation. Obviously, the implementation does not violate Φ1,

since this formula is already ful�lled by the �rst sequence element which

contains a1. Speci�cation Φ2, however, is violated by α2, since the sec-

ond element neither contains a2 nor a4. Therefore, this failure uncovers a

speci�cation violation.
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Table 2.3: Input/output equivalence classes derived from Σ listed in Ta-

ble 2.2.

Id P ∈ 2Σ φP ∈ P

io1 {g2, g3, g6, g7, e1, e3, a2, a3} x = 0∧ y = 0

io2 {g1, g3, g5, e1, a3} x = 200∧ y = 0

io3 {g1, g3, g5, e2, a3} x = 200∧ y ∈ [0.9, 1.1]

io4 {g1, g3, g5, e3, e4, a4} x = 200∧ y = 2

io5 {g1, g3, g5, a3} x = 200∧ y ∈ (0, 0.9)

io6 {g1, g3, g5} x = 200∧ y ∈ (1.1, 1.9)

io7 {g1, g3, g5, a4} x = 200∧ y ∈ [1.9, 2) ∪ (2,∞)

io8 {g2, g3, g5} x ∈ (190, 200)∧ y ∈ (1.1, 1.9)

io9 {g2, g3, g5, e1, a3} x ∈ (190, 200)∧ y = 0

io10 {g2, g3, g5, a3} x ∈ (190, 200)∧ y ∈ (0, 0.9)

io11 {g2, g3, g5, e2, a3} x ∈ (190, 200)∧ y ∈ [0.9, 1.1]

io12 {g2, g3, g5, e3, a4} x ∈ (190, 200)∧ y = x/100

io13 {g2, g3, g5, a4} x ∈ (190, 200)∧ y 6= x/100∧ y 6= 2+ (x− 200)2/100∧ y ≥ 1.9
io14 {g2, g3, g5, e4, a4} x ∈ (190, 200)∧ y = 2+ (x− 200)2/100

io15 {g2, g3, g5, g7} x = 190∧ y ∈ (1.1, 1.9)

io16 {g2, g3, g5, g7, e1, a3} x = 190∧ y = 0

io17 {g2, g3, g5, g7, e2, a3} x = 190∧ y ∈ [0.9, 1.1]

io18 {g2, g3, g5, g7, e3, a4} x = 190∧ y = 1.9

io19 {g2, g3, g5, g7, e4, a4} x = 190∧ y = 3

io20 {g2, g3, g5, g7, a4} x = 190∧ y ∈ [1.9, 3) ∪ (3,∞)

io21 {g2, g3, g5, g7, a3} x = 190∧ y ∈ (0, 0.9)

io22 {g2, g3, g6, g7, a2} x ∈ [0, 190)∧ y ∈ (1.1, 1.9)∧ y 6= x/100
io23 {g2, g3, g6, g7, e1, a2, a3} x ∈ (0, 190)∧ y = 0

io24 {g2, g3, g6, g7, e2, a2, a3} x ∈ [0, 190)∧ y ∈ [0.9, 1.1]∧ y 6= x/100
io25 {g2, g3, g6, g7, e3, a2} x ∈ (110, 190)∧ y = x/100

io26 {g2, g3, g6, g7, e4, a2, a4} x ∈ [0, 190)∧ y = 2+ (x− 200)2/100

io27 {g2, g3, g6, g7, e2, e3, a2, a3} x ∈ [90, 110]∧ y = x/100

io28 {g2, g3, g6, g7, a2, a3} x ∈ [0, 190)∧ y ∈ (0, 0.9)∧ y 6= x/100
io29 {g2, g3, g6, g7, a2, a4} x ∈ [0, 190)∧ y ≥ 1.9∧ y 6= 2+ (x− 200)2/100

io30 {g4, g5, e3, e4, a1, a4} x = 201∧ y = 2.01

io31 {g4, g5, a1} x ∈ (200, 400]∧ y ∈ (1.1, 1.9)

io32 {g4, g5, e1, a1, a3} x ∈ (200, 400]∧ y = 0

io33 {g4, g5, e2, a1, a3} x ∈ (200, 400]∧ y ∈ [0.9, 1.1]

io34 {g4, g5, e3, a1, a4} x ∈ (200, 400] \ {201} ∧ y = x/100

io35 {g4, g5, e4, a1, a4} x ∈ (200, 400] \ {201} ∧ y = 2+ (x− 200)2/100

io36 {g4, g5, a1, a3} x ∈ (200, 400]∧ y ∈ (0, 0.9)

io37 {g4, g5, a1, a4} x ∈ (200, 400]∧ y ≥ 1.9∧ y 6= x/100∧ y 6= 2+ (x− 200)2/100

io38 {g2, g3, g6, g7, e3, a2, a3} x ∈ (0, 90)∧ y = x/100
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Table 2.4: Test case requirements for test suite TS ⊆ A∗

1. TS contains a minimal state cover V of M with ε ∈ V.

2. For any distinct α,β ∈ V, there exist γ ∈ ∆(α,β) such that α.γ, β.γ ∈ TS.

3. TS contains the set

T = V.
(m−n+1⋃

i=1

Ai
)

of symbolic traces.

4. For any α ∈ V and β ∈ T ∩T (M) satisfying ∆(ω(α),ω(β)) 6= ∅, there exists

γ ∈ ∆(α,β) such that α.γ, β.γ ∈ TS.

5. For any α,β ∈ T ∩ T (M) satisfying α ∈ Pref(β) and ∆(ω(α),ω(β)) 6= ∅,

there exists γ ∈ ∆(α,β) such that α.γ, β.γ ∈ TS.

Table 2.5: Input representatives selected from I/O equivalence classes listed

in Table 2.3.

Input Valuation is representative for I/O classes

σ1 = {x 7→ 0} io1
σ2 = {x 7→ 45} io22, io23, io24, io26, . . . , io29, io38
σ3 = {x 7→ 100} io27, io22, io23, io24, io26, io28, io29
σ4 = {x 7→ 115} io22, . . . , io26, io28, io29
σ5 = {x 7→ 200} io2, . . . , io7
σ6 = {x 7→ 190} io15, . . . , io21
σ7 = {x 7→ 195} io8, . . . , io14
σ8 = {x 7→ 201} io30, . . . , io33, io36, io37
σ9 = {x 7→ 300} io31, . . . , io37
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Table 2.6: Input/output classes and abstraction under ω.

Id P ∈ 2Σ ω(P) s0 s1 s2 concrete input

io1 {g2, g3, g6, g7, e1, e3, a2, a3} {a2, a3} s0 s0 s0 0

io2 {g1, g3, g5, e1, a3} {a3} s0 ⊥ ⊥ 200

io3 {g1, g3, g5, e2, a3} {a3} s1 s1 ⊥ 200

io4 {g1, g3, g5, e3, e4, a4} {a4} ⊥ ⊥ s2 200

io9 {g2, g3, g5, e1, a3} {a3} s0 s0 ⊥ 195

io12 {g2, g3, g5, e3, a4} {a4} ⊥ ⊥ s2 195

io16 {g2, g3, g5, g7, e1, a3} {a3} s0 s0 ⊥ 190

io18 {g2, g3, g5, g7, e3, a4} {a4} ⊥ ⊥ s2 190

io23 {g2, g3, g6, g7, e1, a2, a3} {a2, a3} s0 s0 s0 100

io30 {g4, g5, e3, e4, a1, a4} {a1, a4} s2 s2 s2 201

io34 {g4, g5, e3, a1, a4} {a1, a4} s2 s2 s2 300

Table 2.7: Transition Table for ω-abstraction of BRAKE.

2AP s0 s1 s2

{a2, a3} s0 s0 s0
{a3} s0, s1 s1, s0 ⊥
{a4} ⊥ ⊥ s2
{a1, a4} s2 s2 s2
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Chapter 3

Symbolic Finite State
Machines and Underlying
Theory

3.1 Symbolic Finite State Machines

A Symbolic Finite State Machine (SFSM) is a tuple

M = (S, s0, R, I,O,D, ΣI, ΣO).

Finite set S denotes the state space, and s0 ∈ S is the initial state. Fi-

nite set I contains input variable symbols, and �nite set O output variable

symbols. The sets I and O must be disjoint. We use Var to abbreviate

I ∪ O. We assume that the variables are typed, and in�nite domains like

reals or unlimited integers are admissible. Set D denotes the union over

all variable type domains. The input alphabet ΣI consists of �nitely many

guard conditions, each guard being a quanti�er-free �rst-order expression

over input variables. The �nite output alphabet ΣO consists of output ex-

pressions ; these are quanti�er-free �rst-order expressions over (optional)

input variables and at least one output variable. We admit constants, func-

tion symbols, and arithmetic operators in these expressions, but require

that they can be solved based on some decision theory, for example, by an

SMT solver. The set of all formulae over symbols from Var is denoted by

F(Var).
Set R ⊆ S× ΣI × ΣO × S denotes the transition relation.
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This de�nition of SFSMs is consistent with the de�nition of \symbolic

input/output �nite state machines (SIOFSM)" introduced by Petrenko [40],

but is slightly more general: SIOFSMs allow only assignments on output

variables, while our de�nition admits general quanti�er-free �rst-order ex-

pressions. This is useful for specifying nondeterministic outputs and for

performing data abstraction. Also, note that Petrenko only considers con-

formance testing in his work, but not property-based testing.

In Chapter 2, the typical graphical representation of SFSMs has already

been introduced.

3.2 Mutants

Following Petrenko, faulty behaviours of implementations are captured by

a �nite set of mutant SFSMs whose behaviour may deviate from that of

the reference SFSM by (a) faulty or interchanged guard conditions, (b)

faulty or interchanged output expressions, (c) transfer faults consisting of

additional, lost, or misdirected transitions, and (d) added or lost states

(always involving transfer faults as well). To handle mutants and reference

models in the same context, we require that (1) the faulty guards are also

contained in the input alphabet ΣI, and (2) the faulty output expressions

are also contained in the output alphabet ΣO, (without occurring anywhere

in the reference model).

The implementation SFSM IBRAKE introduced in Chapter 2 is a mutant

of SFSM BRAKE, and the extended alphabets covering guards and output

expressions of both reference model and mutated implementation have been

de�ned in Equation (2.5) and (2.6).

3.3 Valuation Functions

A valuation function σ : Var −→ D associates each variable symbol v ∈
Var with a type-conforming value σ(v). For any subset Var ′ ⊆ Var , σ|Var ′

denotes the restriction of σ to subdomain Var ′. The set of all functions

from (Var −→ D) is abbreviated by DVar . Note that for ordered sets Var =

{v1, . . . vm} of variable symbols, DVar can be identi�ed with the set Dm of

m-tuples over D: tuple (d1, . . . , dm) ∈ Dm is in one-one correspondence to

valuation function σ = {v1 7→ d1, . . . , vm 7→ dm} ∈ DVar . (DVar )∗ denotes

the set of all �nite sequences of valuation functions from Var to D.
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Given a �rst-order expression φ over variable symbols from Var , we

write σ |= φ and say that σ is a model for φ if, after replacing every

variable symbol v in φ by its value σ(v), the resulting Boolean expression

evaluates to true. Only SFSMs that are well-formed are considered in this

technical report: this means that for every pair (φ,ψ) ∈ ΣI × ΣO occurring

in some transition (s, φ,ψ, s ′) ∈ R, at least one model σ |= φ∧ψ exists for

the conjunction φ∧ψ of guard and output expression.

We assume that each SFSM is completely speci�ed. This means that in

every state, the union of all valuations that are models for at least one of the

guards applicable in this state equals the whole set DI of input valuations.

Alternatively, this can be expressed by the fact that the disjunction over all

guards of a state is always a tautology.

3.4 Computations and Traces

For any set X, the set of �nite sequences over elements from X is denoted

by X∗, and the set of in�nite sequences (these are needed to specify the

semantics of LTL formulae) by Xω. For a sequence γ = t1.t2.t3 . . . , we

denote its length by |γ| ∈ N ∪ {∞}. The ith element of γ is written as γ(i),

i.e. γ(i) ≡ ti. Moreover, γi denotes the su�x γ(i).γ(i + 1).γ(i + 2) . . .

starting at the ith element of γ. If |γ| < i, expressions γ(i) and γi are

unde�ned.

A symbolic computation of M is an in�nite sequence

ζ =(s0, φ1, ψ1, s1).(s1, φ2, ψ2, s2).(s2, φ3, ψ3, s3) · · · ∈
(
S× ΣI × ΣO × S

)ω
,

such that s0 ∈ S is the initial state of M and (si−1, φi, ψi, si) ∈ R for all

i ≥ 1. A symbolic trace of SFSM M is a �nite sequence

τ = (φ1/ψ1) . . . (φn/ψn) ∈ (ΣI × ΣO)∗

satisfying

∃s1, . . . , sn ∈ S : ∀i ∈ {1, . . . , n} : (si−1, φi, ψi, si) ∈ R.

This means that there exists a computation ζ of M, such that the guards

and output expressions of pre�x ζ(1) . . . ζ(|τ|) coincide with those of τ. We

use the intuitive notation (φi/ψi) inherited from Mealy machines for these
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predicate pairs, since φi speci�es inputs and ψi outputs. The set of symbolic

traces of M is denoted by T (M).

The test suite TS constructed in Chapter 2.5 contains symbolic traces of

reference model BRAKE after having been re�ned by its input/output equiv-

alence classes, but also sequences of input/output classes that cannot be

covered by this model. In such a case we speak of a symbolic input/output

sequence.

A concrete computation of M is an in�nite sequence

(s0, σ1, s1).(s1, σ2, s2) · · · ∈
(
S×DVar × S

)ω
,

with valuation functions σi ∈ DVar , such that there exists a symbolic com-

putation

(s0, φ1, ψ1, s1).(s1, φ2, ψ2, s2) . . .

ofM satisfying σi |= φi∧ψi for all i ≥ 1. A concrete trace ofM is a �nite

sequence of valuation functions

κ = σ1 . . . σn ∈ (DVar )∗

such that a symbolic trace

τ = (φ1/ψ1) . . . (φn/ψn)

of M exists satisfying

(σ1 |= φ1 ∧ψ1)∧ · · ·∧ (σn |= φn ∧ψn).

If this condition is ful�lled, κ is called a witness of τ, and we use the

abbreviated notation κ |= τ. This interpretation of SFSM traces corresponds

to the synchronous interpretation of state machine inputs and outputs, as

discussed by van de Pol [53]: inputs and outputs occur simultaneously, that

is, in the same computation step κ(i).

For concrete traces κ = σ1 . . . σk ∈ (DVar )∗, we use the following abbre-

viations.

� For W ⊆ V, expression κ|W denotes the sequence κ, with all elements

restricted to W, that is, κ|W = (σ1|W) . . . (σk|W) ∈ (DW)∗.

� For disjoint sets P,Q ⊆ V and concrete traces α,β ∈ (DVar )∗ of equal

length k = |α| = |β|, expression α|P ∪ β|Q denotes the sequence

(α(1)|P ∪ β(1)|Q) . . . (α(k)|P ∪ β(k)|Q)

of valuation functions with domain P ∪Q.
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An SFSM is deterministic if a sequence of input valuations already de-

termines the sequence of associated outputs in a unique way. More formally,

two concrete traces κ, κ ′ ∈ (DVar )∗ satisfying κ|I = κ ′|I ful�l κ = κ ′. Note

that nondeterminism can be introduced in SFSM in two ways: (a) by guard

conditions that are not mutually exclusive and label transitions emanating

from the same state, and (b) by nondeterministic output expressions like

y ∈ [B0, B1] (see example model BRAKE in Chapter 2).

As usual in the �eld of modelling formalisms for reactive systems, the

behaviour (or the language) of an SFSMM is de�ned by the set of its con-

crete traces and denoted by L(M) ⊆ (DVar )∗. Two SFSMs are (language-

)equivalent if and only if they have the same set of concrete traces.

Figure 3.1: Non-observable SFSM discussed in Example 1.

3.5 Observability

Our SFSM reference models are required to be observable. This means

that for any concrete trace κ ∈ L(M), the target state reached when apply-

ing κ to s0 is uniquely determined. More formally, for any concrete trace

κ = σ1 . . . σk ∈ L(M), there exists exactly one concrete computation pre�x

(s0, σ1, s1) . . . (sk−1, σk, sk) with the same sequence of valuation functions.

For κ ∈ L(M), we use notation s0-after-κ to denote the uniquely de�ned

target state sk.

Let κ be a concrete trace satisfying s0-after-κ = s. The language L(s)
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of s ∈ S is de�ned as the set of all trace segments µ ∈ (DVar )∗, such that

κ.µ ∈ L(M). For κ 6∈ L(M), this de�nition implies L(s0-after-κ) = ∅. Obvi-
ously, L(s0) = L(M). We use the notation s1-after-µ to denote the uniquely

determined post state reached when applying trace segment µ ∈ L(s1) to
state s1 ∈ S. Requiring observable SFSMs is not a real restriction: any non-

observable SFSM can be transformed into a language-equivalent observable

SFSM. This result is well-known for �nite state machines, and transforma-

tion algorithms have been presented, for example, by Luo et al. [30]. For

SFSMs, the transformation is more complex and outside the scope of this

technical report. We only present an example that illustrates the basic ideas

of the transformation.

Example 1. Consider the SFSM with I = {x}, x ∈ [0, 10] and O = {y}, y ∈
{0, 1, . . . , 10} depicted in Fig. 3.1. This SFSM is nondeterministic and non-

observable, because for x ∈ [4, 6], an output y = bxc ∈ {4, 5, 6} could be

produced by both the symbolic transition s0 −→ s1 and the symbolic self-

loop transition s0 −→ s0.

In Fig. 3.2, the observable equivalent to the SFSM from Fig. 3.1 is shown:

For inputs x ∈ [0, 4) and x ∈ (6, 10], the associated SFSM symbolic tran-

sitions s0 −→ s1 and s0 −→ s0, respectively, are uniquely determined by

the guard conditions alone. For x ∈ [4, 6], the SFSM is nondeterministic,

but the transition s0 −→ s1 taken is uniquely determined if the output is

not equal to the 
oor value of the input. Only if x ∈ [4, 6] and y = bxc,
it is unclear whether the original SFSM remains in s0 or transits to s1. In

analogy to the well-known algorithm for making Mealy machines observ-

able [30], we create a new state labelled by {s0, s1} which is entered by a

new transition s0 −→ {s0, s1} for guard x ∈ [4, 6] and output y = bxc. Now
all transitions emanating from s0 can be uniquely identi�ed by observing

the input and output values. In the new state {s0, s1}, it remains unclear

whether the original SFSM is in s0 or s1, as long as the input remains in

range x ∈ [4, 10] and the output equals the 
oor value of the input. In all

other cases, we can transit to s1. �

3.6 SFSM Refinement by First Order Expressions

Given an SFSM M = (S, s0, R, I,O,D, ΣI, ΣO), and a �nite set Q of quanti-

�er-free �rst-order expressions over free variables from I∪O. The set Q can
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Figure 3.2: Observable SFSM, language-equivalent to the one from Fig. 3.1.

be partitioned into a set Qg = {g1, . . . , gk} of expressions with free variables

in I only, and a set of expressions Qh = {h1, . . . , h`}, each possessing at least

one free variable from O (and optionally further free variables from I).

We create a new SFSM

Q(M) = (S, s0, Q(R), I,O,Q(ΣI), Q(ΣO))

as follows. For arbitrary subsets of expressions G ⊆ Qg and H ⊆ Qh, de�ne
Boolean expressions

δG ≡
∧
g∈G

g∧
∧

g∈Qg\G
¬g

δH ≡
∧
h∈H

h∧
∧
∈Qh\H

¬h

With these auxiliary expressions at hand, de�ne the alphabets of Q(M) by

Q(ΣI) = {g∧ δG | g ∈ ΣI ∧G ⊆ Qg ∧ ∃σ|I ∈ DI � σ|I |= (g∧ δG)}

Q(ΣO) = {h∧ δH | h ∈ ΣO ∧H ⊆ Qh ∧ ∃σ ∈ DVar � σ |= (h∧ δH)}
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The input alphabet of Q(M) consists of the original guard conditions g ∈
ΣI, further restricted by conjunctions of positive and negated �rst-order

expressions g ′ ∈ Qg, so that the resulting conjunction still has a model.

The output alphabet consists of M's output expressions, further restricted

by any combination of positive and negated conjuncts h ′ ∈ Qh. Again,

conjunctions without a model are discarded.

The transition relation of Q(M) is speci�ed by

Q(R) = {(s, g∧ g ′, h∧ h ′, s ′) | (s, g, h, s ′) ∈ R,
g∧ g ′ ∈ Q(ΣI), h∧ h ′ ∈ Q(ΣO),

∃σ ∈ DVar � σ |= (g∧ g ′ ∧ h∧ h ′)}

The SFSM Q(M) is called the re�nement of M by �rst-order expressions

Q. The term `re�nement' is used here in the sense that guard conditions

and output expressions associated with Q(M)-transitions are more \�ne-

grained", that is, more restricted than those ofM. This kind of re�nement,

however, does not change the language of the original SFSM, as is stated in

the following lemma.

Lemma 1. LetM be an SFSM and Q(M) a re�nement ofM constructed

as speci�ed above. Then L(Q(M)) = L(M).

Proof. We show that Q(M) has the same concrete computations as M. To

this end, let

ξc = (s0, σ1, s1).(s1, σ2, s2) . . .

be a concrete computation ofQ(M). By de�nition of concrete computations,

there exists a symbolic computation

ξs = (s0, g1 ∧ g
′
1, h1 ∧ h

′
1, s1).(s1, g2 ∧ g

′
2, h2 ∧ h

′
2, s2) . . .

of Q(M) with gi∧g
′
i ∈ Q(ΣI), gi ∈ ΣI, hi∧h ′i ∈ Q(ΣO), and hi ∈ ΣO, such

that σi |= (gi ∧ g
′
i ∧ hi ∧ h

′
i) for all i ≥ 1. Consequently, these valuation

functions σi are also models for gi ∧ hi. Therefore, ξc is also a concrete

computation for

ξMs = (s0, g1, h1, s1).(s1, g2, h2, s2) . . . ,

which is a symbolic computation of M. Thus, ξc is also a concrete compu-

tation of M. Since all concrete traces are �nite pre�xes of concrete compu-

tations, this shows L(Q(M)) ⊆ L(M).
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Conversely, assume that Q = Qg∪Qh with guard expressions in Qg and

output expressions in Qh. Let

ξMc = (s0, σ1, s1).(s1, σ2, s2) . . .

be a concrete computation of M, associated with symbolic computation

ξMs = (s0, g1, h1, s1).(s1, g2, h2, s2) . . . ,

of M, such that σi |= gi ∧ hi for all i ≥ 1. For each i, we de�ne sets

Gi = {g ′ ∈ Qg | σi |= g ′}
Hi = {h ′ ∈ Qh | σi |= h

′}

Then, by construction, gi ∧ δGi ∈ Q(ΣI) and hi ∧ δHi ∈ Q(ΣO), and

∀i ≥ 0 � σi |= gi ∧ δGi ∧ hi ∧ δHi .

Therefore,

ξs = (s0, g1 ∧ δG0 , h1 ∧ δH0 , s1).(s1, g2 ∧ δG1 , h2 ∧ δH1 , s2) . . . ,

is a symbolic computation of Q(M) which shows that ξMc is also a concrete

computation for Q(M). This proves L(M) ⊆ L(Q(M)) and completes the

proof.

3.7 Complete testing assumption

If an implementation is nondeterministic, it may be necessary to apply the

input trace several times to reach a speci�c internal state, since the input

trace may nondeterministically reach di�erent states, each time with di�er-

ing outputs, since the SFSM is observable.

As is usual in black-box testing of nondeterministic systems, we adopt

the complete testing assumption [17]. This requires the existence of some

known k ∈ N such that, if an input sequence is applied k times, then all pos-

sible responses are observed, and, therefore, all states reachable by means

of this sequence have been visited. Since we are dealing with possibly in-

�nite input and output domains, \all possible responses" means that all

sequences of input/output equivalence classes that might be covered by the

concrete traces stimulated by this input sequence will be covered after k

executions of the input sequence.
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Chapter 4

Property specifications

4.1 Linear Temporal Logic

To state behavioural properties of a given SFSMM, we use linear temporal

logic LTL [7]. The syntax of LTL formulae ϕ used in this technical report

is given by grammar

ϕ := φ | ¬ϕ | ϕ∧ϕ | Xϕ | ϕUϕ | ϕWϕ | Fϕ | Gϕ,

where φ ∈ AP denotes atomic propositions written as quanti�er-free �rst-

order expressions over symbols from Var . Following Baier et al. [1], the

semantics of LTL formulae is de�ned over in�nite sequences π ∈ (2AP)ω

of sets of atomic propositions (for any set X, its power set is denoted by

2X). As for other sequences introduced before, these π are indexed over

natural numbers, π : N −→ 2AP, with start index 1. They are called propo-

sitional traces here, to distinguish them from symbolic and concrete traces

introduced before.

In the de�nition of LTL semantics presented in Table 4.1, formula φ

denotes an atomic proposition from AP, and ϕ,ϕ ′ denote arbitrary LTL

formulae, π is a propositional trace, and i ∈ N is an index. Expression πi

denotes the trace su�x π(i).π(i + 1).π(i + 2) . . . , and π1 = π. For �nite

pre�xes π ′ : {1, . . . , k} −→ 2AP of propositional traces π with in�nite length,

we write

π ′ < π ⇐⇒ ∀i ∈ {1, . . . , |π ′|} � π ′(i) = π(i),

to specify that π ′ is a �nite pre�x of π.
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Table 4.1: Inductive de�nition of LTL semantics.

πi |= φ ≡ φ ∈ π(i)
πi |= ¬ϕ ≡ πi 6|= ϕ
πi |= ϕ∧ϕ ′ ≡ πi |= ϕ and πi |= ϕ ′

πi |= Xϕ ≡ πi+1 |= ϕ

πi |= ϕUϕ ′ ≡ ∃j ≥ i � πj |= ϕ ′

and ∀i ≤ k < j � πk |= ϕ
π |= ϕ ≡ π1 |= ϕ

The implication operator is introduced by syntactic abbreviation

(ϕ =⇒ ϕ ′) ≡ ¬(ϕ∧ ¬ϕ ′).

The semantics of path operators F, G, and W is de�ned by syntactic ab-

breviations Fϕ ≡ (trueUϕ) (�nally ϕ), Gϕ ≡ ¬F¬ϕ (globally ϕ), and

ϕWϕ ′ ≡ (ϕUϕ ′)∨ Gϕ ( ϕ weak until ϕ ′).

Recall that a safety property [1] is a set P of propositional traces satis-

fying

∀π ∈ (2AP)ω \ P�

∃π ′ ∈ (2AP)∗ � π ′ < π∧ ∀π ′′ ∈ (2AP)ω � π ′.π ′′ 6∈ P.

Intuitively speaking, any propositional trace violating a safety property P

(that is, π 6∈ P) can be recognised by a �nite pre�x π ′ < π (the so-called

bad pre�x [1]), so that no continuation of π ′ to an in�nite trace can ever

become part of P. Safety properties are exactly the speci�cations whose

violations can be detected on �nite traces. Therefore, we restrict ourselves

to property-oriented testing of safety properties in this technical report.

Sistla [48] has characterised safety properties syntactically as sets of

propositional traces ful�lling LTL formulae constructed by the operators

∧,∨,X,W,G only (note that the negation operator ¬ is missing in this

list). Consequently, every violation ¬ϕ of a safety property ϕ can be ex-

pressed by operators ∧,∨,X,U alone (a proof for this fact can be found,

for example, in Peleska et al. [39]).
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Examples for safety properties ful�lled by a reference model and ful�lled

or violated by an implementation have been discussed in Chapter 2.

4.2 Propositional Abstraction ω

Let AP be a set of atomic propositions over symbols from Var . Typically,

AP contains the atomic propositions occurring in an LTL property that is

ful�lled by the SFSM reference model and should be veri�ed for the SUT.

De�ne the propositional abstraction ω as the function mapping valuations

σ ∈ DVar to the set of atomic propositions from AP they ful�l, that is,

ω : (DVar ) −→ 2AP ; σ 7→ {φ ∈ AP | σ |= φ}.

The domain of ω can be extended to sequences of valuations (i.e. domain

(DVar )∗) by recursive de�nition

ω(ε) = ε

ω(σ.κ) = ω(σ).ω(κ) for σ ∈ DVar and κ ∈ (DVar )∗

In Table 2.6 in Chapter 2, the propositional abstractions with respect

to AP speci�ed in Equation (2.4) are listed for all input/output equivalence

classes that can be covered by the reference model BRAKE. Any concrete trace
of BRAKE covering, for example, the symbolic trace sequence io3.io30.io18, is

abstracted under this ω to propositional trace

{a3}.{a1, a4}.{a4}.

For a safety formula ϕ and a �nite propositional trace π ′ ∈ (2AP)∗, we

write with a slight abuse of notation

π ′ 6|= ϕ if and only if π ′ is a bad pre�x of ϕ.

This notation is adequate because any in�nite propositional trace π that

has π ′ as a pre�x will be a model of ¬ϕ.

An SFSM M is a model of LTL safety formula ϕ (written M |= ϕ),

if and only if

∀α ∈ L(M) � ¬
(
ω(α) 6|= ϕ

)
.

This means none of M's concrete traces is abstracted by ω to a bad pre�x

of ϕ.
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The domain ofω can be further extended to sets T ⊆ (DVar )∗ of concrete

traces by setting

ω(T) = {ω(κ) | κ ∈ T }.

The following simple theorem is essential for proving the exhaustiveness

of the test strategy developed in the sequel.

Theorem 1. Let ΣI, ΣO and AP be given, and letM = (S, s0, R, I,O,D, ΣI, ΣO)

and M ′ = (S ′, s ′0, R
′, I,O,D, ΣI, ΣO) be two well-formed SFSMs. Suppose

that ω(L(M ′)) ⊆ ω(L(M)). Let ϕ be an LTL safety formula over atomic

propositions from AP. Then

M |= ϕ =⇒ M ′ |= ϕ

for any LTL formula ϕ over atomic propositions from AP.

Proof. We conduct a proof by contraposition and assume that M ′ 6|= ϕ.

Since ϕ is a safety formula, there exists a �nite concrete trace α ′ ∈ L(M ′)
such that ω(α ′) 6|= ϕ, that is, ω(α ′) is a bad pre�x of ϕ. Since ω(L(M ′)) ⊆
ω(L(M)) by assumption, this bad pre�x is also in ω(L(M)), so there exists

a concrete trace in M whose propositional abstraction is a bad pre�x of ϕ.

Thus M 6|= ϕ holds as well, which completes the proof.
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Chapter 5

An Exhaustive
Property-based Testing
Strategy

5.1 Fault Domains

In black-box testing, fault domains1 are introduced to constrain the possi-

bilities of faulty behaviours of implementations. Without these constraints,

it is impossible to guarantee exhaustiveness with �nite test suites: the exis-

tence of hidden internal states leading to faulty behaviour after a trace that

is longer than the ones considered in a �nite test suite cannot be checked

in black-box testing. In the context of this technical report, a fault do-

main is a set D = D(I,O,D, ΣI, ΣO, AP, n,m) of SFSMs with the following

properties.

� Each member M ′ ∈ D, when represented in observable form, has at

mostm ≥ n states; it references input and output variables from I and

O, respectively, and these are typed by D. Each member of the fault

domain uses guard conditions contained in ΣI and output expressions

contained in ΣO.

� D(I,O,D, ΣI, ΣO, AP, n,m) contains the reference SFSMM which has

n states.

1The term `fault domain' is slightly misleading, since its members do not all represent

faulty behaviour. The term, however, is well-established [41], so we adopt it here as well.

37



� The LTL safety properties of interest have atomic propositions in set

AP, with free variables in I ∪O,

Obviously, any model M ∈ D with n states is contained in this fault

domain and can serve as reference model. Potentially faulty implementa-

tions captured by the fault domain have true behaviours represented by

SFSMs M ′ ∈ D, such that M ′ has at most m distinguishable states and is

a mutation of M, as described above in Section 3.2.

From Lemma 1, we know that the input and output alphabets can be re-

�ned by additional �rst-order expressions without changing the language of

the original SFSM. Therefore, it can be assumed that both reference model

and implementation model have the same input and output alphabets.

5.2 I/O Equivalence Classes

Given Σ = ΣI ∪ ΣO ∪ AP associated with a fault domain, we can calcu-

late input/output equivalence classes partitioning the set DVar of valuation

functions as speci�ed in Table 2.1.

We de�ne the associated equivalence relation ∼Σ on DVar as follows: for

any σ, σ ′ ∈ DVar

σ ∼Σ σ
′ ⇐⇒ ∀φ ∈ Σ � σ |= φ⇔ σ ′ |= φ,

so two valuations are equivalent if and only if they are models for the same

quanti�er-free �rst-order expressions in Σ. For any σ ∈ DVar , the equiva-

lence class [σ] consists of all σ ′ ∈ DVar satisfying σ ′ ∼Σ σ, i.e.,

[σ] = {σ ′ ∈ DVar | σ ′ |=
∧

φ∈Σ,σ|=φ
φ∧

∧
ψ∈Σ,σ 6|=ψ

¬ψ},

and the equivalence partition of DVar with respect to ∼Σ is denoted by

A = DVar/∼Σ = {[σ] | σ ∈ DVar }.

In Chapter 2, the input/output equivalence classes calculated for the sample

SFSM BRAKE and its associated fault domain are listed in Table 2.3.

Two concrete traces κ = σ1 . . . σk, µ = σ ′1 . . . σ
′
k of equal length k are

called Σ-equivalent if and only if

∀i = 1, . . . , k � σ(i) ∼Σ σ ′(i).
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The importance of Σ-equivalence for property-oriented model-based test-

ing is highlighted by the following theorem: when applicable to a given

SFSM state, Σ-equivalent input-output traces reach the same target state,

and they are bad pre�xes of the same safety formulae over atomic proposi-

tions from AP.

Theorem 2. Let ΣI, ΣO, AP be given and Σ = ΣI ∪ ΣO ∪ AP. Let ω :

DVar → 2AP be the propositional abstraction de�ned in Section 4.2. Let

κ, µ ∈ (DVar )∗ be Σ-equivalent, and let M be an observable SFSM over

ΣI, ΣO. Then the following statements hold.

1. κ ∈ L(M) ⇐⇒ µ ∈ L(M). In the case that κ, µ ∈ L(M) we have

s0-after-κ = s0-after-µ.

2. ω(κ) = ω(µ). Hence for any LTL safety formula ϕ over atomic

propositions of AP,

κ 6|= ϕ ⇐⇒ µ 6|= ϕ.

Proof. Let κ = σ1 . . . σk, µ = σ ′1 . . . σ
′
k be Σ-equivalent. Suppose κ ∈ L(M).

Then there exists a symbolic trace τ = φ1/ψ1 . . . φk/ψk ∈ (ΣI × ΣO)∗ of
M, such that for all i = 1, . . . , k, κ(i) |= φi ∧ ψi. Since κ ∼Σ µ, we have

µ(i) |= φi∧ψi, for all i = 1, . . . , k. Hence µ is a concrete trace ofM, i.e., µ ∈
L(M). Suppose that sp = s0-after-(κ(1) . . . κ(p)) = s0-after-(µ(1) . . . µ(p))

for p ∈ {1, . . . , k− 1}. Suppose further that

sp-after-κ(p+ 1) = s
′

with (sp, φp+1, ψp+1, s
′) ∈ R. Now assume that sp-after-µ(p+ 1) = s

′′ 6= s ′,
so that there exists another symbolic transition (sp, φ

′′
p+1, ψ

′′
p+1, s

′′) ∈ R with
µ(p+1) |= φ ′′p+1∧ψ

′′
p+1. Then Σ-equivalence implies κ(p+1) |= φ ′′p+1∧ψ

′′
p+1,

so κ(p + 1) could also lead from sp to s ′′. This is a contradiction to the

assumption that M is observable. Consequently,

s0-after-(µ(1) . . . µ(p).µ(p+ 1))

=s ′

=s0-after-(κ(1) . . . κ(p).κ(p+ 1)).

Since p was an arbitrary element of {1, . . . , k − 1}, this proves s0-after-κ =

s0-after-µ. Let φ ∈ AP ⊆ Σ be any atomic proposition of AP. Since κ(i) ∼Σ
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µ(i) for each i, we have κ(i) |= φ ⇐⇒ µ(i) |= φ. Hence ω(κ) = ω(µ).

This means that ω(κ) and ω(µ) are bad pre�xes for the same set of safety

formulae over atomic propositions from AP. This completes the proof.

For the remainder of this technical report, we assume that the reference

model M has been re�ned as described in Section 3.6 with respect to Σ =

ΣI∪ΣO∪AP, where ΣI, ΣO, AP are given by the fault domain D. Therefore,
the transitions ofM are labelled by guard conditions and output expressions

de�ning the input/output equivalence classes of M with respect to Σ. The

classes applicable to M are a subset of A, so we assume from now on that

T (M) ⊆ A∗.
By construction, the input/output equivalence classes cover all possible

mutations of guard conditions and output expressions that might occur

in any member of the fault domain. Consequently, A also contains the

input/output equivalence classes for all members of the fault domain.

Example 2. For the example system BRAKE, Table 2.6 speci�es the

transition table of BRAKE, after having been re�ned with respect to the in-

put/output classes from partition A = {io1, . . . , io38} speci�ed in Table 2.3.

�

A direct consequence of Theorem 2, Statement 1, is that we can extend

the -after-operator to symbolic input/output sequences α over input/output

classes: If α ∈ T (M) ⊆ A∗, then all witnesses κ, κ ′, . . . of α end up in the

same target state s0-after-κ = s0-after-κ
′ = . . . . This target state is then

denoted by s0-after-α.

The domain of a propositional abstraction ω can be extended to sym-

bolic input/output traces α ∈ A∗:

ω : A∗ −→ (
2AP)∗

maps each trace element α(i) to the set P ∩ AP, where P ⊆ Σ is the set of

formulae de�ning input/output equivalence class α(i) ∈ A (see Table 2.1).

This de�nition ensures that

ω(κ) = ω(α)

holds for every witness κ of α.
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5.3 Distinguishability of Traces

Let M be an SFSM with symbolic alphabet Σ = ΣI ∪ ΣO ∪ AP and in-

put/output equivalence class partition A, as introduced in Section 5.2. We

can assume that M has been re�ned as explained in Section 3.6, so that its

symbolic traces are represented by sequences of input/output equivalence

classes, that is, T (M) ⊆ A∗
A pair of symbolic traces α,β ∈ T (M) of an SFSM M is called M-

distinguishable if there exists a symbolic input/output sequence γ ∈ A∗
such that α.γ is a symbolic trace of M, but β.γ is not, or vice versa. More

formally, this condition is speci�ed by

α.γ ∈ T (M) ⇐⇒ β.γ 6∈ T (M). (5.1)

If α,β are distinguishable, we say that γ from Formula (5.1) separates α

and β, and we denote the set of all separating sequences by ∆(α,β):

∆(α,β) = {γ ∈ A∗ |
α.γ ∈ T (M) ⇐⇒ β.γ 6∈ T (M)}.

Observe that if α.γ is a symbolic trace of M, all concrete traces that

are witnesses of α.γ (see Section 3.4) are contained in L(M). Conversely, if

α.γ 6∈ T (M), no witness of α.γ is in L(M).

For the example reference model BRAKE, distinguishing traces have been
shown in Chapter 2.5.

Function ∆ has the following obvious properties, with α,β, γ ∈ A∗.

∆(α,β) = ∆(β,α) (5.2)

∆(α,β) = ∅ =⇒ (
α ∈ T (M) ⇐⇒ β ∈ T (M)

)
(5.3)

∆(α,β) = ∅ =⇒ ∆(α.γ, β.γ) = ∅ (5.4)

∆(α,β) = ∆(β, γ) = ∅ =⇒ ∆(α, γ) = ∅ (5.5)

α,α ′ ∈ A∗ ∧ s0-after-α = s0-after-α
′ =⇒ ∆(α,β) = ∆(α ′, β) (5.6)

α,β ∈ A∗ ∧ s0-after-α = s0-after-β =⇒ ∆(α,β) = ∅ (5.7)

We now consider the distinguishability of propositional abstractions of

symbolic input/output sequences in A∗. For any α,β ∈ A∗, de�ne

∆(ω(α),ω(β)) = {γ ∈ A∗ | ω(α.γ) ∈ ω(T (M)) ⇐⇒ ω(β.γ) 6∈ ω(T (M))}.
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The ∆-properties (5.2) | (5.7) can be extended with regard to propositional

abstraction as follows.

∆(ω(α),ω(β)) = ∆(ω(β),ω(α)) (5.8)

∆(ω(α),ω(β)) = ∅ =⇒(
ω(α) ∈ ω(T (M)) ⇐⇒ ω(β) ∈ ω(T (M))

)
(5.9)

∆(ω(α),ω(β)) = ∅ =⇒
∆(ω(α.γ),ω(β.γ)) = ∅ (5.10)

∆(ω(α),ω(β)) = ∆(ω(β),ω(γ)) = ∅ =⇒
∆(ω(α),ω(γ)) = ∅ (5.11)

α,α ′ ∈ T (M)∧ s0-after-α = s0-after-α
′ =⇒

∆(ω(α),ω(β)) = ∆(ω(α ′),ω(β)) (5.12)

∆(ω(α),ω(β)) = ∅ =⇒
∆(ω(α.γ),ω(β.γ)) = ∅ (5.13)

We say that ω preserves states of M if and only if

∀α,β ∈ T (M) � ∆(α,β) = ∅ =⇒ ∆(ω(α),ω(β)) = ∅.

This means that symbolic traces of M whose propositional abstractions are

distinguishable are themselves distinguishable.

The propositional abstraction for reference model BRAKE in Chapter 2

preserves states. For a propositional abstraction that does not preserve

states, it is possible to re�ne the set AP of atomic propositions, so that the

resulting abstraction has this desired property. This re�nement technique is

based on the principle of counter-example guided abstraction re�nement [8].

The details for this technique are outside the scope of this technical report.

5.4 Test suite generation procedure

A state cover V ⊆ T (M) ⊆ A∗ of M is a set of symbolic traces over

input/output equivalence classes of M such that for any state s ∈ S, there
exists a υ ∈ V satisfying s0-after-υ = s.

A test suite TS is a set of symbolic input/output sequences over in-

put/output equivalence classes, that is, TS ⊆ A∗. The symbolic input/output
sequences α ∈ TS are called symbolic test cases. For any SFSM M over
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(I,O,D, ΣI, ΣO, AP), we say that M passes test case α ∈ TS if and only if

α ∈ T (M); otherwise,M fails test case α. SFSMM passes test suite TS if

M passes every test case in TS, i.e., TS ⊆ T (M).

Let M,M ′ be two SFSMs in the same fault domain

D(I,O,D, ΣI, ΣO, AP, n,m),

where M serves as a reference model with n states. Let Σ = ΣI ∪ ΣO ∪AP.
We say that M and M ′ are TS-equivalent if and only if

TS ∩ T (M) = TS ∩ T (M ′).

Intuitively speaking, this means that M and M ′ pass exactly the same

symbolic test cases of TS.
Suppose ω preserves states of M. Let n be the number of states of M

and M ′ contain at most m ≥ n states. We de�ne a test suite TS ⊆ A∗
as already explained in Chapter 2, Table 2.4. Recall from the informal

test suite discussion in Chapter 2.5 that TS contains symbolic input/output

traces that are not contained in the traces T (M) of reference model: for

example, symbolic traces α,β ∈ T (M) might have a distinguishing trace

γ ∈ A∗ such that α.γ, β.γ ∈ TS and α.γ ∈ T (M), but β.γ 6∈ T (M).

For practical testing, we proceed as informally described in Chapter 2:

(1) From the symbolic input/output sequences of TS, concrete input se-

quences are computed. (2) These resulting concrete test cases are executed

against the SUT. In the nondeterministic case, this is performed several

times until all SUT reactions have been observed according to the complete

testing assumption. (3) A test case execution fails if and only if at least one

of the concrete input/output sequences observed during execution against

the SUT is not contained in L(M), or if a symbolic trace of M that is asso-

ciated with this input sequence is never covered when running the test case

against the implementation.

5.5 Proof of Exhaustiveness

The following theorem states the two main results of Part I of this technical

report. (1) It shows that the test suite TS speci�ed above is exhaustive for

property-oriented testing. (2) It shows that this test suite will even prove

language equivalence, if the propositional abstraction ω is so \�ne-grained"
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that it distinguishes any pair of states that are not language equivalent.

This fact induces a more specialised test suite that does not need to refer

to any propositional abstraction. This suite is speci�ed in Table 5.1 below,

and Corollary 1 below shows that this suite is even complete.

Theorem 3. Let M,M ′ be members of the fault domain

D(I,O,D, ΣI, ΣO, AP, n,m),

where M serves as reference model with n states. Let TS be a test suite

created according to the 5 conditions speci�ed in Table 2.4. Suppose

that the propositional abstraction ω preserves states of M. Then the

following properties hold.

1. If M and M ′ are TS-equivalent, this implies ω(L(M ′)) ⊆ ω(L(M)).

2. If M and M ′ are TS-equivalent and

∀α,β ∈ L(M) �
(
∆(α,β) = ∅ ⇐⇒ ∆(ω(α),ω(β)) = ∅

)
, (5.14)

then L(M) = L(M ′), that is, M and M ′ are language-equivalent.

Proof. De�ne

Vk = (V.
k⋃
i=0

Ai) ∩ T (M) for k ≥ 0.

We prove the theorem in �ve steps.

Step 1. Suppose that the pass criterion TS∩T (M) = TS∩T (M ′) holds, as
is assumed for both Statement 1 and 2 of the theorem. This implies

V.
m−n+1⋃
i=0

Ai ∩ T (M ′)

= V.
m−n+1⋃
i=0

Ai ∩ T (M) = Vm−n+1,

(5.15)

because V.
⋃m−n+1
i=0 Ai ⊆ TS.

Step 2. We show that for any (α,β) ∈ V × Vm−n+1 and for any (α,β) ∈
Vm−n × Vm−n+1 with α ∈ Pref(β) that

∆ ′(α,β) = ∅ =⇒ ∆(ω(α),ω(β)) = ∅ (5.16)
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holds, where ∆ ′(α,β) ⊆ A∗ contains the distinguishing input/output se-

quences for α,β in M ′.

To this end, suppose that ∆ ′(α,β) = ∅, but ∆(ω(α),ω(β)) 6= ∅. Then,
since ω preserves states, there exists γ ∈ ∆(α,β) such that α.γ, β.γ ∈ TS.
Since T (M ′) ∩ TS = T (M) ∩ TS, we have α.γ ∈ T (M ′) and β.γ 6∈ T (M ′)
or vice versa, a contradiction to the assumption that ∆ ′(α,β) = ∅. This

proves the validity of Formula (5.16).

Step 3. For any α ∈ T (M ′), we prove in three sub-steps that there exists

some β ∈ Vm−n satisfying

∆ ′(α,β) = ∅∧ ∆(ω(α),ω(β)) = ∅ (5.17)

Since ε ∈ V, we have V.A∗ = A∗, so there exists a smallest k ≥ 0 such that

α ∈ T (M ′) ∩ V.Ak.
Step 3.1. Suppose α ∈ T (M ′) ∩ V.Ak with k ≤ m − n. Then α ∈ T (M),

becauseM andM ′ are TS-equivalent. Selecting β = α, Formula (5.17) holds

true.

Step 3.2. Suppose now that α ∈ T (M ′)∩V.Ak with k = m−n+1. Again,

α ∈ T (M) since M and M ′ are TS-equivalent. Let α = υ.a1 . . . am−n+1 for

some υ ∈ V and ai ∈ A. Since α ∈ T (M ′), αi := υ.a1 . . . ai ∈ T (M ′), for all
i = 1, . . . ,m−n+1. Since V has been assumed to be minimal and all αi are

distinct and not contained in V, the union U = V∪{αi | i = 1, . . . ,m−n+1}

contains m + 1 elements. Therefore, since M ′ contains at most m states,

at least two symbolic traces π 6= τ ∈ U must reach the same state in M ′,

that is, s ′0-after-π = s ′0-after-τ. Observe that A is also an input/output

equivalence partition for M ′, since M ′ is a member of the fault domain.

Consequently, s ′0-after-π and s ′0-after-τ are well-de�ned states.

We �rst observe that π and τ cannot both be contained in V, because

V reaches n distinguishable states inM. Therefore, the elements of V must

also reach n pairwise distinct states inM ′, because otherwiseM ′ would fail

at least one of the test cases from TS-construction Step 2. Consequently,

there are two remaining possibilities for π and τ.

(a) π ∈ V and τ ∈ {α1, . . . , αm−n+1} or

(b) π 6= τ ∈ {α1, . . . , αm−n+1}, π ∈ Pref(τ)

In case (b), |π| < |τ| holds. Since π and τ reach the same state in M ′,

this implies ∆ ′(π, τ) = ∅. Since (π, τ) ∈ V × Vm−n+1 (case (a)) or (π, τ) ∈
Vm−n × Vm−n+1 (case (b)), Formula (5.16) yields ∆(ω(π),ω(τ)) = ∅.
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Let τ ′ ∈ A∗ be the su�x of α such that τ.τ ′ = α ∈ Am−n+1. Since

τ ∈ {α1, . . . , αm−n+1}, |τ ′| ≤ m − n. Since π ∈ V or |π| < |τ| and α = τ.τ ′,

this implies that

π.τ ′ ∈ V.
m−n⋃
i=0

Ai.

From

∆ ′(π, τ) = ∅∧ ∆(ω(π),ω(τ)) = ∅

follows

∆ ′(π.τ ′, τ.τ ′) = ∅∧ ∆(ω(π.τ ′),ω(τ.τ ′)) = ∅. (5.18)

Since τ.τ ′ = α ∈ T (M ′) and π reaches the same state as τ in M ′, this

implies π.τ ′ ∈ T (M ′). From Formula (5.15), we get

π.τ ′ ∈ T (M ′) ∩ V.
m−n⋃
i=0

Ai

= T (M) ∩ V.
m−n⋃
i=0

Ai

= Vm−n.

Substituting β = π.τ ′ and α = τ.τ ′ for (5.18), we get

∆ ′(α,β) = ∅∧ ∆(ω(α),ω(β)) = ∅,

as was to be shown.

Step 3.3. Suppose α ∈ T (M ′) ∩ V.Ak, k > m − n + 1. Suppose for any

π ∈ T (M ′) ∩ V.
⋃k−1
i=0 Ai there exists τ ∈ Vm−n such that

∆ ′(π, τ) = ∅∧ ∆(ω(π),ω(τ)) = ∅,

as has been established in Step 3.2 for k = m− n+ 1. Let α = α1.a, where

α1 ∈ Pref(α) and a ∈ A. Since α1 ∈ T (M ′) ∩ V.
⋃k−1
i=0 Ai, there exists some

β1 ∈ Vm−n such that ∆ ′(α1, β1) = ∅ and ∆(ω(α1),ω(β1)) = ∅. Hence

∆ ′(α1.a, β1.a) = ∅∧ ∆(ω(α1.a),ω(β1.a)) = ∅. (5.19)

From ∆ ′(α1.a, β1.a) = ∅ and α = α1.a ∈ T (M ′) we obtain

β1.a ∈ T (M ′).
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Since β1 ∈ Vm−n, this implies β1.a ∈ Vm−n+1. Then there exists β ∈ Vm−n

such that

∆ ′(β,β1.a) = ∅∧ ∆ ′(ω(β),ω(β1.a)) = ∅

From formulae (5.19), (5.5), (5.10), and α = α1.a we get

∆ ′(α1.a, β) = ∆
′(α,β) = ∅

∧ ∆(ω(α1.a),ω(β)) = ∆(ω(α),ω(β)) = ∅.

Step 4. We show that ω(T (M ′)) ⊆ ω(T (M)).

To this end, let α ∈ T (M ′) be any sequence. Formula (5.17) implies

the existence of β ∈ Vm−n such that ∆ ′(α,β) = ∅ and ∆(ω(α),ω(β)) = ∅.
Since β ∈ T (M), ω(β) ∈ ω(T (M)), Formula (5.9) implies that also ω(α) ∈
ω(T (M)). Hence

ω(T (M ′)) ⊆ ω(T (M)).

The concrete traces κ, κ ′ ofM andM ′ are exactly the witnesses of sym-

bolic traces α,α ′ from T (M) and T (M ′), respectively. As explained in Sec-

tion 5.2, the witnesses are mapped to the same elements under propositional

abstraction as their symbolic traces, so ω(κ) = ω(α) and ω(κ) = ω(α).

Consequently, ω(T (M ′)) ⊆ ω(T (M)) implies ω(L(M ′)) ⊆ ω(L(M)), and

this proves Statement 1 of the theorem.

Step 5. For proving Statement 2 of the theorem, suppose that (5.14) holds

for all α,β ∈ T (M).

Assume that T (M) 6= T (M ′). Since ε ∈ T (M) ∩ T (M ′), there exist

α ∈ T (M) ∩ T (M ′) and a ∈ A such that

α.a ∈ (T (M) ∪ T (M ′)) \ (T (M) ∩ T (M ′)).

This is equivalent to

α.a ∈ T (M) ⇐⇒ α.a 6∈ T (M ′). (5.20)

From (5.17) there exists β ∈ V.
⋃m−n
i=0 Ai ∩ T (M) such that ∆ ′(α,β) =

∅∧ ∆(ω(α),ω(β)) = ∅. From (5.14) we get ∆(α,β) = ∅. Hence

∆(α.a, β.a) = ∅∧ ∆ ′(α.a, β.a) = ∅. (5.21)

Since β.a ∈ V.
⋃m−n+1
i=0 Ai, Formula (5.15) implies

β.a ∈ T (M) ⇐⇒ β.a ∈ T (M ′).
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On the other hand, Formula (5.21) implies that(
α.a ∈ T (M) ⇐⇒ β.a ∈ T (M)

)
∧
(
α.a ∈ T (M ′) ⇐⇒ β.a ∈ T (M ′)

)
.

Consequently,

α.a ∈ T (M) ⇐⇒ α.a ∈ T (M ′),

but this is a contradiction to (5.20). Hence T (M) = T (M ′).
The equality of all symbolic traces over the same set A of input/output

equivalence classes proves language equivalence, that is, L(M) = L(M ′),

because the concrete traces of M and M ′ are just the witnesses of the

symbolic traces. This proves Statement 2 of the theorem.

Table 5.1: Speci�cation of conformance test suite TS= proving language

equivalence.

1. TS= contains a minimal state cover V of M with ε ∈ V.

2. For any distinct α,β ∈ V, there exist γ ∈ ∆(α,β) such that α.γ, β.γ ∈ TS=.

TS= contains the set

T = V.
(m−n+1⋃

i=1

Ai
)

of symbolic traces.

3. For any α ∈ V,β ∈ T ∩T (M) satisfying ∆(α,β) 6= ∅, there exists γ ∈ ∆(α,β)
such that α.γ, β.γ ∈ TS=.

4. For any α,β ∈ T ∩ T (M) satisfying α ∈ Pref(β) and ∆(α,β) 6= ∅, there

exists γ ∈ ∆(α,β) such that α.γ, β.γ ∈ TS=.

Corollary 1. Let M,M ′ be members of the fault domain

D(I,O,D, ΣI, ΣO, AP, n,m),

whereM serves as reference model with n states. Let TS= be a test suite

as speci�ed in Table 5.1. Then TS= is complete for testing language

equivalence against M.
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Proof. Test suite TS= di�ers from TS speci�ed in Table 2.4 only in construc-

tion steps 4 and 5: there, TS= adds distinguishing traces γ to all trace pairs

α,β that are distinguishable in T (M). This corresponds to the situation

where some propositional abstraction is used that distinguishes all states

that are not language equivalent. For example, we could construct ω with

respect to all atomic propositions occurring in the elements of ΣI∪ΣO. With

such an ω, Statement 2 of Theorem 3 can be applied, and this implies the

exhaustiveness of TS= for language equivalence testing.

By construction, M and all SFSMs that are language-equivalent to M

will pass test suite TS=. Thus this test suite is also sound, and this completes

the proof.

5.6 Complexity Considerations

From the �eld of model checking it is well known that checking a regular

safety property has complexity O(|TS | · |B|), where |TS | denotes the size

(i.e. the number of states plus the number of transitions) of the transition

system to be checked and |B| the size of the nondeterministic �nite automa-

ton encoding the bad pre�x of the safety property to be checked [1].

For black-box testing, however, the internal structure of the SUT is un-

known, so the states reached and the transitions covered cannot be directly

inspected. With an estimate m for an upper bound of the states in the SUT

at hand, and with the knowledge that B has n states, we can at least give a

bound for the maximal length of traces to be investigated: every input trace

of length m · n must visit at least one state twice in the product machine

built by the SUT and the bad pre�x checker B. Since we also do not know

the internal branching structure of the SUT, however, we need to exercise

every trace of length m ·n, to make sure that a termination state of B indi-

cating a violation of the safety formula to be checked can never be reached.

Thus, the worst case test suite size is

O(|A|m·n),

where |A| is the size of the input alphabet of the SUT.
With a reference modelM at hand, a test suite of size |TS| with TS de�ned

in Table 2.4 is required. The size of TS is similar to the size of the test cases

required for applying the H-Method for �nite state machines [10], with the

di�erence that we use input representatives from input/output equivalence
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classes instead of a �nite state machine input alphabet. An upper bound

for the test cases generated by the H-Method is given by the upper bound

for the test cases provided by the W-Method, and this is [6]

O(n2 · |A|m−n+1),

where A is the set of input representatives. It should be noted that this

upper bound is rather crude, because e�cient implementations of the H-

Method usually produce signi�cantly fewer test cases than theW-Method [12].

In any case, the test suite provided in this technical report is signi�cantly

smaller than the one needed for black-box POT without a reference model,

because the latter is exponential in m, while our test suites are only expo-

nential in m− n.

As explained in Chapter 2, a worst case upper bound for the size of

A is O(2|ΣI|+|ΣO|+|AP|), that is, exponential in the number of guard con-

ditions, output expressions, and atomic propositions in the formula to be

tested. As discussed there, however, this upper bound is rarely reached,

since most conjunctions of positive and negated propositions constructed

according to the method speci�ed in Table 2.1 do not have a solution. For

the example discussed in Chapter 2, the set of properties Σ has cardinality

13 (Table 2.2), so the worst-case upper bound for the number of equivalence

classes is 213 = 8192. The real number of input/output classes, however, is

only 38 (Table 2.3). Moreover, since multiple input representatives apply to

several di�erent input/output classes, the set A of representatives only has

9 elements (Table 2.5).
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Chapter 6

Conclusion for Part I

6.1 Conclusion

In this technical report, an exhaustive test suite for testing LTL properties

has been presented. It is based on both the LTL property and a symbolic

�nite state machine model describing the expected behaviour. Passing the

test suite implies that the system under test satis�es every LTL formula

over a given set of atomic propositions that is satis�ed by the reference

model, provided that the implementation's true behaviour is captured by

an element of the fault domain. Failing the test suite implies that the sys-

tem under test is not language-equivalent to the reference model, so the

test suite may also uncover errors that are unrelated to the property under

consideration. This approach is well-justi�ed: when testing for a speci�c

property, it is a welcome side-e�ect if the test suite uncovers additional er-

rors showing that the implementation does not conform (in the sense of lan-

guage equivalence) to the model. Moreover, model-based property testing

requires signi�cantly smaller exhaustive test suites than simple exhaustive

POT suites without reference models.

A slightly modi�ed test suite can be used for testing conformance (lan-

guage equivalence) of the SUT against the SFSM model.

The test generation method presented here has been implemented in the

open source library libsfsmtest which is available under https://gitlab.
informatik.uni-bremen.de/projects/29053.
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6.2 Discussion and Future Work

It should be emphasised that the utilisation of fault domains speci�ed for

the creation of exhaustive test suites is not just a theoretical auxiliary con-

cept. Indeed, their validity for the system under test can be veri�ed if the

source code is available [15, 16]. This approach corresponds to a variant

of software model checking by testing. In contrast to \real" code-based

model checking [28, 46], our test approach does not require to encode the

full programming language semantics in a model checker, but can rely on

simpler static analyses that only requires a partial capture of the language

semantics.

The testing theory described in this technical report is currently evalu-

ated for tests of autonomous systems. On system test level, it is planned to

perform mixed test suites with original equipment and in virtualised cloud

environments, based on concepts developed by the authors [11]. A publicly

available cloud testing interface for using libsfsmtest will be completed

this year.
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Abstract

In this part of the technical report, we specialise the more general theory

for testing SFSMs presented in Part I to an important sub-class of SFSMs.

The specialisation allows for a signi�cant reduction of test cases needed for

proving language equivalence between an SFSM reference model and an

implementation whose true behaviour is captured by another SFSM from a

given fault domain.

Keywords: model-based testing; symbolic �nite state machines; complete

test suites



Chapter 7

Introduction

7.1 Background and Motivation

In model-based (black-box) testing (MBT), test cases to be executed against

a system under test (SUT) are derived from reference models specifying the

expected behaviour of the SUT, as far as visible at its interfaces. MBT is

often performed with the objective to show that the SUT ful�ls a confor-

mance relation to the reference model, such as language equivalence at the

interface level. Further conformance relations are presented and discussed,

for example by Hierons, Sachtleben and others [17, 18, 47]. Alternatively, in

property-oriented testing, MBT is applied to check whether an SUT ful�ls

just a set of selected properties that are ful�lled by the reference model [27].

In the context of safety-critical systems, so-called complete test suites

are of special interest. A suite is complete [52], if it (1) accepts every SUT

ful�lling the correctness criterion (soundness), and (2) rejects every SUT

violating the correctness criterion (exhaustiveness). In black-box testing,

completeness can only be guaranteed under certain hypotheses about the

kind of errors that can occur in an implementations. Therefore, the po-

tential faulty behaviours are identi�ed by so-called fault domains : these

are models representing both correct and faulty behaviours, the latter to

be uncovered by complete test suites. Without these constraints, it is im-

possible to guarantee that �nite test suites will uncover every deviation of

an implementation from a reference model: the existence of hidden internal

states leading to faulty behaviour after a trace that is longer than the ones

considered in a �nite test suite cannot be checked in black-box testing. The

original work on complete test suites [6, 54] was considered to be mainly
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of theoretical interest, but practically infeasible, due to the size of the test

suites to be performed in order to prove conformance. Since then however,

it has been shown that complete test suites can be generated with novel

strategies leading to signi�cantly smaller numbers of test cases [12], and

complete test suites for complex systems can be generated with acceptable

size, if equivalence class strategies are used [20, 24]. Moreover, the possi-

bility to generate and execute large test suites in a distributed manner on

cloud server farms have pushed the limits of practically tractable test suite

sizes in a considerable way [11].

While the original theories on complete test suites have been elaborated

for �nites states machines (FSM) with input and output alphabets (Mealy

Machines), FSMs are less suitable for modelling reactive systems with com-

plex, conceptually in�nite data structures. Therefore, complete strategies

for MBT with di�erent modelling formalisms have been elaborated over the

years, such as extended �nite state machines [26], Timed Automata [50],

process algebras [38], variants of Kripke Structures [20], and symbolic �nite

state machines [27, 42].

Symbolic �nite state machines (SFSM) o�er a good compromise between

semantic tractability and expressiveness: just like FSMs, they still operate

on a �nite state space, but they allow for typed input and output variables.

Transitions are guarded by Boolean expressions (so-called symbolic inputs)

over input variables. In the more general case of SFSMs investigated in

this technical report, symbolic outputs are Boolean �rst order expressions

involving arithmetic expressions over input and output variables, so that

nondeterministic outputs are admissible.

7.2 Objectives and Main Contributions

In this part of the technical report, we present a complete testing strategy for

verifying language equivalence against a sub-class of SFSM reference models.

The SFSMs in this class may be nondeterministic with respect to both

transition guards and output expressions, but they are required to possess

separable alphabets, as de�ned in Section 8.3. Intuitively speaking, their

output expressions are pairwise distinguishable for every guard condition by

selecting a speci�c input valuation for that the respective guard evaluated

to true.

As fault domains, SFSMs of this class, with a bounded number of states,
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arbitrary transfer faults (misdirected transitions), interchanged guards or

output expressions, and �nitely many mutations of guards and outputs are

accepted.

We consider the following results as the main contributions of Part II of

this technical report.

1. A new language equivalence testing strategy is presented for SFSMs

with separable alphabets, and it is proven that the resulting test suites

are complete. This new mathematical proof is considerably simpler

than the general theory providing complete strategies for unrestricted

SFSMs.

2. In contrast to competing approaches [40, 42, 43, 51], the SFSMs con-

sidered here may use nondeterministic transitions and output expres-

sions.

3. It is explained by means of a complexity argument and illustrated by

an example that the complete test suites for SFSMs with separable

alphabets are signi�cantly shorter in general than those needed for

SFSMs with arbitrary alphabets.

4. An open source tool is provided that creates test suites according to the

strategy described in this technical report and executes them against

software SUTs.

7.3 Overview

In Chapter 8, SFSMs are de�ned, and their basic semantic properties are

introduced. The restricted family of SFSMs that are covered by the testing

theory presented here is introduced. In Chapter 9, the generation of com-

plete test suites for this SFSM sub-class is described, and the lemmas and

theorems for proving the completeness property are presented. In Chap-

ter 10, an open source tool implementing the test generation method pre-

sented here is introduced. The test suite generation is illustrated by means

of an example in Chapter 11. Illustrated by the example, complexity con-

siderations are presented in Chapter 12. Chapter 13 presents the conclusion

for Part II. Related work in the context of the whole technical report is

discussed in Chapter 14. The proofs of lemmas and theorems introduced in

Part II are given in Appendix A.
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Chapter 8

Symbolic Finite State
Machines

8.1 Definition

A Symbolic Finite State Machine (SFSM) is a tuple

S = (S, s0, R, I,O,D, ΣI, ΣO, Σ).

Finite set S denotes the state space, and s0 ∈ S is the initial state. Fi-

nite set I contains input variable symbols, and �nite set O output variable

symbols. The sets I and O must be disjoint. We use Var to abbreviate

I ∪ O. We assume that the variables are typed, and in�nite domains like

reals or unlimited integers are admissible. Set D denotes the union over

all variable type domains. The input alphabet ΣI consists of �nitely many

guard conditions, each guard being a quanti�er-free �rst-order expression

over input variables. The �nite output alphabet ΣO consists of output ex-

pressions ; these are quanti�er-free �rst-order expressions over (optional)

input variables and at least one output variable. We admit constants, func-

tion symbols, and arithmetic operators in these expressions, but require that

they can be solved based on some decision theory, for example, by an SMT

solver. The symbolic alphabet Σ ⊆ ΣI × ΣO consists of all pairs of guards

and output expressions used by the SFSM.

Set R ⊆ S× Σ× S denotes the transition relation.

This de�nition of SFSMs is consistent with the de�nition of \symbolic

input/output �nite state machines (SIOFSM)" introduced by Petrenko [40],
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but slightly more general: SIOFSMs allow only assignments on output vari-

ables, while our de�nition admits general quanti�er-free �rst-order expres-

sions. This is useful for specifying nondeterministic outputs and for per-

forming data abstraction.

8.2 Computations, Valuation Functions, and Traces

A symbolic computation of S is a sequence

ζ =(s0, ϕ1, ψ1, s1).(s1, ϕ2, ψ2, s2) . . .

∈ (S× ΣI × ΣO × S)∗,

such that (si−1, ϕi, ψi, si) ∈ R for all i > 0.

The symbolic language Ls(S) of an SFSM S is the set of all sequences

ξ = (ϕ1, ψ1).(ϕ2, ψ2) · · · ∈ (ΣI × ΣO)∗,

such that there exists a symbolic computation ζ that, when projected to its

sequence of (ϕi, ψi)-pairs, coincides with ξ.

A valuation function σ : X −→ D with X ∈ {I,O,Var } assigns values to

variable symbols. In case X = I, values are only de�ned for input variables,

in case X = O only for output symbols; for X = Var , all variables are

mapped to concrete values from their domain contained in D. Given any

quanti�er-free formula ϕ over variable symbols from X, we write σ |= ϕ

and say that σ is a model for ϕ, if and only if the Boolean expression

ϕ[v/σ(v) | v ∈ X] (this is the formula ϕ with every symbol v ∈ X replaced

by its valuation σ(v)) evaluates to true.
A concrete computation of S is a sequence

ζc = (s0, σ1, s1)(s1, σ2, s2).(s2, σ3, s3) . . .

with dom(σi) = Var for i > 0, and si ∈ S, such that there exists a symbolic

computation ζ traversing the same sequence of states and satisfying σi |=

ϕi ∧ψi for all i > 0. The concrete computation ζc is called a witness of ζ,

this is abbreviated by ζc |= ζ. This is the synchronous interpretation of

the SFSM's visible input/output behaviour, as discussed by van de Pol [53]:

inputs and outputs occur simultaneously, that is, in the same computation

step σi.
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The set of all valuations σ : X −→ D is denoted by DX; we apply

this with X ∈ {I,O,Var }. A trace κ is a sequence σ1 . . . σn ∈
(
DX
)∗

of

valuation functions, such that there exists a concrete computation that,

when projected on its sequence of valuation functions, coincides with κ.

The set of all traces of S is called its (concrete) language and denoted by

L(S).
For any α = (ϕ1, ψ1) . . . (ϕk, ψk) ∈ (ΣI × ΣO)∗ and TS ⊆ (ΣI × ΣO)∗

denote α|ΣI = ϕ1 . . . ϕk, α|ΣO = ψ1 . . . ψk and TS|ΣI = {α|ΣI | α ∈ TS}.
For the remainder of this technical report, only well-formed SFSMs are

considered. This means that all guard conditions and associated output

expressions can be solved in the sense that every transition label ϕ/ψ ∈
ΣI × ΣO has at least one model σ ∈ DVar satisfying σ |= ϕ∧ψ.

8.3 A Restricted Family of SFSMs –
Separable Alphabets

As indicated in Chapter 7, we consider a slightly restricted class of SFSMs

S in this technical report that allows for considerably smaller complete test

suites for language equivalence testing. All restrictions refer to the input

alphabet ΣI, output alphabet ΣO, and alphabet Σ ⊆ ΣI × ΣO used by these

SFSMs. The restrictions are speci�ed as follows, and we call any alphabet

tuple (ΣI, ΣO, Σ) ful�lling them separable.

1. The alphabet Σ ⊆ ΣI × ΣO contains pairwise non-equivalent pairs

of guards and output expressions: for every two elements (ϕ,ψ) 6=
(ϕ ′, ψ ′) ∈ Σ, formulae ϕ∧ψ and ϕ ′∧ψ ′ have di�ering sets of models.

2. The symbolic input alphabet ΣI partitions the set DI of input val-

uations, that is, for all σ ∈ DI, there exists a uniquely determined

ϕ ∈ ΣI such that σ |= ϕ.

3. Separability of output expressions. For any (ϕ,ψ) ∈ Σ, there exists
at least one input valuation σI ∈ DI distinguishing (ϕ,ψ) from all

other (ϕ,ψ ′) ∈ Σ with ψ ′ 6= ψ ∈ ΣO, in the sense that σI ful�ls

(∃σO ∈ DO � σI ∪ σO |= ϕ∧ψ)∧ (8.1)(
∀ψ ′ ∈ ΣO \ {ψ} �ϕ/ψ ′ ∈ Σ =⇒

(∀σ ′O ∈ DO � (σI ∪ σ ′O |= ψ) =⇒ (σI ∪ σ ′O |= ¬ψ ′))
)
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Definition 1. For any (ϕ,ψ ′) ∈ Σ de�ne dis(ϕ,ψ ′) = {σI ∈ DI | σI satis�es (8.1)}.

Restriction 1 is only syntactic: If (ϕ,ψ) 6= (ϕ ′, ψ ′) ∈ Σ di�er syntac-

tically but are equivalent �rst order expressions, one of these pairs, say

(ϕ ′, ψ ′), is removed from Σ. SFSM Transitions (s1, ϕ
′, ψ ′, s2) ∈ R are re-

placed by (s1, ϕ,ψ, s2) without changing the language of the SFSM.

Likewise, Restriction 2 is only syntactic: by re�ning guard conditions, a

new syntactic representation of the original SFSM is obtained that has the

same language but a new input alphabet that partitions the input domain.

In the general case described in Part I, re�ning guards may also involve the

re�nement of output expressions and an additional machine transformation

into an observable SFSM. In the simple case illustrated by the Example

presented below in Chapter 11, the re�nement of guard conditions only

results in re-labelling existing transitions with re�ned guards and adding

transition arrows.

Only Restriction 3 reduces the semantic domain of SFSMs that can

be tested according to the strategy described here. Intuitively speaking,

Formula (8.1) requires for each pair of guard ϕ and output expression ψ

the existence of an input valuation σI ∈ DI such that a suitable output

valuation σO ∈ DO satisfying σI ∪ σO |= ϕ ∧ ψ exists, and every possible

output σ ′O that can occur for output expression ψ and the given inputs σI
could not have been produced by any other output expression ψ ′ 6= ψ.

In the example presented in Chapter 11 it is illustrated how the syntactic

Requirements 1,2 can be established by a re�ning transformation, and how

the third restriction is checked.

The following simple lemma states the important property that sepa-

rability of alphabets is preserved when an SFSM only uses a subset of the

output expressions occurring in a separable alphabet.

Lemma 2. Let (ΣI, ΣO, Σ) be a separable alphabet. Then any alphabet

(ΣI, Σ
′
O, Σ

′) satisfying Σ ′O ⊆ ΣO, Σ ′ ⊆ ΣI×Σ ′O and Σ ′ ⊆ Σ is also separable.

8.4 Complete Testing Assumptions

As is usual in black-box testing of nondeterministic systems, we adopt the

complete testing assumption [17]. This requires the existence of some

known k ∈ N such that, if an input sequence is applied k times, then all

possible responses are observed, and, therefore, all states reachable by means
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of this sequence have been visited. Since we are dealing with possibly in�nite

input and output domains, \all possible responses" is interpreted in the

way that all satis�able symbolic traces of the system under test are visited

for the input sequence exercised on the SUT k times.

8.5 Finite State Machine Abstraction

Recall that a �nite state machine (Mealy Machine, FSM) is a tuple

M = (S, s0, R, ΣI, ΣO, Σ) with �nite state space S, �nite input and output

alphabets ΣI, ΣO, and transition relation R ⊆ S× Σ× S.
Given a SFSM S = (S, s0, R, I,O,D, ΣI, ΣO, Σ), simply deciding to leave

guard conditions and output expressions uninterpreted yields an FSMM =

(S, s0, R, ΣI, ΣO, Σ). The language L(M) of FSM M is the set of all traces

α = (ϕ1, ψ1) . . . (ϕk, ψk) ∈ (ΣI × ΣO)∗, such that there exists a sequence of

states s0.s1 . . . sk satisfying

∀i ∈ {1, . . . , k} � (si−1, ϕi, ψi, si) ∈ R.

Since M uses the SFSM's transition relation, symbolic alphabets and

initial output, and since the language ofM is de�ned exactly as the symbolic

language of S, this abstraction of SFSM S to FSMM preserves the symbolic

language, that is, L(M) = Ls(S).

8.6 Fault Domains

In the context of Part II of this technical report, a fault domain is a

set F(ΣI, ΣO, Σ,m) of SFSMs, which is de�ned for any separable alpha-

bet (ΣI, ΣO, Σ), as de�ned in Section 8.3. All SFSMs S ′ ∈ F(ΣI, ΣO, Σ,m)

are observable, reduced and have the following properties.

1. The alphabet (ΣI, Σ
′
O, Σ

′) of S ′ satis�es Σ ′O ⊆ ΣO, Σ ′ ⊆ ΣI × Σ ′O and

Σ ′ ⊆ Σ; it is therefore also separable according to Lemma 2.

2. S ′ has at most m states, when represented in observable form.

3. The reference model S is also contained in F(ΣI, ΣO, Σ,m) and has

n ≤ m states.
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Following the concept of mutation testing, a fault domain admits �nitely

many mutants of guard conditions and mutants of output expressions, these

are contained in ΣI and ΣO, respectively. Since, as explained above, the

input alphabet of any SFSM can always be transformed for a set of re�ned

guard conditions without changing the language, it can always be assumed

that all SFSMs in the fault domain operate on the same input alphabet. This

is usually more �ne-grained than the original alphabet used by the reference

model, in order to accomodate for erroneous guard conditions. Erroneous

implementations may use faulty combinations of (otherwise possibly correct)

guards ϕ and output expressions ψ, but these faulty combinations (ϕ,ψ)

must be captured in Σ. Faulty SFSMs may possess up to m− n additional

states, and they may exhibit arbitrary transfer faults, that is, misdirected

transitions. The fault domain construction principle is illustrated in the

example discussed in Chapter 11.
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Chapter 9

Test suite generation

Throughout this chapter, SFSM S plays the role of a reference model, and S ′
is the representation of the true SUT behaviour as an SFSM. S ′ is supposed
to be contained in the fault domain.

9.1 Symbolic and Concrete Test Cases, Test Suites

A symbolic test case is a sequence of (guard condition/output expression)

pairs, that is, any sequence α ∈ Σ∗. A concrete test case is a sequence τ of

pairs of (input/output) valuation, that is τ ∈ (DVar )∗.

Note that in other contexts, test cases represent just sequences of in-

puts [6]. In this technical report, a test case is a sequence of symbolic or

concrete input/response pairs, because this facilitates the investigation of

language equivalence. Observe further, that it is not required for a test case

to be in the language of the reference model: a test case can also contain

responses to inputs that are erroneous from the reverence model's perspec-

tive.

For concrete test executions, of course, only the input projections of

concrete test cases are passed to the SUT, we denote these sequences as

concrete input test cases. Given a concrete input test case τI = σ
1
I . . . σ

p
I ∈

(DI)∗ and a sequence of output valuations τO = σ1O . . . σ
p
O ∈ (DO)∗ of the

same length as τI, we use the abbreviated notation

τI/τO = (σ1I ∪ σ1O) . . . (σ
p
I ∪ σ

p
O) ∈ (DVar )∗.

Let outk(S ′, τI) denote the collection of output responses of S ′ to the con-

crete input test case τI obtained during k executions of this test case. Note
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that outk(S ′, τI) is a random collection: for repeated execution of k test

case runs each, outk(S ′, τI) may contain di�erent output traces in the non-

deterministic case.

For a symbolic test case α = (ϕ1, ψ1) . . . (ϕp, ψp) ∈ Σ∗, we use shorthand

τI/τO |= α ≡
(
|τO| = |τI| = |α| ∧

(∀i ∈ {1, . . . , |α|} � τI(i) ∪ τO(i) |= ϕi ∧ψi)
)
,

that is, τI/τO |= α holds if and only if every input/output valuation τI(i) ∪
τO(i) in sequence τI/τO is a model for the sequence element with the same

index i in α.

A symbolic test suite TS ⊆ Σ∗ is a set of symbolic test cases, a concrete
test suite TS ⊆ (DVar )∗ is a set of concrete test cases.

9.2 Pass Relations

Definition 2 (Pass relation for symbolic test cases). Let α ⊆ Σ∗ be a

symbolic test case. We say S ′ passes α (with respect to reference model

S) if and only if

α ∈ Ls(S ′) ⇐⇒ α ∈ Ls(S).

Definition 3 (Pass relation for symbolic input test cases). Let αI ⊆ Σ∗I be a
symbolic input test case. We say S ′ passes αI (with respect to reference

model S) if and only if for any α ∈ Σ∗ with α|ΣI = αI,

α ∈ Ls(S ′) ⇐⇒ α ∈ Ls(S)

holds.

Definition 4 (Pass relation for concrete input test cases). Let τI ∈ (DI)∗

be a concrete input test case. We say S ′ passes τI if and only if

1. for any τO ∈ outk(S ′, τI), τI/τO ∈ L(S), and

2. for any α ∈ Ls(S) with τI/τO |= α, there exists τ ′O ∈ outk(S ′, τI)
satisfying τI/τ

′
O |= α.

Condition 1 of this pass relation requires that all concrete outputs τO
observable in k executions of input test case τI conform to S in the sense

that τI/τO is contained in the language of S.
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9.3 Language equivalence testing

Definition 5 (Complete test suites). Let TS ⊆ Σ∗ be a symbolic test suite.
TS is called complete for proving the equivalence of Ls(S) and Ls(S ′) if and
only if

Ls(S) ∩ TS = Ls(S ′) ∩ TS ⇐⇒ Ls(S) = Ls(S ′).

In the sense of De�nition 2, this means that S ′ passes all test cases
from TS with respect to reference model S, because

Ls(S) ∩ TS = Ls(S ′) ∩ TS ≡ ∀α ∈ TS �
(
α ∈ Ls(S) ⇐⇒ α ∈ Ls(S ′)

)
A symbolic input test suite TSI ⊆ Σ∗I is called complete for proving the

equivalence of Ls(S) and Ls(S ′) if and only if

TS = {α ∈ Σ∗ | α|ΣI ∈ TSI}

is complete for proving the equivalence of Ls(S) and Ls(S ′).

Definition 6 (Distinguishing Function). A distinguishing function T :

Σ∗ → (DI)∗ is a function from sequences of the symbolic alphabet to

sequences of input valuations, such that for any α ∈ Σ∗, |T(α)| = |α|,

and T(α)(i) ∈ dis(α(i)), ∀i = 1, . . . , |α|.

Definition 7 (Distinguishing Function associated with Σ). A function T :

Σ→ DI is called a distinguishing function associated with Σ, if its exten-

sion T : Σ∗ → (DI)∗ de�ned by T((ϕ1, ψ1) . . . (ϕk, ψk)) = T(ϕ1, ψ1) . . . T(ϕk, ψk)

is a distinguishing function.

For any symbolic input sequence αI ∈ Σ∗I and T a distinguishing function,
de�ne

T(αI) = {T(α) | α ∈ Σ∗, αΣI = αI}.

The following lemma states that any sequence of input valuations ob-

tained by a distinguishing function already determines the associated se-

quence of symbolic alphabet elements in a unique way. The proof exploits

the restrictions that the symbolic input alphabet partitions the set of input

valuations and the separability of output expressions.

Lemma 3. Suppose α,β ∈ Σ∗, τI = T(α) ∈ (DI)∗ and τO ∈ (DO)∗, such

that τI/τO |= α holds. Then τI/τO |= β implies α = β.
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Lemma 4. Let α ∈ Σ∗ be a symbolic test case. Suppose S ′ passes
concrete input test case T(α). Then S ′ passes symbolic test α, i.e.,

α ∈ Ls(S) ⇐⇒ α ∈ Ls(S ′).

Lemma 4 immediately yields the following corollary by applying the

lemma to sets of symbolic test cases.

Corollary 2. Let TS ⊆ Σ∗ be a set of symbolic test cases. Suppose S ′
passes the test suite T(TS) of concrete input test cases. Then S ′ passes
TS, that is,

Ls(S ′) ∩ TS = Ls(S) ∩ TS.

The following theorem shows that for the restricted class of SFSMs con-

sidered in Part II of this technical report, concrete language equivalence

already implies symbolic language equivalence.

Theorem 4.

Ls(S) = Ls(S ′) ⇐⇒ L(S) = L(S ′).

Theorem 5. Let TS ⊆ Σ∗ be a complete test suite for proving the equiv-

alence of Ls(S) and Ls(S ′). Then T(TS) is a complete concrete input

test suite for proving the equivalence of L(S) and L(S ′).

Complete symbolic input test suites can be directly transformed into

likewise complete concrete input test suites; this is expressed by the next

theorem.

Theorem 6. Let TSI ⊆ Σ∗I be a complete symbolic input test suite for

proving the equivalence of symbolic languages Ls(S) and Ls(S ′). Then

T(TSI) is a complete concrete input test suite for proving the equivalence
of L(S) and L(S ′).

For generating a complete test suite for testing language equivalence

against some SFSM reference model S, we can abstract to an FSM M and

use an arbitrary complete test generation method for FSM testing language

equivalence against M. In Chapter 11, the well-known W-Method [6, 54]

will be applied for this purpose, since it is very simple to describe. More

sophisticated complete methods leading to smaller sets of test cases are

referenced in Chapter 14. A complete FSM test suite TSFSM consists of test

cases that are sequences α over the alphabet Σ. Each sequence α can be
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turned into a concrete SFSM input test case by applying the distinguishing

function T : Σ −→ DI associated with S. The resulting test suite generation
method is speci�ed in Algorithm 2.

Algorithm 1 in Chapter 10 speci�es how to calculate the distinguish-

ing function T for a given SFSM S. The complete test suite generation is

speci�ed in Algorithm 2 in Chapter 10.
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Chapter 10

Tool Support

Essential for creating a complete concrete input test suite is the calcula-

tion of a distinguishing function associated with Σ, T : Σ −→ DI, according

to De�nition 7. This can be performed using Algorithm 1. The crucial

step in this algorithm is the calculation of a valuation function σI satisfying

Formula (8.1) for given (ϕ,ψ) ∈ Σ. To solve this formula, an SMT solver

supporting quanti�ed satisfaction (QS) is required [4]. Several tools are

available for this purpose, we have integrated Z3 [9] into our test generator in

the libsfsmtest (https://gitlab.informatik.uni-bremen.de/projects/
29053) for this purpose. A demo instance with a web interface exists at

http://fsmtestcloud.informatik.uni-bremen.de. The test generator

handles the parsing of SFSMs given in a CSV-style input format and fa-

cilitates the generation of de�nitions for T for all elements of Σ. It does so

for each (ϕ,ψ) ∈ Σ by posing a �rst order logic problem to Z3 for which

every solution is a valid de�nition for T((ϕ,ψ)). The prerequisite step of

checking whether the conditions in 8.3 are ful�lled by the SFSM is also han-

dled by checking �rst order logic formulae for solutions. The existence or

lack of solutions to the problems signals the ful�llment or violation of the

stated conditions.

The complete test suite generation is speci�ed in Algorithm 2. As shown

in Theorem 7, this algorithm yields a complete test suite for the SFSM ref-

erence model S, when applying the distinguishing function T to a complete

test suite from the FSM obtained by abstracting S. For calculating a com-

plete test suite for a given reference FSM and fault domain FFSM(ΣI, ΣO,m)

the tool makes use of the library libfsmtest [2] that contains many of the

well-established test generation algorithms for testing against FSM models.
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Algorithm 1 Calculate Distinguishing Function T for alphabet (ΣI, ΣO, Σ).

T ← ∅;
for all (ϕ,ψ) ∈ ΣI × ΣO do

�nd solution σI ∈ DI for Formula (8.1):
(∃σO ∈ DO � σI ∪ σO |= ϕ∧ψ)∧

(
∀ψ ′ ∈ ΣO \ {ψ} � (ϕ,ψ ′) ∈ Σ =⇒

(∀σ ′O ∈ DO � (σI ∪ σ ′O |= ψ) =⇒ (σI ∪ σ ′O |= ¬ψ ′))
)

if solution σI exists then

T ← T ∪ {(ϕ,ψ) 7→ σI};

else

terminate with error \Alphabet does not ful�l separability condi-

tion";

end if

end for

return T .

Algorithm 2 Generate test suite for proving language equivalence against

SFSM S = (S, s0, R, I,O,D, ΣI, Σ
′
O, Σ

′) and fault domain D
.

Require: (ΣI, ΣO, Σ) is separable, Σ
′
O ⊆ ΣO, Σ ′ ⊆ Σ;

Calculate distinguishing function T : Σ −→ DI using Algorithm 1;

if calculation of T returns an error then

return error message \Test suite cannot be generated, since alphabet

does not ful�l separability condition"

end if

De�ne FSM M = (S, s0, R, ΣI, Σ
′
O, Σ

′) abstracting S as described in Sec-

tion 8;

Calculate complete input test suite TSFSM ⊆ Σ∗I for checking FSM lan-

guage equivalence against M and fault domain FFSM(ΣI, ΣO,m);

return T(TSFSM).

16



Theorem 7. Algorithm 2 generates a test suite TS that is complete for

proving language equivalence against reference model

S = (S, s0, R, I,O,D, ΣI, ΣO, Σ)

and fault domain F(ΣI, ΣO, Σ,m).
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Chapter 11

Application of the Test
Method: Example

In this chapter, we use the SFSM BRAKE introduced in Chapter 2 to illustrate

the transformations needed to incorporate the fault hypotheses and to obtain

the required syntactic representation that is necessary to apply the testing

method presented in Chapter 9. Then a test suite is produced according to

the algorithms described in Chapter 10.

Step 1 – input and output alphabet mutations. Initially, the possible

mutations of the reference model's alphabet that may occur in erroneous

implementations are identi�ed. To keep this example readable, we only add

one guard mutation x ≤ v − δ to the set of guards actually used by SFSM

BRAKE. Additionally, one mutated output expression y = B2 + (x− v)2/c is

added.

Step 2 – input alphabet refinement. Next, the input alphabet is re�ned

to ensure that Restriction 2 (input alphabet partitions DI) is ful�lled.

The original input alphabet of BRAKE extended by the above guard mu-

tation does not ful�l this condition. Therefore, a re�ned alphabet

ΣI = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} (11.1)

with
ϕ1 ≡ x ∈ [0, v− δ) ϕ2 ≡ x = v− δ

ϕ3 ≡ x ∈ (v− δ, v) ϕ4 ≡ x = v

ϕ5 ≡ x ∈ (v, 400]

(11.2)
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is introduced, and SFSM BRAKE is transformed accordingly. This leads to

the new representation BRAKE ′ that is shown in tabular form in Table 11.1.

Obviously, BRAKE ′ and BRAKE are language-equivalent. Moreover, it is easy

to see that the states s0, s1, s2 of BRAKE ′ are still distinguishable, so n = 3

for the reference model BRAKE ′ of this example.

Table 11.1: Re�ned SFSM BRAKE ′ ful�lling Restriction 1 | 3 speci�ed in

Section 8.3.
Left column lists source states, starting with initial state. First row lists guard conditions

from ΣI. Inner table cells cij list `next state/output expression', applicable when guard

condition ϕj is triggered in source state si. Guards ϕi are speci�ed in Equation (11.2),

and output expressions ψj are de�ned in Equation (11.4).

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

s0 s0/ψ1 s0/ψ1 s0/ψ1 s0/ψ1 s2/ψ3
s1/ψ2

s1 s0/ψ1 s0/ψ1 s0/ψ1 s1/ψ2 s2/ψ3
s2 s0/ψ1 s2/ψ3 s2/ψ3 s2/ψ3 s2/ψ3

Step 3 – identify output alphabet. The assumptions about potential

output mutations in an SUT lead to an extended output alphabet which is

ΣO = {ψ1, ψ2, ψ3, ψ4} (11.3)

with

ψ1 ≡ y = 0 ψ2 ≡ y ∈ [B0, B1]

ψ3 ≡ y = B2 + (x− v)/c ψ4 ≡ y = B2 + (x− v)2/c
(11.4)

for our example.

Step 4 – specify the fault domain. According to Section 8.6, we still have

to identify the symbolic alphabet Σ and the maximal number of states m

that can occur in an implementation behaviour captured in F(ΣI, ΣO, Σ,m).

To ensure separability, the alphabet is speci�ed by

Σ = (ΣI × ΣO) \ {ϕ4/ψ4} (11.5)

Since ϕ4 ∧ ψ4 and ϕ4 ∧ ψ3 are equivalent �rst order expressions, one of

them must be removed from the alphabet, in order to ensure the separa-

bility condition (Restriction 3 in Section 8.3). Due to the equivalence of
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ϕ4 ∧ψ4 and ϕ4 ∧ψ3, this does not restrict the faulty behaviours captured

by F(ΣI, ΣO, Σ,m): if a test suite uncovers a faulty transition labelled by

ϕ4/ψ3, it will also uncover a faulty usage of ϕ4/ψ4.

As an estimate for the maximal number m ≥ n of states for SFSM

behaviours captured by F(ΣI, ΣO, Σ,m), we choose m = 4 for this example.

Step 5 – calculate distinguishing function T . The distinguishing func-

tion T : Σ −→ DI is calculated according to Algorithm 1 in Chapter 10. For

our example, T results in the function speci�ed in Table 11.2.

It is easy to see that the separability condition for output expressions is

ful�lled: the output expressions that are independent from input variable x

(these are ψ1, ψ2) have di�erent value ranges (0 and [0.9, 1.1], respectively).

The output expressions depending on input variable x (ψ3 and ψ4) have

output ranges that overlap with each other only for the single-point guard

condition ϕ4, and ϕ4/ψ4 is not contained in Σ.

Observe that for BRAKE ′, the distinguishing function T does not depend

on the second argument ψ ∈ ΣO. In the general case, the image value of T

depends on both guard condition and output expression.

Table 11.2: Function table T : Σ −→ DI for transformed SFSM BRAKE ′.
Guards ϕi are speci�ed in Equation (11.2), and output expressions ψj are de�ned in

Equation (11.4).

ϕ ∈ ΣI ψ ∈ ΣO T(ϕ,ψ)

ϕ1 ψi, i = 1, 2, 3, 4 {x 7→ 180}

ϕ2 ψi, i = 1, 2, 3, 4 {x 7→ 190}

ϕ3 ψi, i = 1, 2, 3, 4 {x 7→ 195}

ϕ4 ψi, i = 1, 2, 3 {x 7→ 200}

ϕ5 ψi, i = 1, 2, 3, 4 {x 7→ 210}

Step 6 – calculate complete test suite on FSM abstraction. We

now abstract BRAKE ′ to an FSM as described in Section 8.5 with fault do-

main FFSM(ΣI, ΣO,m). To generate a complete test suite for FSM language

equivalence testing, we apply the well-known W-Method [6, 54] here, since

this method is simple to introduce and to apply without tool support. We

note that T does not depend on the second argument ψ ∈ ΣO. From The-
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orem 6 follows that any complete input test suite for the FSM abstraction

will directly yield a complete input test suite for the SFSM BRAKE ′.
For the given fault domain, a complete input test suite according to the

W-Method is given by the set of input sequences

W = V.
(m−n+1⋃

i=0

ΣiI
)
.W,

where V is a state cover consisting of input traces leading from the initial

state to every state in the reference model, ΣiI is the set of all input traces

of length i (Σ0I just contains the empty trace ε), and W is a characterisa-

tion set, distinguishing all states of the reference model. The \."-operator

concatenates all traces in the �rst operand with all traces in the second

operand.

For our example, m− n+ 1 = 2 and

V = {ε,ϕ4, ϕ5}, W = {ϕ4},
2⋃
i=0

ΣiI = {ε,ϕj, ϕj.ϕk | j, k ∈ {1, 2, 3, 4, 5}}

Typically, the more complex H-Method or SPYH-Method would be used

with appropriate tool support instead of the W-Method, since they produce

complete test suites that are signi�cantly smaller in general than those pro-

duced by the W-Method [5, 10, 49].

Applying T to this FSM test suite results in the SFSM input test suite

TSin = A.B.C

A = {ε, T(ϕ4, ·), T(ϕ5, ·)}
B = {ε, T(ϕj, ·), T(ϕj, ·).T(ϕk, ·) | j, k ∈ {1, 2, 3, 4, 5}}

C = {T(ϕ4, ·)}

Consider, for example, a faulty implementation whose behaviour is given

by the SFSM IBRAKE1 speci�ed in Table 11.3.

The faulty transition s2
ϕ2/ψ3−−−−→ s1 is detected by the input test case

tc1 = {x 7→ 210}.{x 7→ 190}.{x 7→ 200} ∈ A.B.C,
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Table 11.3: SFSM representation IBRAKE1 of faulty implementation be-

haviour: transfer fault in transition s2
ϕ2/ψ3−−−−→ s1.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

s0 s0/ψ1 s0/ψ1 s0/ψ1 s0/ψ1 s2/ψ3
s1/ψ2

s1 s0/ψ1 s0/ψ1 s0/ψ1 s1/ψ2 s2/ψ3
s2 s0/ψ1 s1/ψ3 s2/ψ3 s2/ψ3 s2/ψ3

because execution of this test case will result in witnesses for symbolic trace

ξ1 = (ϕ5/ψ3).(ϕ2/ψ3).(ϕ4/ψ2)

= (x ∈ (v, 400]/y = B2 + (x− v)/c).

(x = v− δ/y = B2 + (x− v)/c).

(x = v/y ∈ [B0, B1])

of IBRAKE1, whereas the reference model BRAKE ′ will produce only the single
witness

w1 = {x 7→ 210, y 7→ 2.1}.{x 7→ 190, y 7→ 1.9}.{x 7→ 200, y 7→ 2}

Consequently, all witness traces of ξ1 produced by IBRAKE1 will result in

an output y ∈ [B0, B1] for the last trace element, which di�ers from value

y = 2 > B1 expected by the reference model.

Table 11.4: SFSM representation IBRAKE2 of another faulty implementation

behaviour: output fault in transition s2
ϕ3/ψ4−−−−→ s2.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

s0 s0/ψ1 s0/ψ1 s0/ψ1 s0/ψ1 s2/ψ3
s1/ψ2

s1 s0/ψ1 s0/ψ1 s0/ψ1 s1/ψ2 s2/ψ3
s2 s0/ψ1 s2/ψ3 s2/ψ4 s2/ψ3 s2/ψ3
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Consider another faulty implementation behaviour, as speci�ed in Ta-

ble 11.4. Here, the faulty transition s2
ϕ3/ψ4−−−−→ s2 will be detected by input

test case

tc2 = {x 7→ 210}.{x 7→ 195}.{x 7→ 200} ∈ A.B.C,

because the implementation produces only witness

w2 = {x 7→ 210, y 7→ 2.1}.{x 7→ 195, y 7→ 2.25}.{x 7→ 200, y 7→ 2},

whereas the reference model produces

w2 = {x 7→ 210, y 7→ 2.1}.{x 7→ 195, y 7→ 1.95}.{x 7→ 200, y 7→ 2}

as the only witness for tc2. Therefore, the error will be detected in the

second step of the tc2-execution.
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Chapter 12

Complexity Considerations

After discarding input traces that are pre�xes of longer ones, the test suite

speci�ed in the previous chapter results in 65 test cases. Using the general

theory for testing language equivalence of arbitrary SFSMs would result in

176 test cases (see Part I). The reason for this signi�cant di�erence can be

understood from the general theory (see Section 5.6): every complete test

suite has to contain a \core set" V.(
⋃m−n+1
i=0 Ai) of test cases that are suitable

for (a) reaching every state s in the SUT, and (b) exercising the relevant

inputs from a set A ⊆ DI in every state s. In the general case, the number of
elements in A depends on the number of input/output equivalence classes,

each class constructed by conjunctions of positive and negated guards and

output expressions. For our example, this leads to 8 concrete representatives

of these input/output classes.

The specialised theory presented here in Part II, however, only needs

one representative for every guard in ΣI, after have previously ensured that

ΣI partitions D
I. This leads to 5 representatives only.

This di�erence in the number of test cases needed according to general

and the specialised test theory, respectively, grows with the di�erencem−n

of maximal number of implementation states minus model states, since the

test suite sizes grow exponentially (i.e. with |A|m−n+1) with this di�erence.

For worst case estimates, the input set A has a cardinality of order

O(2(|ΣI|+|ΣO|)) in the general theory, whereas the cardinality of A is of order

O(2|ΣI|) in the specialised cases presented here, due to the separability of

alphabets.

Note that further test suite size reductions are possible by replacing the

W-Method used for test generation on FSM abstraction level with a more
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e�ective complete method for FSM language equivalence testing, like the

H-Method or SPYH-Method [10, 49].
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Chapter 13

Conclusion for Part II

We have presented a testing strategy for checking input/output language

equivalence against a restricted class of nondeterministic symbolic �nite

state machines and proven its completeness. The restricted class of admissi-

ble SFSM models is characterised by separable alphabets. This means that

output expressions are pairwise distinguishable for each transition guard,

by choosing appropriate input valuations ful�lling the respective guard con-

ditions. If a reference model conforms to this restriction, the resulting

test suites proving language equivalence are signi�cantly smaller than those

needed for the general case, for which a complete theory exists as well.

It should be emphasised that for grey-box software testing, the check

whether an implementation is really contained in a given fault domain can

be performed by means of static analysis of the source code. Applying these

analyses, the complete tests described here represent an alternative to code

veri�cation by model checking [16].

In the near future, we will present a randomised theory for the test-

ing strategy discussed in part II of this technical report: the distinguishing

function T can be changed to select random values distinguishing a given

guard/output expression pair ϕ/ψ from all other ϕ/ψ ′. As shown by pre-

vious experiments with other equivalence class testing strategies, this type

of randomisation can increase the test strength when applying the resulting

test suites to implementations whose true behaviour is outside the fault

domain [24]. For SUT behaviours inside the fault domain, the completeness

property of a test suite is not a�ected by this randomisation.
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Chapter 14

Related Work With
Relevance for Part I and
Part II

Testing symbolic input/output �nite state machines has attracted increasing

attention in recent years. Initially, our own contributions [19, 20, 23], as well

as that of other authors [43, 51], focused on black-box testing of deterministic

or nondeterministic systems with symbolic inputs, but concrete outputs.

Recently, this research has been extended to systems with both sym-

bolic inputs and symbolic outputs. Petrenko [42] considers symbolic out-

puts resulting from assignments of functions over input variables to output

variables. The fault domain contains deterministic minimal SIOFSMs with

state number bounded by the speci�cation. The guards in the speci�cation

de�ne the set of possible guards that can be used in an implementation,

and the set of output assignments should be given beforehand. Petrenko

provides a complete testing method generating symbolic input test suites

for this fault domain. The implementation is language-equivalent to the

speci�cation, if it passes all the instances of the symbolic test suite. In or-

der to ensure that the number of concrete test cases is �nite, restrictions

of the transitions in the implementations are made so that each symbolic

input trace in an implementation is either de�ned in the speci�cation or

is a merge of symbolic input traces in the speci�cation. Consequently, the

execution of one instance for each symbolic test case is su�cient.

Our approach presented in this technical report is di�erent. We do not

require that any instance of a symbolic test case must characterise this

27



symbolic test case, but require that there exists at least one such instance.

For the restricted family of SFSMs considered in Part II, the existence of

one such instance is ensured by the separability of output expressions.

As we have seen, di�erent kinds of fault domains are studied in the

literature. However, the assumptions about fault domains made in [42] and

in Part II of this technical report are stronger than the assumptions made

in our general theory described in Part I.
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Appendix A

Proofs of Lemmas and
Theorems in Part II

Proof of Lemma 2. Let (ΣI, Σ
′
O, Σ

′) be given as stated in the lemma.

Then Restriction 1 holds for Σ ′ because it is a subset of Σ, and all elements

of Σ are pairwise non-equivalent. For Restriction 2, there is nothing to

show since ΣI is unchanged and already ful�ls Restriction 2. Restriction 3

holds,because Formula (8.1) holds for ΣO by assumption, and Σ ′O is a subset

of ΣO. �

Proof of Lemma 3. Suppose τI/τO |= β. Since ΣI partitions D
I, there

exists a uniquely determined ϕ ∈ ΣI for any given input valuation σI ∈ DI,
such that σI |= ϕ. Consequently, every sequence element τI(i), i = 1, . . . , |τI|

is associated with a uniquely determined guard ϕi ∈ ΣI. Since τI/τO |= α

and τI/τO |= β, this implies that the sequence of guard condition occurring

in β must be the same as the one occurring in α.

Due to T(α) = τI and the separability of output expressions, β must

also contain the same sequence of output expressions as α. Thus α = β. �

Proof of Lemma 4. Throughout the proof, let τI = T(α).

Case 1. Suppose that α ∈ Ls(S). We show that this implies α ∈ Ls(S ′).
Since S ′ passes the concrete input test case τI, Condition 2 of De�nition 4

implies the existence of an output valuation τ ′O ∈ outk(S ′, τI) satisfying

τI ∪ τ ′O |= α. Let β ∈ Ls(S ′) be a symbolic trace in S ′ for which τI ∪ τ ′O is

a witness, i.e., τI ∪ τ ′O |= β. According to Lemma 3, this implies β = α, so

α is also contained in Ls(S ′).

29



Case 2. Suppose that α ∈ Ls(S ′). We show that this implies α ∈ Ls(S).
Since α ∈ Ls(S ′), the complete test assumption implies that there exists

τ ′O ∈ outk(S ′, τI), such that τI ∪ τ ′O |= α. Since S ′ passes the concrete

unput test case τI, Condition 1 of De�nition 4 implies that τI/τ
′
O ∈ L(S).

Therefore, there exists a symbolic trace β ∈ Ls(S) for which τI/τ
′
O is a

witness, that is, τI/τ
′
O |= β. As in Case 1, Lemma 3 implies β = α. This

shows that α ∈ Ls(S) and completes the proof. �

Proof of Theorem 4. The direction Ls(S) = Ls(S ′) =⇒ L(S) = L(S ′) is
trivial, since the concrete computations of S and S ′ are exactly the witnesses
of the symbolic computations of S and S ′, respectively.

To show the other implication direction, suppose that L(S) = L(S ′). Let
α ∈ ∆(Ls(S), Ls(S ′)), where

∆(Ls(S), Ls(S ′)) = Ls(S) ∪ Ls(S ′) \ (Ls(S) ∩ Ls(S ′))

is the symmetric di�erence between Ls(S) and Ls(S ′). Let τI = T(α) ∈
(DI)∗. Then there exists τO ∈ (DO)

∗, such that τ = τI ∪ τO is a witness for

α, i.e., τ |= α.

Without loss of generality, we can assume that α ∈ Ls(S) \ Ls(S ′), be-
cause the following argument is symmetric in Ls(S) and Ls(S ′). This implies

that τ ∈ L(S), because α ∈ Ls(S) and L(S) contains all witnesses of α. By
assumption, however, L(S) = L(S ′) holds, so τ is also contained in L(S ′).
Since we assume that α 6∈ Ls(S ′), there must be another symbolic trace

β ∈ Ls(S ′) for which τ is also a witness, i.e., τ |= β. Now Lemma 3 yields

a contradiction, because the fact that τI = T(α) and τ |= α∧ β imply that

β = α. Therefore, α must also be an element of Ls(S ′). Hence we conclude
that ∆(Ls(S), Ls(S ′)) = ∅, and this shows Ls(S) = Ls(S ′). �

Proof of Theorem 5. We prove the theorem in two steps.

Step 1. Suppose L(S) = L(S ′). We show that S ′ passes T(TS). To this

end, we have to show for any concrete input test case τI ∈ T(TS) and any

output sequence τO ∈ outk(S ′, τI), τI/τO ∈ L(S). To see this, we note

that τO ∈ outk(S ′, τI) implies τI/τO ∈ L(S ′). Combined with assumption

L(S) = L(S ′), this yields τI/τO ∈ L(S). Therefore, Condition 1 of the pass

relation for concrete input test cases (De�nition 4) is ful�lled.

Regarding Condition 2 of De�nition 4, we have to show that for any

α ∈ Ls(S) with τI/τO |= α, there exists at least one output sequence τ ′O ∈
outk(S ′, τI) satisfying τI/τ ′O |= α. This is true because from Theorem 4 we
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know that L(S) = L(S ′) implies Ls(S) = Ls(S ′), so α ∈ Ls(S ′). Now the

complete testing assumption implies the existence of some τ ′O ∈ outk(S ′, τI)
such that τI/τ

′
O |= α.

Since both conditions speci�ed in De�nition 4 are ful�lled, S ′ passes
T(TS).

Step 2. Suppose S ′ passes T(TS). Then S ′ passes TS by Corollary 2.

Since TS is a complete test suite, we have Ls(S) = Ls(S ′). Consequently,

L(S) = L(S ′) holds true. �

Proof of Theorem 6. Let TSI be a complete symbolic input test suite for

proving the equivalence of symbolic languages Ls(S) and Ls(S ′) According
to De�nition 5, this means that TS = {α | α|ΣI ∈ TSI} is a complete symbolic

test suite for proving the equivalence of symbolic languages Ls(S) and Ls(S ′)
with T(TS) = T(TSI). By Theorem 5 follows that T(TSI) is a complete

concrete input test suite for proving the equivalence of L(S) and L(S ′). �

Proof of Theorem 7. Suppose that the implementation's true behaviour

is represented by an SFSM S ′ ∈ F(ΣI, ΣO, Σ,m).

Since Algorithm 2 uses a complete test generation method for creat-

ing FSM test suite TSFSM, this test suite is complete for proving equiva-

lence of Ls(S ′) and Ls(S), because these are also the languages of the FSM

abstractions of S ′ and S, respectively. Now Theorem 5 implies that test

suite TS = T(TSFSM) returned by the algorithm is complete for proving

L(S ′) = L(S). �
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