
System Requirements
The docker image is large (10.4 GB), as is the data output by a complete run of the benchmarks (an
additional 3.1 GB), thus we recommend a computer with a decent amount of free disk space.

Note also that we have only tested the image on Linux and Mac (ARM), and that Mac runs docker
images through a VM, thus its runs will be significantly slower.

Statically Resolvable Ambiguity (Artifact)
This artifact contains everything related to the Statically Resolvable Ambiguity paper:

• The mechanized proof of statically resolvable ambiguity.
• The modified versions of the OCaml compiler.
• The library implementing our grouper.
• The benchmarking script.
• The benchmarking data used in the paper.
• The Jupyter notebook analyzing the data and producing the plots.

These are available in two forms:

• As a docker image, with all of the above and all relevant executables and dependencies built and
installed.

• As a compressed archive, only containing the source code for all of the above.

The latter is smaller and useful to just look at the code without downloading a very large docker image,
but requires setting up an appropriate environment if you wish to run anything. We thus strongly
recommend using the docker image if you wish to run any of the experiments or try out our modified
OCaml compiler.

Kick the Tires - Basic Instructions for Setup
First, make sure you have Docker installed and configured (see docs.docker.com/get-docker/ for
instructions).

Next, download the docker image and run the container:

Note that depending on how your docker installation is configured
you may need to add 'sudo' before all 'docker' commands.

This first command may take a few minutes, the image is large
docker load --input static-resolvable.tar.gz

The second command should be quick
docker run -p 8888:8888 -it --name static-resolvable-container static-resolvable

At this point you should have a shell open in the folder /root in the container. You can exit either
using Ctrl+D or exit.

When you later want to resume the container you can use:

docker start -ia static-resolvable-container

The container starts with the shell in directory /root, which contains all relevant source code, previously
produced benchmark data, and a Makefile to assist in running the various components. We suggest
these commands be run during the “kick the tires” phase:

1

make coq # Compile the coq proof, found under /root/coq,
takes approx. 7min.

make coq-check # Check that there are no 'admit's in the proofs

make ast-check # Check that 'unamb' parses the same as 'original',
takes approx. 2 minutes. Each equal parse prints
a '.', each non-equal parse prints a '!'.

make bench-small # Run a small subset of the benchmarks, takes approx. 9min.
Output is placed in /root/data/data-log-small.csv, which
will be read by a Jupyter notebook later. Progress will
be printed in the form of a '.' for a successful parse
and 'F' for a failed parse. We expect a number of parse
failures, see reasoning in the Jupyter notebook later,
under the heading 'Parse failures, totals'.

make jupyter # Open the Jupyter notebook to generate and examine plots.
Copy the link printed starting with '127.0.0.1' and open
it in your web browser; the 'docker run' command above
exposes the port outside the container. If the notebook
does not open immediately, double-click 'Analysis.ipynb'
in the file tree to the left.

The Jupyter notebook contains further instructions on how to run it and generate the plots. To close the
notebook either hit Ctrl+C in the terminal followed by y, or select File > Shut Down in the notebook
in the browser.

NOTE FOR ARTIFACT REVIEWERS: One of the changes requested by the paper reviewers
was to include benchmarks that directly compare parse-times, instead of end-to-end compile times, as
well as include a fix to a performance bug we discovered between the initial submission and the author
response. This artifact thus contains plots and data that is markedly different from the paper. We
discuss this in more detail in section “Connecting Paper Claims and the Artifact”.

Claims: Formalism and Mechanization
This section explains how the formalism presented in the paper corresponds to the mechanization.
Unless otherwise noted, all definitions are found in the file New.v.

Section 3
Section 3 introduces the syntax and semantics of the formalism. The corresponding mechanization is
mostly straightforward.

Figure 7

Syntax

Paper Coq
Op op_label : Type
π par_label : op_label
g n : node where is_grouped n

2

Paper Coq
p n : node where is_grouped_or_par n
h No exact correspondence (see below)
e n : node where is_node n
〈 � o] l o : node -> node where lopen_ctx l
[o � 〉 r o : node -> node where ropen_ctx r
−, ←, →, ↔ DNone, DL, DR, DLR : dirs

The semantics is parameterized over a type op_label (corresponding to Op) containing at least a value
par_label (corresponding to π). This type is the allowed set of labels o of nodes.

The syntax for expressions is represented as a single type node, corresponding to e extended with holes
_. We use different predicates to distinguish between the different kinds of expressions, e.g., is_node
for nodes in e and is_grouped for nodes in g. Note that there is no predicate for nodes in h; instead it
is baked into the definition of is_node.

Left and right-focused frames are represented as functions of type op_label -> node -> node whose
structure is constrained by the predicates lopen_ctx and ropen_ctx respectively to only allow producing
the kinds of nodes expected by the syntax. For example, the rule NLEdge steps r o NHole to r o g
(where ropen_ctx r), just as the rule L-Edge in the paper steps [o _ 〉 to [o g〉.

The representation of directions in dirs (in Old.v) is straightforward.

Helpers

Paper Coq
op op : node -> op_label
bind precedence : op_label -> op_label -> dirs
o1 ∈ A↙(o2) allowed_left o2 o1 : bool
o1 ∈ A↘(o2) allowed_right o2 o1 : bool
o ∈ Aroot allowed_top o : bool
groupings gallowed : op_label -> op_label -> op_label -> dirs

The semantics is parameterized over a function precedence, corresponding to the bind function, and
functions to bool allowed_left, allowed_right and allowed_top, corresponding to the sets A↙(o),
A↘(o) (for o ∈ Op) and Aroot .

A minor difference is that the mechanized op is defined for holes, which op in the paper is not. This
is not an issue as op is only ever used on nodes g (for which is_grouped hold) or p (for which
is_grouped_or_par hold), which excludes holes.

The function gallowed directly mirrors the definition of groupings.

Semantics

Paper Coq
S ` ē⇒ g GSteps (fun _ => true) allowed es \[g]
ē1 → ē2 LRStep (fun _ => true) es1 es2

The operational semantics of grouping is defined by the mutually recursive relations GSteps, corre-

3

sponding to the relation S ` ē⇒ g, and LRStep, corresponding to the relation ē1 → ē2. Both relations
are parameterized over a predicate Pre which must hold for the sequence of expressions to the left of
the expressions being grouped (used later in the definition of left-most derivations). As the rules in
Figure 7 have no such requirements, Pre can be chosen as (fun _ => true). The relation NGSteps
further takes a function of type op_label -> bool which corresponds to the set S of allowed labels in
the two top rules of Figure 7.

The helpers dir_includes_left and dir_includes_right are used to check if a direction is in the
set {←,↔} or respectively {→,↔}.

The running example

This example (found in Figures 3, 5, and 6, plus the first derivation in Section 3) is
mechanized in Example.v. We also show that the grouping assumption holds (Example
grouping_assumption_holds).

Definition 3.1

Definition 3.1 is mechanized as GroupingAssumption.

Section 4
Section 4 presents the proof of statically resolvable ambiguity, together with the necessary definitions.
Parts of the mechanized proof was done for an older version of the semantics (in the file Old.v), but by
proving equivalence of the two versions we are able to transfer the results to the semantics presented
above. We start by listing the definitions and lemmas that use the new semantics, and then move to
the old semantics.

Definitions and lemmas using the new semantics

Paper Coq
“e is fully ungrouped” is_fully_open e
⇒LM GSteps (Forall is_ropen)
→LM LRStep (Forall is_ropen)
Lemma 4.6 Theorem leftmost_to_gsteps and Theorem gsteps_to_leftmost
Theorem 4.7 Theorem static_resolvability

(note that the mechanization uses Theorem throughout, even for the propositions called "lemma" in the
paper)

The starting input to the grouping semantics is a sequence of nodes which are fully ungrouped,
corresponding to is_fully_open. The relations for left-most groupings S ` ē ⇒LM g and ē1 →LM ē2
are the same as the standard relations for grouping, with the difference that we require all expressions
to the left of the expressions being grouped to be right-focused frames with holes. In the mechanization
we reuse the GSteps and LRStep relations but set the predicate Pre as Forall is_ropen (remember
that Pre holds for the sequence of expressions to the left of the expressions being grouped).

The equivalence between left-most and regular grouping is divided into two lemmas, one for each
direction of the equivalence. The main theorem is stated in static_resolvability, which uses the
helper predicate Resolvable (defined in Resolvable.v) as explained in the paper.

Equivalence between new and old semantics

4

Paper Coq
“node” prec_node
“a node with label o has children in directions d̄” edges o = ds
translation from old to new old_to_new : prec_node -> node
translation from new to old new_to_old : node -> prec_node
well-formedness of old nodes old_wf : prec_node -> Prop
equivalence of old and new semantics Theorem steps_equiv

The nodes in the old semantics is represented by the datatype prec_node. The main difference from
node is that there is no explicit representation of holes. Instead, the old semantics is parameterized
by a function edges : op_label -> dirs denoting in which directions a node with a given label has
children. This means that a node with holes to the left and right is represented as a node without
children but with specified edges to the left and right.

In showing the equivalence between the two semantics, we use translation functions old_to_new and
new_to_old (lifted to sequences of nodes in olds_to_news and news_to_olds). Because it is possible
to represent an ill-formed prec_node, e.g. by creating a node with a left child when edges only specifies
a child to the right, we define well-formedness of nodes in the old semantics in the property old_wf.
Note that it is not possible to represent an ill-formed node in the new semantics.

There are relations similar to GSteps and LRStep in the old semantics (called GStep and LRStep),
which are also parameterized over a predicate Pre to allow expressing left-most groupings in the same
relation. In order to prove static resolvability, we only need to connect the new semantics to the
left-most grouping semantics of the old semantics. This is done in the theorem steps_equiv, which
states that given well-formed prec_nodes ns and n, the old left-most grouping semantics steps ns to n
if and only if the new grouping semantics steps olds_to_news ns to old_to_new n.

Definitions and lemmas using the old semantics

(These definitions are all in Old.v)

Paper Coq
flatten fullpar_flatten : prec_node -> list prec_node
“ē is fully ungrouped” Forall FullyOpen es
parform(ē) FullParForm allowed es, where allowed :

op_label -> bool
“flatten gives a fully ungrouped
sequence”

Theorem fullpar_flatten_open

Lemma 4.1 Theorem flatten_with_restriction_form
Lemma 4.2 Theorem

flatten_with_restriction_preserves_steps
Lemma 4.3 Theorem lrstep_preserves_fullparform
Lemma 4.4 Implied by Theorem fullparform_unamb_step
Lemma 4.5 Theorem fullparform_unamb

A fully grouped expression can be flattened (fullpar_flatten) to produce a sequence in parform.
The mechanized variant FullParForm further takes a set (function to bool) which is used internally to
ensure that nodes only appear where they are allowed to appear, in particular ensuring that we only
put parentheses where they are allowed.

The lemmas from the paper are mostly direct translations. Lemma 4.4 does not have a direct

5

equivalent, but is proved as part of the helper lemma fullparform_unamb_step. Note that
flatten_with_restriction_preserves_steps is written using a general form that allows proving it
for both the left-most and the regular grouping semantics.

Claims: Benchmarks
The artifact contains scripts for two styles of benchmarks: those used by the revised version of the
paper, as well as those used for the initial submission of the paper, for completeness.

New Benchmarks
To run the new benchmarks and look at the generated plots:

make bench # This takes a *long* time, approx. 2 days and 10h
on the testing machine. However, most packages
produce very similar results, thus running
overnight and then interrupting with 'Ctrl+C'
should give a reasonable dataset for comparison.

make jupyter # Copy the link beginning with '127.0.0.1' and
open it in your web browser, then double-click
'Analysis.ipynb' and follow the instructions

Figure 10 can be seen as the final cell in the notebook, the data for Table 1 is found in the output of
the first cell under “Analysis and Plots”. Other graphs and tables in the notebook provide additional
views of the data, some of which are referenced in the body text of the evaluation.

Old Benchmarks
To run the old benchmarks and look at the generated plots:

make bench-old # This takes a *long* time, the data used in the
paper came from running the benchmarks for
approx 17.5h, then interrupting with 'Ctrl+C'.

make jupyter # Copy the link beginning with '127.0.0.1' and
open it in your web browser, then double-click
'OldAnalysis.ipynb' and follow the instructions.

Each plot and datapoint used in the paper has its own cell in the notebook.

Claims: Accuracy of unamb

This can be checked by running the following:

make ast-check

This parses each .ml and .mli file in the OCaml compiler repository, comparing the debug parse tree
output (via -dparsetree) with both original and unamb, comparing the output.

The summary at the end of the output should be as follows (whitespace added for clarity in the readme):

Done
Total files: 2286
Differing files:

6

testsuite/tests/exotic-syntax/exotic.ml
testsuite/tests/parsetree/locations_test.ml

Inside the Container
This section gives general information about the docker image, along with how to run benchmarks on a
different set of packages and how to run the various OCaml compiler versions.

Make Targets
The makefile in the container (/root/Makefile) contains a number of targets for common tasks:

• make coq, build the Coq project.
• make coq-check, check that there are no admits in the Coq project.
• make ast-check, check that unamb agrees with original on how to parse the files in the OCaml

repository.
• make bench, run the benchmarks. This takes a long time (approx. 2 days and 10 hours for 2125

packages on the test machine) and gives its primary output in data/data-log.csv. Additional
logging information is also output and can be found in data/opam-log.txt (Opam output from
downloading the packages) and data/build-log.txt (Output by the compilers when parsing).
Aborting benchmarking part-way through can be done with an interrupt (Ctrl+C). The data
produced is written continuously, thus the plots can still be produced in this case, albeit with less
data.

• make bench-small is a smaller version of make bench; it only benchmarks the 10 most used
Opam packages. Data is output to a different set of files, e.g., data/data-log-small.csv instead
of data/data-log.csv and data/opam-log-small.txt instead of data/opam-log.txt.

• make bench-old, run benchmarks in the style used for the submitted version of the paper.
• make jupyter starts Jupyter with the notebook used to generate the plots in the paper. The

notebook also contains code to plot new data produced by make bench and make bench-small,
as well as instructions on how to update it.

• make original-switch, make unamb-switch, make ambif-switch. These targets rebuild each
of the three OCaml switches. Each of these take quite a while (~40min to run all three).

Contents
The /root directory (which the container starts in) contains the following:

• README.md andREADME.pdf, this document.
• Makefile, which contains targets for the most common tasks we expect.
• coq/, which contains the mechanized proof.
• ocaml/, the source code with our modified OCaml compiler.

– The four versions in the paper can be accessed as git tags (after cd ocaml):
∗ original (the unmodified compiler) can be seen with git checkout broken-original.
∗ unamb (our version without ambiguity) can be seen with git checkout broken-unamb.
∗ ambif (our version with dangling else) can be seen with git checkout broken-ambif.
∗ ambmatch (our version with dangling else and nested match ambiguity) can be seen
with git checkout broken-ambmatch. Note that this version does not bootstrap, and
is thus not available as an Opam switch, due to the large number of nested matches in
the source code.

– The majority of our changes are in ocaml/parsing/parser.mly, i.e., the Menhir grammar
defining the parser.

• miking/ contains the source code of the Miking compiler and standard library. Our grouper is
implemented as a library in Miking which we then compile to OCaml code. The library itself can

7

http://miking.org/

be found in miking/stdlib/parser/breakable.mc. Everything else under miking/ is included
for completeness sake, but is otherwise not relevant; it is merely a dependency.

• breakable-ml/ contains the code wrapping the breakable.mc library as an OCaml mod-
ule. In the docker image the OCaml library has already been built and can be found in
ocaml/parsing/brokensyntax.ml and ocaml/parsing/brokensyntax.mli (when one of the
modified ocaml/ versions is checked out).

• Analysis.ipynb, the Jupyter notebook responsible for the analysis and plots intended for the
revised version of the paper.

• data/ contains the data from our most recent benchmarks for the plots, as well as any data
produced by new benchmark runs.

• single-bench.fish is the script that runs the benchmarks intended for the revised version.
• bench.fish is the script that runs the benchmarks for the submitted version of the paper.
• check-asts.fish compares the parse results for original and unamb.
• sorted-deps is a list of Opam packages to use in the benchmarks, sorted by number of transitive

dependents, i.e., the most used packages are first.
• examples/, a few OCaml example programs demonstrating ambiguities.

Running the Modified OCaml Compiler
The modified versions of the OCaml compiler are already built and available as Opam switches. To
switch between them, run:

To use the unmodified OCaml compiler
eval (opam env --switch=broken-original --set-switch)

To use our unambiguous version
eval (opam env --switch=broken-unamb --set-switch)

To use our ambiguous version with dangling else
eval (opam env --switch=broken-ambif --set-switch)

After that you can use the various tools as normal, for example:

Start a REPL
ocaml

Run a file
ocaml examples/dangling.ml

In particular, to see an example of an ambiguity error, run the following:

eval (opam env --switch=broken-ambif --set-switch)
ocaml examples/dangling.ml

This is the expected output:

File "./examples/dangling.ml", lines 5-9, characters 2-31:
5 | ..if public then
6 | if color = "red" then
7 | print_endline "It's red"
8 | else
9 | print_endline "It's secret"
Error: The program is ambiguous:

if public then

8

(if color = "red" then
print_endline "It's red"

else
print_endline "It's secret")

if public then
(if color = "red" then

print_endline "It's red")
else

print_endline "It's secret"

Note that the actual output will have some coloring not visible above; parentheses to be added are shown
in red, syntax that is relevant to the ambiguity is shown in white, and everything else is unhighlighted.

Benchmarking Other Packages
The benchmarking script (single-bench.fish) takes a list of Opam packages for which to benchmark
parsing on STDIN, thus it is easy to run with a different dataset. For example, if input.txt has the
following contents:

dune
result
odoc

. . . then we can run the benchmarks parsing all files in the packages dune, result, and odoc as follows:

./single-bench.fish data/opam-log-custom.txt data/build-log-custom.txt \
data/data-log-custom.csv < input.txt

The three arguments designate output files. All three are mandatory. The first two are for debugging,
the third (data/data-log-custom.csv) contains the actual data. To tell the Jupyter notebook about
this new dataset, follow the instructions in the notebook itself, under “Data Sources and Pivot Tables”.

9

	System Requirements
	Statically Resolvable Ambiguity (Artifact)
	Kick the Tires - Basic Instructions for Setup
	Claims: Formalism and Mechanization
	Section 3
	Figure 7
	The running example
	Definition 3.1

	Section 4
	Definitions and lemmas using the new semantics
	Equivalence between new and old semantics
	Definitions and lemmas using the old semantics

	Claims: Benchmarks
	New Benchmarks
	Old Benchmarks

	Claims: Accuracy of unamb
	Inside the Container
	Make Targets
	Contents
	Running the Modified OCaml Compiler
	Benchmarking Other Packages

