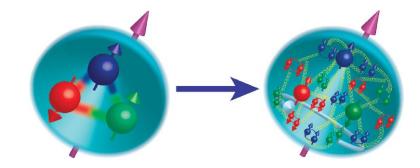
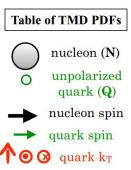
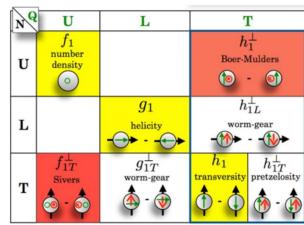


Transverse Single-Spin Asymmetries of Heavy Flavor Electrons in 200 GeV p^+p Collisions at Midrapidity from PHENIX

Dillon Fitzgerald for the PHENIX Collaboration May 3, 2022



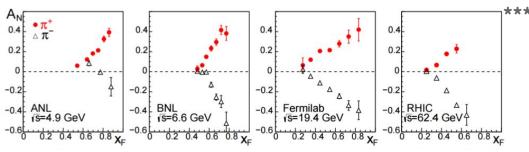

Spin Physics and Proton Structure



Our understanding of proton structure in terms of constituent quarks and gluons has evolved greatly in the past few decades

- We know that valence quarks do not carry all of the proton spin...
 - How is the spin of quarks and gluons correlated with proton spin?
 - How is the orbital motion of quarks and gluons correlated with proton spin?




Transverse Single Spin Asymmetries (TSSAs)

RIGHT

- p[↑] + p initial state
- Measure particle production on either side of the polarized proton-going direction (measure azimuthal asymmetry)
- Perturbative QCD predicted to contribute negligibly to TSSAs in the past (<1%)*
 - Recent calculations suggest possible contributions at 2 loops (<u>PRD100</u>, 094027)
- Large TSSA measurements imply nonperturbative spin-momentum and spin-spin correlations within proton

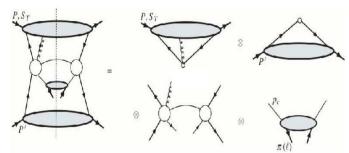
 $x_F = 2p_Z/\sqrt{s}$

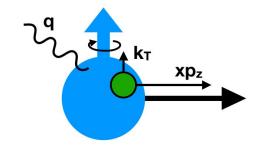
Transverse Single Spin Asymmetries (TSSAs)

Theoretical frameworks for describing measured TSSAs

Higher Twist Effects

- Collinear, so only need one hard scale (Q)
 - Access via p₊ of measured particle
- Need higher twist (i.e. twist 3) to describe observed TSSAs
 - **Higher Twist:** Power suppressed terms in factorization expansion by $(1/Q)^{n-2}$
 - Twist 3 suppressed by 1/Q

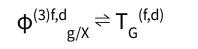

Transverse Momentum Dependent Functions (TMDs)


- Explicit dependence on transverse momentum of partons within the proton
- Need access to both a hard and soft scale with sufficient scale separation (i.e. Q and k_{τ} with Q >> k_{τ})

Unification of two frameworks has been demonstrated

$$T_{q,F}(x,x) = \frac{1}{M_p} \int d^2\vec{k}_\perp \vec{k}_\perp^2 q_T(x,k_\perp)^*$$
 Twist 3 correlator (qgq) Sivers TMD PDF

Quantum interference between 2 → 2 process and itself with extra gluon with similar x

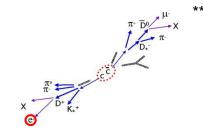


Twist 3 Correlators

- Terms with A, B in subscript → initial state effects
- Terms with C in subscript → final state effects
- Terms with (3) in superscript → twist 3 correlators

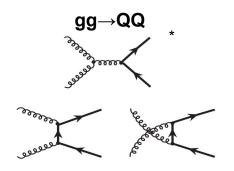
$$A_{N} \propto \sum_{abc} \phi_{a/A}^{(3)}(x_{1}, x_{2}, \vec{s}_{\perp}) \otimes \phi_{b/B}(x') \otimes \hat{\sigma} \otimes D_{c \to C}(z) +$$

$$\sum_{abc} \delta q_{a/A}(x, \vec{s}_{\perp}) \otimes \phi_{b/B}^{(3)}(x'_{1}, x'_{2}) \otimes \hat{\sigma}' \otimes D_{c \to C}(z) +$$

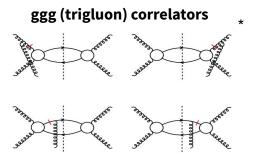

$$\sum_{abc} \delta q_{a/A}(x, \vec{s}_{\perp}) \otimes \phi_{b/B}(x') \otimes \hat{\sigma}'' \otimes D_{c \to C}^{(3)}(z_{1}, z_{2}).$$

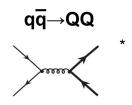
Measuring A_N for different final state particles gives access to specific terms in the sum

Heavy flavor electron production dominated by gg fusion @ 200 GeV midrapidity; gluon transversity distributions = 0 \rightarrow access to trigluon correlator $\phi^{(3)}_{g/X}$

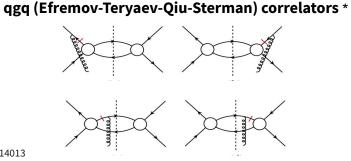


Open Heavy Flavor Production





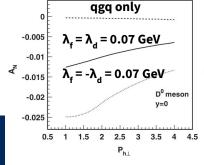
Open charm production is dominant contribution

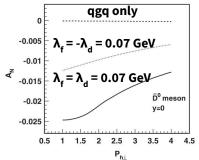


Dominant contribution @ 200 GeV midrapidity! ggg correlator not well constrained from previous measurements

Small contribution @ 200 GeV midrapidity! qgq correlator somewhat constrained from previous measurements

*Kang, Qiu, Vogelsang, Yuan, PRD78, 114013


Open Charm TSSA Model Predictions



PRD78, 114013 (Z. Kang, J. Qiu, W. Vogelsang, F. Yuan)

- Contributions from twist-3 qgq correlators as well as antisymmetric and symmetric ggg correlators considered
- Authors provided TSSA calculations for $A_N^{D0}(p_T)$, and $A_N^{D0}(p_T)$
- Trigluon (ggg) correlators written as T_G^(f)(x₁,x₂)
 (antisymmetric) and T_G^(d)(x₁,x₂) (symmetric)
 - Model calculations rely on normalizing to the unpolarized gluon PDF

$$T_G^{(f)}(x,x) = \lambda_f G(x), \qquad T_G^{(d)}(x,x) = \lambda_d G(x)$$

PRD84, **014026** (Y. Koike, S. Yoshida)

- Contributions from twist-3 antisymmetric and symmetric ggg correlators considered
- Authors provided TSSA calculations for $A_N^{D0}(p_T)$, $A_N^{D+}(p_T)$, $A_N^{D0}(p_T)$, and $A_N^{D-}(p_T)$
- Trigluon (ggg) correlators written as N(x₁,x₂) (antisymmetric)
 and O(x₁,x₂) (symmetric)
 - 4 independent contributions from these functions: $\{N(x,x), N(x,0), O(x,x), O(x,0)\}$
 - o In \sqrt{s} = 200 GeV p[↑]+p collisions, m_c is negligible, and TSSAs depend on effective trigluon correlators N(x,x) N(x,0) and O(x,x) + O(x,0)
 - Model calculations rely on normalizing to the unpolarized gluon PDF

$$O(x,x) = O(x,0) = N(x,x) = -N(x,0)$$
 [Model1]
$$O(x,x) = K_G x G(x)$$
 [Model2]
$$O(x,x) = K_G' \sqrt{x} G(x)$$

Open Charm TSSA Model Predictions

PRD78, 114013 (Z. Kang, J. Qiu, W. Vogelsang, F. Yuan)

PRD84, 014026 (Y. Koike, S. Yoshida)

$$T_G^{(f)}(x,x) = \lambda_f G(x), \qquad T_G^{(d)}(x)$$

$$T_G^{(d)}(x,x) = \lambda_d G(x)$$

$$T_G^{(d)}(x,x) = \lambda_d G(x)$$

$$[Model1] \quad O(x,x) = O(x,0) = N(x,x) = -N(x,0)$$

$$[Model2] \quad O(x,x) = K_G x G(x)$$

$$[Model2] \quad O(x,x) = K_G' \sqrt{x} G(x)$$

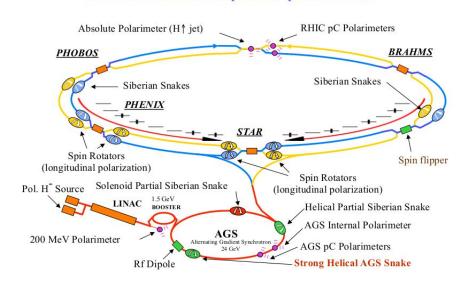
Effective trigluon correlators N(x,x) - N(x,0)and O(x,x) + O(x,0) are explicitly related to $T_{G}^{(f,d)}(x,x) = T_{G}^{(+,-)}(x,x)$ in PRD82, 054005

$$\frac{xg}{2\pi}T_G^{(+)}(x,x) = -4M_N \left(N(x,x) - N(x,0)\right)$$

$$\frac{xg}{2\pi}T_G^{(-)}(x,x) = -4M_N \left(O(x,x) + O(x,0)\right)$$

The results presented here and in <u>arXiv:2204.12899</u> [PHENIX] (submitted to PRL) explicitly constrain parameters (λ_i , λ_d) from PRD78, 114013 as well as K_G and K_G' from PRD84, 014026

Spin Physics at RHIC

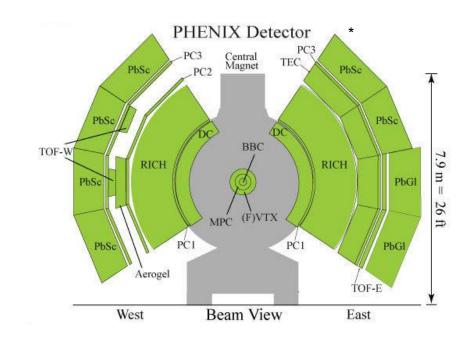

Extremely versatile collider!

- World's first polarized p+p collider
 - As well as p⁺+He, p⁺+Al, p⁺+Au
- Capable of running with various collision energies and collision species
- Home to general purpose detectors (s)PHENIX and STAR

Collisions with polarized proton beams allow for a vast spin physics program

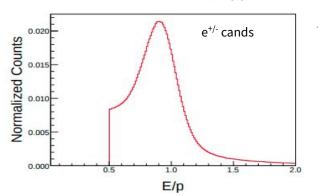
 A richer substructure of the nucleon can be studied when polarization is taken into account

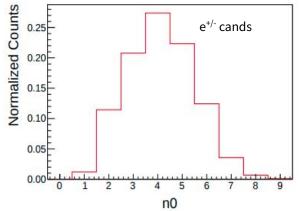
RHIC is the world's first polarized proton collider



Midrapidity Charged Particle Detection at PHENIX PH **ENIX

- **Acceptance:** $\Delta \phi = 0.5\pi$ per arm, $|\eta| < 0.35$
- Tracks are fitted with hit information from the drift. chamber (DC), pad chambers (PCs), and VTX
- RICH used for PID
 - Cherenkov threshold of $\gamma = 35$, corresponding to p =20 MeV/c for electrons and 4.9 GeV/c for charged pions
- EMCal measures energy deposits
 - Triggers used to select electrons and charged pions
- Hit pattern measured by the VTX
 - Require hit in inner two layers of VTX to veto photonic electron conversions




Analysis Procedure 1

e^{+/-} identification at PHENIX

- $|(E/p \langle E/p \rangle)/\sigma_{E/p}| < 2 (\langle E/p \rangle \sim 1)$
- Track matching to EMCal energy deposits and RICH shower ring center
- >1 photomultiplier firing in RICH -- p_e > 20 MeV/c
- EM shower shape probability > 0.01
- Hit requirement in inner 2 layers of VTX
- Conversion veto cut on opening angle of nearby e^{+/-} candidates

Analysis Procedure 2

TSSA Observable

A_N is calculated using the Relative Luminosity formula, integrating over the ϕ ranges of the east and west arms

$$A_N = rac{1}{\langle |\cos\phi|
angle} rac{1}{P} rac{N_L^{\uparrow} - R \cdot N_L^{\downarrow}}{N_L^{\uparrow} + R \cdot N_L^{\downarrow}} \; ext{where} \; R = rac{\mathcal{L}^{\uparrow}}{\mathcal{L}^{\downarrow}}$$

Background Sources (Heavy Flavor e^{+/-})

- Photonic: π^0 , η , γ
 - Asymmetries measured to be $0 \rightarrow$ treated as dilution
 - π^0 and η (PRD 103, 052009)
 - γ (PRL 127, 162001)
- Nonphotonic: J/ψ, Ke3
 - Ke3 is a negligible fraction
 - $J/\psi A_N$ taken from PRD 82, 112008
 - Large source of statistical uncertainty
- Hadron contamination: h^{+/-}
 - $h^{+/-}A_{N}$ taken from **PRL 95, 202001**

Cross checks and systematic studies (Heavy Flavor e^{+/-})

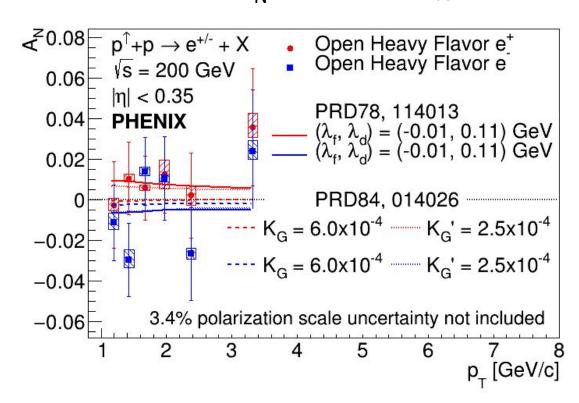
- Square Root formula
 - \circ $A_{N}^{sqrt} A_{N}^{Lumi}$ taken as systematic
- cosφ modulation fit

modulation fit
$$A_N \cdot \cos \phi_S = \frac{1}{P} \frac{N^{\uparrow}(\phi_S) - R \cdot N^{\downarrow}(\phi_S)}{N^{\uparrow}(\phi_S) + R \cdot N^{\downarrow}(\phi_S)}$$

- Bunch shuffling
 - Randomize polarization direction, measure A_{N}/σ_{AN}
- Propagation of systematics on background fractions through background correction formula

$$A_N^{OHF \to e} = \frac{A_N^e - f_{h^{\pm}} A_N^{h^{\pm}} - f_{J/\psi \to e} A_N^{J/\psi \to e}}{1 - f_{h^{\pm}} - f_{J/\psi \to e} - f_{\pi^0 \to e} - f_{\eta \to e} - f_{\gamma \to e}}$$

$$\sigma_{A_N^{OHF \to e}} = \frac{\sqrt{(\sigma_{A_N^e})^2 + (f_{h^{\pm}} \sigma_{A_N^{h^{\pm}}})^2 + (f_{J/\psi \to e} \sigma_{A_N^{J/\psi \to e}})^2}}{1 - f_{h^{\pm}} - f_{J/\psi \to e} - f_{\pi^0 \to e} - f_{\eta \to e} - f_{\gamma \to e}}$$

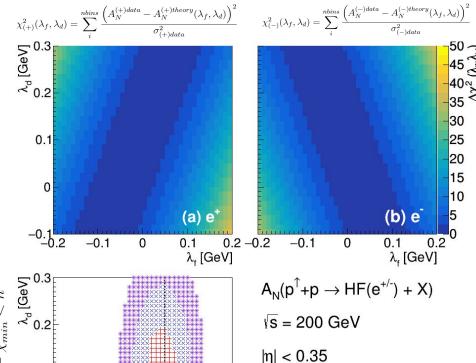


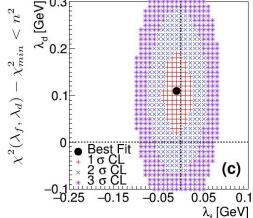
Open Heavy Flavor Electron and Positron A_N

arXiv:2204.12899 (Submitted to PRL)

- Most statistically precise measurement for midrapdity A_N(p[↑]+p → (OHF → e[±]) +X)
- Plotted alongside theoretical predictions from PRD78, 114013 (Z. Kang, J. Qiu, W. Vogelsang, F. Yuan) and PRD84, 014026 (Y. Koike, S. Yoshida) for parameters λ_f, λ_d, K_G, and K_C' that best fit the data
 - o In models with (λ_f, λ_d) , and K_G ' the best-fit parameters yield predictions for A_N with opposite signs for the separate charges
- Data is consistent with theoretical predictions for best-fit parameters and with zero across the measured p_⊤ range

Results from (λ_f, λ_d) Scan


arXiv:2204.12899 (Submitted to PRL)


- $-0.2 \text{ GeV} < \lambda_f < 0.2 \text{ GeV}$
- $-0.1 \text{ GeV} < \lambda_d < 0.3 \text{ GeV}$
- 41 steps per parameter
- Calculate A_{N} for D^{0} and \bar{D}^{0}
- Simulate $D^0 \rightarrow e^+$ and $\bar{D}^0 \rightarrow e^-$ decay with PYTHIA6
- Calculate $A_N^{D0\to e^+}$ and $A_N^{\bar{D0}\to e^-}$
- Calculate $\Delta \chi^2_{(+,-)}(\lambda_f, \lambda_d) = \chi^2_{(+,-)}(\lambda_f, \lambda_d) \chi^2_{(+,-)mir}$

$$A_N^{D^0} = a_0 + \lambda_f a_1 + \lambda_d a_2 A_N^{\bar{D}^0} = b_0 + \lambda_f a_1 - \lambda_d a_2$$

a₀, b₀, a₁, a₂ parameterizations provided by Z.B. Kang, J.W. Qiu, W. Vogelsang, F. Yuan (PRD78, 114013)

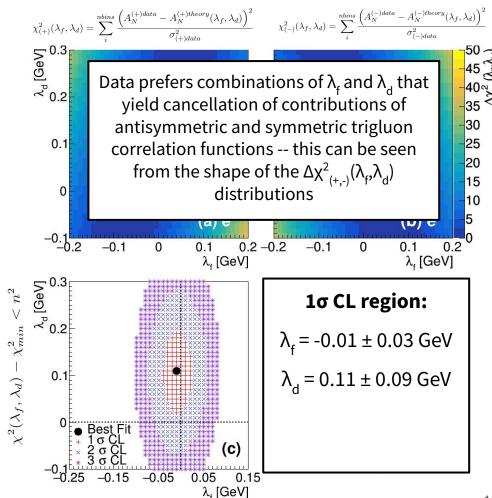
- a₀ and b₀ are contributions from qgq correlators
- a₁ and a₂ are contributions from trigluon correlators

PHENIX

Theory: PRD78, 114013

$$A_N^{D^0/\overline{D}^0} \to e^{+/-}(\lambda_f, \lambda_d)$$

Results from (λ_f, λ_d) Scan


arXiv:2204.12899 (Submitted to PRL)

- $-0.2 \text{ GeV} < \lambda_f < 0.2 \text{ GeV}$
- $-0.1 \text{ GeV} < \lambda_d < 0.3 \text{ GeV}$
- 41 steps per parameter
- Calculate A_N for D^0 and \bar{D}^0
- Simulate $D^0 \rightarrow e^+$ and $\bar{D}^0 \rightarrow e^-$ decay with PYTHIA6
- Calculate $A_N^{D0\to e^+}$ and $A_N^{\bar{D0}\to e^-}$
- Calculate $\Delta \chi^2_{(+,-)}(\lambda_f, \lambda_d) = \chi^2_{(+,-)}(\lambda_f, \lambda_d) \chi^2_{(+,-)mir}$

$$A_N^{D^0} = a_0 + \lambda_f a_1 + \lambda_d a_2$$

 $A_N^{\bar{D}^0} = b_0 + \lambda_f a_1 - \lambda_d a_2$

a₀, b₀, a₁, a₂ parameterizations provided by Z.B. Kang, J.W. Qiu, W. Vogelsang, F. Yuan (PRD78, 114013)

- a₀ and b₀ are contributions from qgq correlators
- a₁ and a₂ are contributions from trigluon correlators

Results from K_G and K_G' Scans

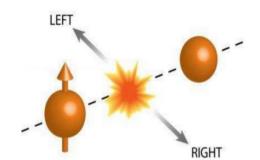
arXiv:2204.12899 (Submitted to PRL)

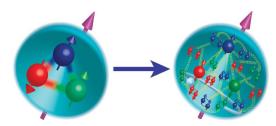
- \bullet -0.005 < K_G < 0.005
- $-0.00025 < K_G' < 0.00075$
- 101 steps per parameter
- Simulate $D^0 \rightarrow e^+$, $D^+ \rightarrow e^+$, $\bar{D}^0 \rightarrow e^-$, and $D^- \rightarrow e^-$ decay with PYTHIA6
- Calculate $A_N^{D0 \rightarrow e+}$, $A_N^{D+ \rightarrow e+}$, $A_N^{D0 \rightarrow e-}$, and $A_N^{D- \rightarrow e-}$
- Calculate $\Delta \chi^2_{(+,-)}(K_G) = \chi^2_{(+,-)}(K_G) \chi^2_{(+,-)min}$ and $\Delta \chi^2_{(+,-)}(K_G') = \chi^2_{(+,-)}(K_G') \chi^2_{(+,-)min}$

1σ Confidence Intervals:

$$K_G = 6.0 \times 10^{-4} (+0.0014 - 0.0017)$$

$$K_G' = 2.5 \times 10^{-4} (\pm 0.00025)$$


Consistent with modest upper bound on K_G and K_G' derived in PRD84, 014026

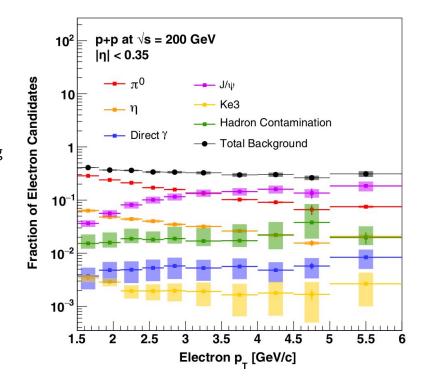


Summary

PH**ENIX**

- Transverse single spin asymmetries of electrons and positrons from heavy flavor decays provide access to nonperturbative spin-momentum correlations for gluons within the proton
 - \circ Twist 3 correlators require only a single hard scale, for which the measured particle's p_{τ} is taken as a proxy
- Most precise measurement of open heavy flavor e[±] A_N (arXiv:2204.12899;
 Submitted to PRL)
 - o p^+ + p, \sqrt{s} = 200 GeV, $|\eta|$ < 0.35
 - Consistent with zero in measured range
 - Compared with theoretical predictions from <u>PRD78, 114013</u> and <u>PRD84, 014026</u>
 - Data gives significant constraints to normalization parameters (λ_f, λ_d) , K_G , and K_G ' of trigluon correlators to the unpolarized gluon PDF
- Other results in preparation
 - Forward heavy flavor muon $A_{N}(p^{+} + p)$
 - Forward charged hadron A_N (p[↑] + p, p[↑] + Al, p[↑] + Au)

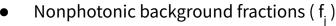
BACKUP



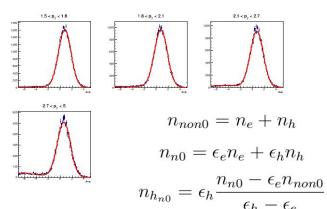
Heavy Flavor e^{+/-} Background Fractions

- Largest contribution from photonic electron background sources $(\pi^0 + \eta + \gamma)$ at $p_{\tau} < 3$ GeV/c
 - Asymmetries for these sources well constrained to be zero at 200 GeV midrapidity PRD 103, 052009, arXiv:2102.13585
- Largest contribution from J/ψ at $p_T > 3$ GeV/c
 - \circ σ_{AN} affected significantly in this region due to $A_N^{J/\psi}$ suffering from large statistical uncertainty **PRD 82, 112008**
- Ke3 is a negligible contribution -- not considered in background correction
- Hadron contamination is a consistently small contribution
 - o Increase in 4.5-5.0 GeV/c bin shown here due to $\pi^{+/-}$ RICH threshold of 4.9 GeV/c
 - Input asymmetries from PRL 95, 202001

Heavy Flavor e^{+/-} Background Fractions


Hadron contamination

- Fit e^{+/-} candidate E/p spectrum with Gaussian + template extracted from hadrons in data with free normalization parameter
- Calculate algebraically using RICH n0 selection requirements
- Average value from two methods, values taken as upper and lower systematics

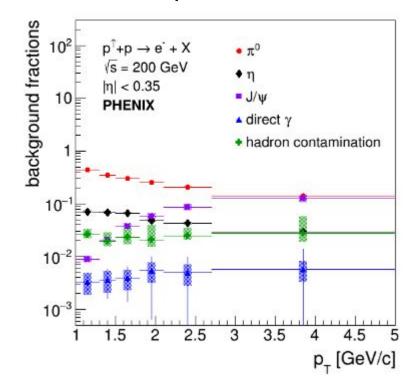


Calculate fraction of nonphotonic electrons using conversion veto cut (~ means with conversion veto) -- use to calculate photonic background fractions

$$F_{np} = \frac{\tilde{n}_{np}}{\tilde{n}_{np} + \tilde{n}_p} = \frac{n_{np}}{n_{np} + \epsilon_p n_p} = \frac{\epsilon_{uc} \epsilon_p n_e - \tilde{n}_e - \epsilon_{uc} \epsilon_p n_{hc} + \tilde{n}_{hc}}{(\epsilon_p - 1)(\tilde{n}_e - \tilde{n}_{hc})} \qquad f_i = (1 - \tilde{f}_{hc})(1 - F_{np}) \frac{n_i}{\tilde{n}_{\pi^0} + \tilde{n}_{\eta} + \tilde{n}_{\gamma}}$$

Signal open heavy flavor e^{+/-} is nonphotonic, so calculate nonphotonic background fractions w.r.t. π^0 fraction


$$f_i = (1 - \tilde{f}_{hc})(1 - F_{np}) \frac{\tilde{n}_i}{\tilde{n}_{\pi^0} + \tilde{n}_{\eta} + \tilde{n}_{\gamma}}$$


$$f_j = f_{\pi^0} \frac{\tilde{n}_j}{\tilde{n}_{\pi^0}}$$

Heavy Flavor e^{+/-} Background Fractions

arXiv:2204.12899 (submitted to PRL)

