
International Journal of Engineering and Techniques - Volume 8 Issue 5, October 2022

Net Helplessness Detection: The Case of Cross-

Site Request Forgery

D.Shine Rajesh

Professor
Department of Information Technology

Malla Reddy Engineering College for Women

(UGC-Autonomous)

Maisammaguda, Hyd-500100, Telangana, India.

Shravani Puppala .

. .Student

Department of Information Technology

Malla Reddy Engineering College for Women

(UGC-Autonomous)

Maisammaguda, Hyd-500100, Telangana, India.

Vanga Keerthi Sree

Student

Department of Information Technology
Malla Reddy Engineering College for Women

(UGC-Autonomous)

Maisammaguda, Hyd-500100, Telangana, India.

Vadathya Sravani
Student

Department of Information Technology

Malla Reddy Engineering College for Women

(UGC-Autonomous)

Maisammaguda, Hyd-500100, Telangana, India.

Abstract— In this project, we propose a methodology to

leverage Machine Learning (ML) for the detection of web

application vulnerabilities. Web applications are particularly

challenging to analyses, due to their diversity and the

widespread adoption of custom programming practices. ML is

thus very helpful for web application security: it can take

advantage of manually labeled data to bring the human

understanding of the web application semantics into automated

analysis tools. We use our methodology in the design of Mitch,

the first ML solution for the black-box detection of Cross-Site
Request Forgery (CSRF) vulnerabilities. Mitch allowed us to

identify 35 new CSRFs on 20 major websites and 3 new CSRFs

on production software.

INTRODUCTION

Web applications are the most common interface to security
sensitive data and functionality available nowadays. They are

routinely used to file tax incomes, access the results of

medical screenings, perform financial transactions, and share

opinions with our circle of friends, just to mention a few

popular use cases. On the downside, this means that web

applications are appealing targets to malicious users

(attackers) who are determined to force economic losses,

unduly access confidential data or create embarrassment to

their victims. Securing web applications is well known to be

hard.

There are several reasons for this, ranging from the

heterogeneity and complexity of the web platform to the

adoption of undisciplined scripting languages offering dubious

security guarantees and not amenable for static analysis. In such

a setting, black-box vulnerability detection methods are

particularly popular. As opposed to white-box techniques which

require access to the web application source code, black-box

methods operate at the level of HTTP traffic, i.e., HTTP requests

and responses. Though this limited perspective might miss

important insights, it has the key advantage of offering a
language-agnostic vulnerability detection approach, which

abstracts from the complexity of scripting languages and offers

a uniform interface to the widest possible range of web

applications. This sounds appealing, yet previous work showed

that such an analysis is far from trivial. One of the main

challenges there is how to expose to automated tools a critical

ingredient of effective vulnerability detection, i.e., an

understanding of the web application semantics. Example:

Cross-Site Request Forgery (CSRF) Cross-Site Request Forgery

(CSRF) is a well-known web attack that forces a user into

submitting unwanted, attacker controlled HTTP requests
towards a vulnerable web application in which she is currently

authenticated. The key concept of CSRF is that the malicious

requests are routed to the web application through the user’s

browser, hence they might be indistinguishable from intended

benign requests which were actually authorized by the user.

A typical CSRF attack works as follows:

1) Alice logs into an honest yet vulnerable web application, e.g.,
her preferred social network. Session authentication is

implemented through a session cookie that is automatically

attached by the browser to any subsequent request towards the

web application;

2) Alice opens another tab and visits an unrelated website, e.g.,

a newspaper website, which returns a web page including

malicious advertisement;

 ISSN: 2395-1303 http://www.ijetjournal.org

http://www.ijetjournal.org/

ISSN: 2395-1303 http://www.ijetjournal.org

International Journal of Engineering and Techniques - Volume 8 Issue 5, October 2022

3) The malicious advertisement sends a cross-site request to the

social network using HTML or JavaScript, e.g., asking to “like”

a given political party.

Since the request includes Alice’s cookies, it is processed in her

authentication context at the social network. This way, the

malicious advertisement can force Alice into putting a “like” to

the desired political party, which might skew the result of

online surveys.

Notice that CSRF does not require the attacker to intercept or

modify user’s requests and responses: it suffices that the

Preventing CSRF

To prevent CSRF, web developers have to implement explicit
protection mechanisms. If adding extra user interaction does

not affect usability too much, it is possible to force re-

authentication or use one-time passwords / CAPTCHAs to

prevent cross-site requests going through unnoticed. In many

cases, however, automated prevention is preferred: the

recently introduced SameSite cookie attribute can be used to

prevent cookie attachment on cross-site requests, which

solves the root cause of CSRF and is highly recommended for

new web applications. Unfortunately, this defense is not yet

widespread and existing web applications typically filter out

cross-site request by using any of the following techniques:
1) checking the value of standard HTTP request headers such

as Referrer and Origin, indicating the page originating the

request;

2) checking the presence of custom HTTP request headers like

X-Requested-With, which cannot be set from a cross-site

position;

3) checking the presence of unpredictable anti-CSRF tokens,set
by the server into sensitive forms.

A recent paper discusses the pros and cons of these different

solutions. However, all three options suffer from the same

limitation: they require a careful and fine-grained placement of

security checks. For example, tokens should be attached to all

and only the security-sensitive HTTP requests, so as to ensure

complete protection without harming the user experience.

Using a token to protect a “like” button is useful to prevent the
attack discussed above, yet having a token on the social

network homepage is undesirable, because it might lead to

rejecting legitimate cross-site requests, e.g., from clicks on the

results of a search engine indexing the social network. In the

end, finding the “optimal” placement of anti-CSRF defenses is

typically a daunting task for web developers. Modern web

application development frameworks provide

Automated support for this, yet CSRF vulnerabilities are still

routinely found even in top-ranked websites. This motivates the

need for effective CSRF detection tools. But how can we

provide automated tool support for CSRF detection if we have

no mechanized way to detect which HTTP requests are actually
security-sensitive.are passed - No splits.

This work presents the most current and comprehensive

understanding of a not very well understood web vulnerability

known as the CSRF (Cross-Site Request Forgery) and provides
specific solutions to identify and defend CSRF vulnerabilities.

The immediate benefits of this work include tangible and

pragmatic application framework for use by individuals,

organizations and developers, either as consumers or providers

of web services. This work responds directly to the challenges

of keeping pace with the evolving cyber technologies and

vulnerabilities that increasingly expose businesses towards

privacy and identity theft specific attacks, where the traditional

anti-virus and anti-spyware approaches fail. The urgency to

come up with appropriate detection and defensemechanism

against the lethal CSRF attacks is indicated due to expanding

cloud based technologies, HTML5, Semantic Web, and various

emerging security frameworks comprised of inchoate vestigial

of “Big Data” that demand exceedingly evolved defense

mechanisms. A methodical approach is used to investigate

CSRF attacks and remedies are proposed by introducing a novel

distinctive set of algorithms that use intelligent assumptions to

detect and defend CSRF. In this work, design details of a CSRF

Detection Model (CDM), implantation and experimentation
results of CDM are elaborated to detect, predict and provide

solutions for CSRF attacks on contemporary Web Applications

and Web Services environment. Additionally, CDM based

recommendations for users and providers of cyber security

products and services are presented. Cross-Site Request Forgery

(CSRF) attack causes actions on a web application without the

knowledge of the user in an authenticated browser session.

CSRF attacks specifically target state-changing requests like

transferring funds, changing email address, and so forth. If the

victim is an administrative account, CSRF can compromise the

entire web application. CSRF, also known as the Sleeping Giant,
was considered to be one of the top 5 web vulnerabilities only 4

years ago. Even so, at least 270 incidents of CSRF attacks have

been reported as of 2016. Not much has improved in terms of

new CSRF solutions since the CSRF problem appeared in the

horizon in 2010. Cross-Site Reference Forgery (CSRF) and

Cross-Site Scripting (XSS) vulnerabilities have received much

attention recently. An XSS attack, one of the top 3 current cyber

security challenges, occurs when an attacker injects malicious

code (typically JavaScript), including a CSRF attack code, into

a site for the purpose of targeting users of the site, e.g., sites that

allow posting comments. According to the Open Web
Application Security Project (OWASP), an open web

community dedicated to address cyber security challenges,

CSRF is one of the top eight cyber security vulnerabilities in the

world, today. While CSRF attacks are simple to create and

exploit, amazingly, they are difficult to identify and mitigate.

A search for “Cross Site Scripting” (which differs from CSRF)

on the ACM Digital Library returned 117 papers, while a search

for “CSRF” returned only four papers. A search for “XSS” on
Safari Books Online (a collection of over 5000 books on

technology) showed the term appeared in 96 books, while

“CSRF OR XSRF” appeared in only 13 books. Very few CSRF

solutions are developed and implemented. Even so, while

current solutions still lack common applicability all the pieces

for large scale massive CSRF attacks are already in place [53].

This state of the current relentless CSRF attacks and meager

defenses dynamics is the primary motivation for undertaking

this study.

EXISTING SYSTEM

In the existing system Securing web applications is well known

to be hard. There are several reasons for this, ranging from the

heterogeneity and complexity of the web platform to the

adoption of undisciplined scripting languages offering dubious

security guarantees and not amenable for static analysis. Though

this limited perspective might miss important insights, it has the
key advantage of offering a language-agnostic vulnerability

detection approach, which abstracts from the complexity of

scripting languages and offers a uniform interface to the widest

possible range of web applications.

http://www.ijetjournal.org/

ISSN: 2395-1303 http://www.ijetjournal.org

International Journal of Engineering and Techniques - Volume 8 Issue 5, October 2022

 Disadvantages - In white-box techniques which

require access to the web application source code.

 Black-box methods operate at the level of HTTP

traffic, i.e., HTTP requests and responses.

 Algorithm: Burp and ZAP tools

PROPOSED SYSTEM

Cross-Site Request Forgery (CSRF) is a well-known web

attack that forces a user into submitting unwanted, attacker

controlled HTTP requests towards a vulnerable web application

in which she is currently authenticated. The key concept of

CSRF is that the malicious requests are routed to the web

application through the user’s browser, hence they might be

indistinguishable from intended benign requests which were

actually authorized by the user. The CSRF does not require the

attacker to intercept or modify user’s requests and responses: it

suffices that the victim visits the attacker’s website, from which
the attack is launched. Thus, CSRF vulnerabilities are

exploitable by any malicious website on the Web.

 Advantages – The value of standard HTTP request

headers such as Referrer and Origin, indicating the

page originating the request.

 The presence of custom HTTP request headers like
X-Requested-With, which cannot be set from a

cross-site position.

 The presence of unpredictable anti-CSRF tokens, set

by the server into sensitive forms.

 Algorithm: RandomForestClassifier

SYSTEM ENVIRONMENT

PYTHON

Python is a general-purpose interpreted, interactive, object-

oriented, and high-level programming language. An interpreted

language, Python has a design philosophy that emphasizes

code readability (notably using whitespace indentation to

delimit code blocks rather than curly brackets or keywords),

and a syntax that allows programmers to express concepts in

fewer lines of code than might be used in languages such

as C++or Java. It provides constructs that enable clear
programming on both small and large scales. Python

interpreters are available for many operating

systems. CPython, the reference implementation of Python,

is open source software and has a community-based

development model, as do nearly all of its variant

implementations. CPython is managed by the non-

profit Python Software Foundation. Python features a dynamic

type system and automatic memory management. It supports

multiple programming paradigms, including object-

oriented, imperative, functional and procedural, and has a large

and comprehensive standard library.

CONCLUSION-

Web applications are particularly challenging to analyse, due to

their diversity and the widespread adoption of custom
programming practices. ML is thus very helpful in the web

setting, because it can take advantage of manually labeled data

to expose the human understanding of the web application

semantics to automated analysis tools. We validated this claim

by designing Mitch, the first ML solution for the blackbox

detection of CSRF vulnerabilities, and by experimentally

assessing its effectiveness. We hope other researchers might

take advantage of our methodology for the detection of other

classes of web application vulnerabilities.

REFERENCES

[1] Stefano Calzavara, Riccardo Focardi, Marco Squarcina,

and Mauro Tempesta. Surviving the web: A journey into web

session security. ACM Comput. Surv., 50(1):13:1–13:34,

2017

[2] Avinash Sudhodanan, Roberto Carbone, Luca Compagna,

Nicolas Dolgin, Alessandro Armando, and Umberto Morelli.

Large-scale analysis & detection of authentication cross-site

request forgeries. In 2017 IEEE European Symposium on

Security and Privacy, EuroS&P 2017, Paris, France, April 26-

28, 2017, pages 350–365, 2017.

[3] Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo, and

Michele Bugliesi. Testing for integrity flaws in web sessions.

In Computer Security - 24rd European Symposium on

Research in Computer Security, ESORICS 2019,

Luxembourg, Luxembourg, September 23-27, 2019, pages

606–624, 2019.

[4] OWASP. OWASP Testing Guide.
https://www.owasp.org/index.php/ OWASP Testing Guide v4

Table of Contents, 2016.

[5] Jason Bau, Elie Bursztein, Divij Gupta, and John C.

Mitchell. State of the art: Automated black-box web

application vulnerability testing. In 31st IEEE Symposium on

Security and Privacy, S&P 2010, 16-19 May 2010,

Berkeley/Oakland, California, USA, pages 332–345, 2010.

[6] Adam Doupe, Marco Cova, and Giovanni Vigna. Why

johnny can’t ´ pentest: An analysis of black-box web

vulnerability scanners. In Detection of Intrusions and

Malware, and Vulnerability Assessment, 7th International

Conference, DIMVA 2010, Bonn, Germany, July 8-9, 2010.

Proceedings, pages 111–131, 2010.

[7] Adam Barth, Collin Jackson, and John C. Mitchell.

Robust defenses for cross-site request forgery. In Proceedings

of the 2008 ACM Conference on Computer and

Communications Security, CCS 2008, Alexandria,

Virginia, USA, October 27-31, 2008, pages 75–88, 2008.

[8] Mehryar Mohri, Afshin Rostamizadeh, and Ameet
Talwalkar. Foundations of Machine Learning. The MIT Press,

2012.

[9] Michael W. Kattan, Dennis A. Adams, and Michael S.

Parks. A comparison of machine learning with human

judgment. Journal of Management Information Systems,

9(4):37–57, March 1993.

[10] D. A. Ferrucci. Introduction to “This is Watson”. IBM

Journal of Research and Development, 56(3):235–249, May

2012.

http://www.ijetjournal.org/
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Whitespace_character
https://en.wikipedia.org/wiki/Code_block
https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Python_Software_Foundation
https://en.wikipedia.org/wiki/Dynamic_type
https://en.wikipedia.org/wiki/Dynamic_type
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Standard_library
http://www.owasp.org/index.php/

ISSN: 2395-1303 http://www.ijetjournal.org

International Journal of Engineering and Techniques - Volume 8 Issue 5, October 2022

[11] David Silver, Aja Huang, Chris J. Maddison, Arthur

Guez, Laurent Sifre, George van den Driessche, Julian

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, Sander Dieleman, Dominik Grewe, John

Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,

Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and

Demis Hassabis. Mastering the game of Go with deep neural

networks and tree search. Nature, 529(7587):484–489, Jan
2016.

[12] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi,

and Wilayat Khan. Cookiext: Patching the browser against

session hijacking attacks. Journal of Computer Security,

23(4):509–537, 2015.

[13] Stefano Calzavara, Gabriele Tolomei, Andrea Casini,
Michele Bugliesi, and Salvatore Orlando. A supervised
learning approach to protect client authentication on the web.

TWEB, 9(3):15:1–15:30, 2015.

[14] Stefano Calzavara, Mauro Conti, Riccardo Focardi,

Alvise Rabitti, and Gabriele Tolomei. Mitch: A machine

learning approach to the blackbox detection of CSRF

vulnerabilities. In IEEE European Symposium on Security

and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19,

2019, pages 528–543, 2019.

[15] Giancarlo Pellegrino, Martin Johns, Simon Koch,

Michael Backes, and Christian Rossow. Deemon: Detecting

CSRF with dynamic analysis and property graphs. In

Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2017, Dallas,

TX, USA, October 30 - November 03, 2017, pages 1757–

1771, 2017.

Stefano Calzavara is a tenure-track assistant professor at

Universita Ca’ ` Foscari Venezia, Italy. He received a PhD in

Computer Science at Universita` Ca’ Foscari Venezia, Italy,

in 2013. His main research interests are formal methods and

web security. Contact him at calzavara@dais.unive.it.

Science at Universita Ca’ Foscari ` Venezia, Italy, in 2011. His

main research interests are machine learning and web search.

Mauro Conti is a full professor at University of Padua, Italy.

He received a PhD in Computer Science at Sapienza

University of Rome, Italy, in 2009. His main research

interestes are computer security and privacy. Contact him at

conti@math.unipd.it.

Riccardo Focardi is a full professor at Universita Ca’ Foscari

Venezia, Italy. ` He received a PhD in Computer Science at

University of Bologna, Italy, in 1999. His main research

interests are computer security and formal methods. Contact

him at focardi@unive.it.

Alvise Rabitti is a security officer at Universita Ca’ Foscari

Venezia, Italy. He ` received a bachelor degree in Computer

Science from Universita Ca’ Foscari ` Venezia, Italy, in 2013.

His main research interests are web security and privacy.

Contact him at alvise.rabitti@unive.it.

Gabriele Tolomei is an associate professor at Sapienza

University of Rome, Italy. He received a PhD in Computer

http://www.ijetjournal.org/
mailto:calzavara@dais.unive.it
mailto:conti@math.unipd.it
mailto:focardi@unive.it
mailto:alvise.rabitti@unive.it

	A typical CSRF attack works as follows:
	SYSTEM ENVIRONMENT
	CONCLUSION-
	REFERENCES

