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ICOADS R3.0: Historical in situ observations

Data and Documentation Chronology and News Program Status Publications Related Data and Resources Contact Points

search

International Comprehensive Ocean-Atmosphere Data Set (ICOADS)

ICOADS Figure 2

Figure 2. Annual distribution (1748-2014) of major platform types in Release 3.0 (and total) shown as reports per year (logarithmic scale). Ships
(mainly VOS plus some R/Vs; and prior to ~1888 hidden by the R3.0 curve), buoys, oceanographic, coastal, and tide gauge are self explanatory,
Ocean (permanent) Station Vessel = OSV, Coastal-Marine Automated Network = C-MAN, ocean drilling rigs/platforms and other small entities =
other, and unidentified platform types = missing (note: most are probably early ship reports). 
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ICOADS R3.0: Space/time coverage
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International Comprehensive Ocean-Atmosphere Data Set (ICOADS)

ICOADS Figure 3

 
Figure 3. Percentage global ocean and coastal area (1800-2014) sampled in Release 3.0 based on area-weighted 2° boxes (smoothed) for sea surface
temperature (S), requiring at least five observations per month in each box, and determined from the "enhanced" (4.5σ trimming) product that includes ship and
buoy records. Other curves compare the S coverage, at five observations per month, with that for sea level pressure (P), air temperature (A), wind speed (W),
total cloudiness (C), and relative humidity (R). Also plotted is the evaporation parameter (G), which is computed from S, P, A, W, and dew point temperature,
and thus illustrates the extent to which surface fluxes can be computed from the individual observations. 
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Global ocean coverage
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ICOADS Binned Summaries: Means and Nobs

Let bin B = a grid box of a regular monthly 1◦×1◦ grid. Let it contain a
sample Bo of No SST observations that passed ICOADS QC:

Bo
def
= {o1, o2, · · · , oNo},

characterized by its mean Mo and No .

Monthly 1◦×1◦ bins for January 2005

Mo
def
= 1
No

∑No
i=1 o i No
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ICOADS Binned Summaries: Standard Deviations

Monthly 1◦×1◦ bins for January 2005, unbiased variance est: σ2
Bo = ES2o

So
def
=
[

1
No−1

∑No
i=1 (o i−Mo)2

]1/2
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For the purposes of statistical analysis, bins with No = 1 are
principally different (∃Mo, but no So) from bins with No ≥ 2
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Estimating eMo, error in Mo

If observations in a given bin were independent and identically distributed,

then the variance of their distribution, i.e., intra-bin variance σ2
Bo

could be estimated by averaging bin variances S2o for the entire time
period (〈· · · 〉 denotes time-averaging):

σ̂2
Bo =

〈
S2o
〉
.

and since the error in Mo would have SD

eMo =
σBo√
No

,

the time-averaged error in Mo would have estimated SD

eMo =

〈
σ̂2
Bo
No

〉1/2

= σ̂Bo 〈1/No〉1/2 =
σ̂Bo√
N h

o

,

where N h
o = 〈1/No〉−1 is the harmonic mean of No values.
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Average error in Mo: D′, actual error SD, vs eMo

Suppose, we have some very good (accurate and complete) source of SST
data, based on which we could form gridded SST values Ma on the same
grid as Mo , and to compute the actual error values

dM
def
=Mo −Ma .

Then their RMS is

D def
=

[
1

Nt

Nt∑
t=1

dM(t)2

]1/2
.

Because of systematic biases in ship SST data, to get the actual
effects of the random error, we should subtract from dM its
temporal mean dM, i.e., use the SD (not RMS) of the actual error:

D′ def=

[
1

Nt − 1

Nt∑
t=1

d ′M(t)2

]1/2
, where d ′M(t) = dM(t)− dM .
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1. ABSTRACT 

There are many challenges in blending historical and 
modern observations of sea surface temperature (SST) 
into homogenous gridded data sets suitable for use in 
climate research. Many of these problems can be 
avoided if proper choices are made during design and 
deployment phases of new instrumentation and 
observing systems, as specified in the Global Climate 
Observing System (GCOS) climate monitoring 
principles 
(http://www.wmo.int/pages/prog/gcos/documents/GCO
S_Climate_Monitoring_Principles.pdf ). 
 
2. INTRODUCTION 

Sea surface temperature (SST) is one of the most 
important physical variables in the arena of climate 
change. The large thermal inertia of the surface ocean 
(as compared to the land or the atmosphere) makes SST 
a particularly suitable parameter for monitoring changes 
in the state of the climate system, for predicting 
seasonal-to-interannual climate variability, and for 
verifying projections of longer-term climate change. In 
order to project climate trends into the future, we need 
to know and understand their history. This task, in turn, 

requires observational samples long enough for secular 
trends and multi-decadal variability to be identifiable in 
the presence of the very energetic background of shorter 
period variability. Historical (century or longer) data 
sets of SST are needed for training coupled models for 
seasonal-to-interannual climate forecasts [1] and for 
verifying or constraining century-long climate 
projections [2]. Historical SST data sets are also 
essential for atmospheric reanalyses (e.g. [3] and [4]) 
and model-based studies of climate variability. They 
also play a major role in the calibration of 
paleoceanographic records, thus contributing to multi-
century and millennial climate reconstructions (e.g. [5] 
and [6]). 
 
For these tasks, the quality of information about past 
SST variations is almost as important as the quality of 
modern observations. The historical-SST community 
strives to make the best use of modern SST observations 
to improve analyses of the past. Here we summarise the 
progress and problems in this area in the last decade, 
since the OceanObs’99 review of SST analyses [7]. 
 
Most historical SST observations were extracted from 
the logbooks of ships, with buoy measurements and 

  

observations has led to a further temporally and 
geographically varying bias in the SST record. 
Accounting for this new bias is also important. 
However, since they provide a stable subset of data 
from 1993 onwards, drifting buoys can be used to better 
understand and correct historical ship observations. 

Moored buoys from different nations have relative 
biases, but geographical coverage is limited. Other 
sources of in situ SST data make a relatively minor 
contribution to the record and are not considered in this 
section (but see Sect. 4.1 for further discussion). 

Since the early 1980s, satellites have been retrieving a 
wealth of SST data. Like in situ data, satellite 
observations can suffer from biases geographically, 
temporally, and both within the lifetime of an individual 
sensor and between sensors. Combining in situ and 
satellite observations is additionally complicated both 
by the complex nature of the surface ocean and that 
every sensor, satellite and in situ, is measuring a 
different component of it. (More about satellite 
retrievals of SST can be found in [11]). However, stable 
sets of retrievals, such as from the Along Track 
Scanning Radiometer (ATSR) series or the Pathfinder 
reanalysis of Advanced Very High Resolution 
Radiometer (AVHRR), help us to better interpret the in 
situ record. The reverse is also true: extensive use is 
made of drifting buoy observations to calibrate or 
validate satellite retrievals. In addition, combining SST 
retrievals from different satellite instruments can further 
reduce biases (see e.g. [18]). 
 
The AVHRR Pathfinder program ([19] and [20]) uses a 
multi-step method to minimize spurious trends and 
maximize cross-satellite homogeneity. Radiances are 
converted to brightness temperatures based on each 
sensor’s operating temperature. The calculation of SST 
from these brightness temperatures is based on 
regression to in situ observations, which further ensures 
consistency across the transition from one satellite to the 
next. 
 
3.2. Sampling and measurement uncertainties 

In addition to systematic biases, all data types are 
affected by uncertainties due to measurement errors and 
under-sampling of variability. Measurement 
uncertainties in ship SST observations have been 
estimated by comparing pairs of nearby observations 
(Fig. 2a) [21]. The total variance of observations within 
each bin (Fig. 2b) should exceed measurement and 
sampling error variance by the real variance of the field 
there. High resolution satellite data (e.g. Pathfinder 
AVHRR, version 5 [20]) is useful for estimating this 
component (Fig. 2c) [22]. A combined sampling and 
measurement error for a single observation can be 
derived (Fig. 2d), but note that in the absence of an 
observation, sampling error equals the local SST 

anomaly standard deviation. Assuming the errors in a 
grid box are uncorrelated, the error in grid box averages 
is then obtained by dividing by the square root of the 
number of observations in each grid box. These values 
can exceed 1qC locally. As Figs. 2e and f demonstrate, 
the resulting error model successfully captures the 
major spatial features of Pathfinder-ICOADS 
difference. 

The distinction between random and bias errors can 
sometimes be blurred when observations from a random 
mixture of platform types with unequal biases are 
combined. For regions and periods where a single or 
small number of platforms contribute to the SST, 
estimate the common bias may remain even when 
random errors are reduced by averaging [23] and [24]. 

The availability of independent SST estimates from 
different platforms also allows estimates of uncertainties 
pertaining to each individual platform to be determined 
(e.g. [25]); note here another need for independent data. 

 
Figure 2. Effective observational error in in situ SST 

and its components: (a) random error estimate for one 
ship observation [21]; (b) actual standard deviation in 

ICOADS 1° x 1° monthly bins, 1960-2005; (c) SST 
variability within 1° x 1° monthly bins, 4 km Pathfinder 
v5 daily SST [20], 1985-2004; (d) standard error for a 
single observation in 1° x 1° monthly bins, estimated by 

combining (a) and (c); (e) standard deviation of SST 
difference between 1° x 1° monthly Pathfinder (night) 
and ICOADS, 2000-2004; (f) average ICOADS SST 

error in 1° x 1° monthly grid boxes during 2000-2004, 
estimated from a single observation error estimate and 
actual number of observations in ICOADS bins in each 

month. 

D′ eMo
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1. ABSTRACT 

There are many challenges in blending historical and 
modern observations of sea surface temperature (SST) 
into homogenous gridded data sets suitable for use in 
climate research. Many of these problems can be 
avoided if proper choices are made during design and 
deployment phases of new instrumentation and 
observing systems, as specified in the Global Climate 
Observing System (GCOS) climate monitoring 
principles 
(http://www.wmo.int/pages/prog/gcos/documents/GCO
S_Climate_Monitoring_Principles.pdf ). 
 
2. INTRODUCTION 

Sea surface temperature (SST) is one of the most 
important physical variables in the arena of climate 
change. The large thermal inertia of the surface ocean 
(as compared to the land or the atmosphere) makes SST 
a particularly suitable parameter for monitoring changes 
in the state of the climate system, for predicting 
seasonal-to-interannual climate variability, and for 
verifying projections of longer-term climate change. In 
order to project climate trends into the future, we need 
to know and understand their history. This task, in turn, 

requires observational samples long enough for secular 
trends and multi-decadal variability to be identifiable in 
the presence of the very energetic background of shorter 
period variability. Historical (century or longer) data 
sets of SST are needed for training coupled models for 
seasonal-to-interannual climate forecasts [1] and for 
verifying or constraining century-long climate 
projections [2]. Historical SST data sets are also 
essential for atmospheric reanalyses (e.g. [3] and [4]) 
and model-based studies of climate variability. They 
also play a major role in the calibration of 
paleoceanographic records, thus contributing to multi-
century and millennial climate reconstructions (e.g. [5] 
and [6]). 
 
For these tasks, the quality of information about past 
SST variations is almost as important as the quality of 
modern observations. The historical-SST community 
strives to make the best use of modern SST observations 
to improve analyses of the past. Here we summarise the 
progress and problems in this area in the last decade, 
since the OceanObs’99 review of SST analyses [7]. 
 
Most historical SST observations were extracted from 
the logbooks of ships, with buoy measurements and 

  

observations has led to a further temporally and 
geographically varying bias in the SST record. 
Accounting for this new bias is also important. 
However, since they provide a stable subset of data 
from 1993 onwards, drifting buoys can be used to better 
understand and correct historical ship observations. 

Moored buoys from different nations have relative 
biases, but geographical coverage is limited. Other 
sources of in situ SST data make a relatively minor 
contribution to the record and are not considered in this 
section (but see Sect. 4.1 for further discussion). 

Since the early 1980s, satellites have been retrieving a 
wealth of SST data. Like in situ data, satellite 
observations can suffer from biases geographically, 
temporally, and both within the lifetime of an individual 
sensor and between sensors. Combining in situ and 
satellite observations is additionally complicated both 
by the complex nature of the surface ocean and that 
every sensor, satellite and in situ, is measuring a 
different component of it. (More about satellite 
retrievals of SST can be found in [11]). However, stable 
sets of retrievals, such as from the Along Track 
Scanning Radiometer (ATSR) series or the Pathfinder 
reanalysis of Advanced Very High Resolution 
Radiometer (AVHRR), help us to better interpret the in 
situ record. The reverse is also true: extensive use is 
made of drifting buoy observations to calibrate or 
validate satellite retrievals. In addition, combining SST 
retrievals from different satellite instruments can further 
reduce biases (see e.g. [18]). 
 
The AVHRR Pathfinder program ([19] and [20]) uses a 
multi-step method to minimize spurious trends and 
maximize cross-satellite homogeneity. Radiances are 
converted to brightness temperatures based on each 
sensor’s operating temperature. The calculation of SST 
from these brightness temperatures is based on 
regression to in situ observations, which further ensures 
consistency across the transition from one satellite to the 
next. 
 
3.2. Sampling and measurement uncertainties 

In addition to systematic biases, all data types are 
affected by uncertainties due to measurement errors and 
under-sampling of variability. Measurement 
uncertainties in ship SST observations have been 
estimated by comparing pairs of nearby observations 
(Fig. 2a) [21]. The total variance of observations within 
each bin (Fig. 2b) should exceed measurement and 
sampling error variance by the real variance of the field 
there. High resolution satellite data (e.g. Pathfinder 
AVHRR, version 5 [20]) is useful for estimating this 
component (Fig. 2c) [22]. A combined sampling and 
measurement error for a single observation can be 
derived (Fig. 2d), but note that in the absence of an 
observation, sampling error equals the local SST 

anomaly standard deviation. Assuming the errors in a 
grid box are uncorrelated, the error in grid box averages 
is then obtained by dividing by the square root of the 
number of observations in each grid box. These values 
can exceed 1qC locally. As Figs. 2e and f demonstrate, 
the resulting error model successfully captures the 
major spatial features of Pathfinder-ICOADS 
difference. 

The distinction between random and bias errors can 
sometimes be blurred when observations from a random 
mixture of platform types with unequal biases are 
combined. For regions and periods where a single or 
small number of platforms contribute to the SST, 
estimate the common bias may remain even when 
random errors are reduced by averaging [23] and [24]. 

The availability of independent SST estimates from 
different platforms also allows estimates of uncertainties 
pertaining to each individual platform to be determined 
(e.g. [25]); note here another need for independent data. 

 
Figure 2. Effective observational error in in situ SST 

and its components: (a) random error estimate for one 
ship observation [21]; (b) actual standard deviation in 

ICOADS 1° x 1° monthly bins, 1960-2005; (c) SST 
variability within 1° x 1° monthly bins, 4 km Pathfinder 
v5 daily SST [20], 1985-2004; (d) standard error for a 
single observation in 1° x 1° monthly bins, estimated by 

combining (a) and (c); (e) standard deviation of SST 
difference between 1° x 1° monthly Pathfinder (night) 
and ICOADS, 2000-2004; (f) average ICOADS SST 

error in 1° x 1° monthly grid boxes during 2000-2004, 
estimated from a single observation error estimate and 
actual number of observations in ICOADS bins in each 

month. 

D′ eMo

Alexey Kaplan (LDEO) ICOADS & ESA CCI SST =⇒ Ship SST σ err 27 June – 1 July 2022 9 / 26



Back to 2009: OceanObs ’09 [Rayner et al., 2010]  

EVALUATING CLIMATE VARIABILITY AND CHANGE FROM MODERN AND 
HISTORICAL SST OBSERVATIONS 

Nick A. Rayner (1), Alexey Kaplan (2), Elizabeth C. Kent (3), Richard W. Reynolds (4), Philip Brohan (1), Kenneth S. 
Casey (5), John J. Kennedy (1), Scott D. Woodruff (6), Thomas M. Smith (7), Craig Donlon (8), Lars-Anders Breivik 

(9), Steinar Eastwood (9), Masayoshi Ishii (10) and Tess Brandon (5) 

(1) Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, U.K., Email: nick.rayner@metoffice.gov.uk, 
philip.brohan@metoffice.gov.uk, john.kennedy@metoffice.gov.uk 

(2) Lamont-Doherty Earth Observatory of Columbia University, P.O. Box 1000, Palisades, NY 10964-8000, U.S.A., 
Email: alexeyk@ldeo.columbia.edu 

(3) National Oceanography Centre, Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom, 
Email: eck@noc.soton.ac.uk  

(4) NOAA (National Oceanic and Atmospheric Administration)/National Climatic Data Center, 151 Patton Avenue, 
Asheville, NC 28801-5001, U.S.A., Email: Richard.W.Reynolds@noaa.gov 

(5) NOAA (National Oceanic and Atmospheric Administration)/National Oceanographic Data Center, 1315 East-West 
Highway, Silver Spring, MD 20910, U.S.A., Email: Kenneth.Casey@noaa.gov, Tess.Brandon@noaa.gov 

(6) NOAA/ESRL (National Oceanic and Atmospheric Administration/Earth System Research Laboratory) (R/PSD3), 
325 Broadway, Boulder, CO 80305, U.S.A., Email: Scott.D.Woodruff@noaa.gov 

(7) NOAA NESDIS STAR (National Oceanic and Atmospheric Administration/National Environmental Satellite-Data 
and Information-Service Satellite Applications and Research) and CICS/ESSIC (Cooperative Institute for Climate 

Studies /Earth Systems Science Interdisciplinary Center), 5825 Univ. Research Ct., Suite 4001, 
College Park, MD 20740, U.S.A., Email: Tom.Smith@noaa.gov 

(8) ESA/ESTEC (European Space Agency/European Space Research and Technology Centre) (EOP-SME (Environment 
Operational Programme-Small and Medium-sized Enterprises)), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands, 

Email: Craig.Donlon@esa.int 
(9) Norwegian Meteorological Institute, P.O.BOX 43, Blindern, N-0313 Oslo, Norway, Email: s.eastwood@met.no, 

lars.anders.breivik@met.no 
(10) Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, 

Japan, Email: maish@mri-jma.go.jp 

 
1. ABSTRACT 

There are many challenges in blending historical and 
modern observations of sea surface temperature (SST) 
into homogenous gridded data sets suitable for use in 
climate research. Many of these problems can be 
avoided if proper choices are made during design and 
deployment phases of new instrumentation and 
observing systems, as specified in the Global Climate 
Observing System (GCOS) climate monitoring 
principles 
(http://www.wmo.int/pages/prog/gcos/documents/GCO
S_Climate_Monitoring_Principles.pdf ). 
 
2. INTRODUCTION 

Sea surface temperature (SST) is one of the most 
important physical variables in the arena of climate 
change. The large thermal inertia of the surface ocean 
(as compared to the land or the atmosphere) makes SST 
a particularly suitable parameter for monitoring changes 
in the state of the climate system, for predicting 
seasonal-to-interannual climate variability, and for 
verifying projections of longer-term climate change. In 
order to project climate trends into the future, we need 
to know and understand their history. This task, in turn, 

requires observational samples long enough for secular 
trends and multi-decadal variability to be identifiable in 
the presence of the very energetic background of shorter 
period variability. Historical (century or longer) data 
sets of SST are needed for training coupled models for 
seasonal-to-interannual climate forecasts [1] and for 
verifying or constraining century-long climate 
projections [2]. Historical SST data sets are also 
essential for atmospheric reanalyses (e.g. [3] and [4]) 
and model-based studies of climate variability. They 
also play a major role in the calibration of 
paleoceanographic records, thus contributing to multi-
century and millennial climate reconstructions (e.g. [5] 
and [6]). 
 
For these tasks, the quality of information about past 
SST variations is almost as important as the quality of 
modern observations. The historical-SST community 
strives to make the best use of modern SST observations 
to improve analyses of the past. Here we summarise the 
progress and problems in this area in the last decade, 
since the OceanObs’99 review of SST analyses [7]. 
 
Most historical SST observations were extracted from 
the logbooks of ships, with buoy measurements and 

  

observations has led to a further temporally and 
geographically varying bias in the SST record. 
Accounting for this new bias is also important. 
However, since they provide a stable subset of data 
from 1993 onwards, drifting buoys can be used to better 
understand and correct historical ship observations. 

Moored buoys from different nations have relative 
biases, but geographical coverage is limited. Other 
sources of in situ SST data make a relatively minor 
contribution to the record and are not considered in this 
section (but see Sect. 4.1 for further discussion). 

Since the early 1980s, satellites have been retrieving a 
wealth of SST data. Like in situ data, satellite 
observations can suffer from biases geographically, 
temporally, and both within the lifetime of an individual 
sensor and between sensors. Combining in situ and 
satellite observations is additionally complicated both 
by the complex nature of the surface ocean and that 
every sensor, satellite and in situ, is measuring a 
different component of it. (More about satellite 
retrievals of SST can be found in [11]). However, stable 
sets of retrievals, such as from the Along Track 
Scanning Radiometer (ATSR) series or the Pathfinder 
reanalysis of Advanced Very High Resolution 
Radiometer (AVHRR), help us to better interpret the in 
situ record. The reverse is also true: extensive use is 
made of drifting buoy observations to calibrate or 
validate satellite retrievals. In addition, combining SST 
retrievals from different satellite instruments can further 
reduce biases (see e.g. [18]). 
 
The AVHRR Pathfinder program ([19] and [20]) uses a 
multi-step method to minimize spurious trends and 
maximize cross-satellite homogeneity. Radiances are 
converted to brightness temperatures based on each 
sensor’s operating temperature. The calculation of SST 
from these brightness temperatures is based on 
regression to in situ observations, which further ensures 
consistency across the transition from one satellite to the 
next. 
 
3.2. Sampling and measurement uncertainties 

In addition to systematic biases, all data types are 
affected by uncertainties due to measurement errors and 
under-sampling of variability. Measurement 
uncertainties in ship SST observations have been 
estimated by comparing pairs of nearby observations 
(Fig. 2a) [21]. The total variance of observations within 
each bin (Fig. 2b) should exceed measurement and 
sampling error variance by the real variance of the field 
there. High resolution satellite data (e.g. Pathfinder 
AVHRR, version 5 [20]) is useful for estimating this 
component (Fig. 2c) [22]. A combined sampling and 
measurement error for a single observation can be 
derived (Fig. 2d), but note that in the absence of an 
observation, sampling error equals the local SST 

anomaly standard deviation. Assuming the errors in a 
grid box are uncorrelated, the error in grid box averages 
is then obtained by dividing by the square root of the 
number of observations in each grid box. These values 
can exceed 1qC locally. As Figs. 2e and f demonstrate, 
the resulting error model successfully captures the 
major spatial features of Pathfinder-ICOADS 
difference. 

The distinction between random and bias errors can 
sometimes be blurred when observations from a random 
mixture of platform types with unequal biases are 
combined. For regions and periods where a single or 
small number of platforms contribute to the SST, 
estimate the common bias may remain even when 
random errors are reduced by averaging [23] and [24]. 

The availability of independent SST estimates from 
different platforms also allows estimates of uncertainties 
pertaining to each individual platform to be determined 
(e.g. [25]); note here another need for independent data. 

 
Figure 2. Effective observational error in in situ SST 

and its components: (a) random error estimate for one 
ship observation [21]; (b) actual standard deviation in 

ICOADS 1° x 1° monthly bins, 1960-2005; (c) SST 
variability within 1° x 1° monthly bins, 4 km Pathfinder 
v5 daily SST [20], 1985-2004; (d) standard error for a 
single observation in 1° x 1° monthly bins, estimated by 

combining (a) and (c); (e) standard deviation of SST 
difference between 1° x 1° monthly Pathfinder (night) 
and ICOADS, 2000-2004; (f) average ICOADS SST 

error in 1° x 1° monthly grid boxes during 2000-2004, 
estimated from a single observation error estimate and 
actual number of observations in ICOADS bins in each 

month. 

D′ eMo

Alexey Kaplan (LDEO) ICOADS & ESA CCI SST =⇒ Ship SST σ err 27 June – 1 July 2022 9 / 26



Back to 2009: OceanObs ’09 [Rayner et al., 2010]  

EVALUATING CLIMATE VARIABILITY AND CHANGE FROM MODERN AND 
HISTORICAL SST OBSERVATIONS 

Nick A. Rayner (1), Alexey Kaplan (2), Elizabeth C. Kent (3), Richard W. Reynolds (4), Philip Brohan (1), Kenneth S. 
Casey (5), John J. Kennedy (1), Scott D. Woodruff (6), Thomas M. Smith (7), Craig Donlon (8), Lars-Anders Breivik 

(9), Steinar Eastwood (9), Masayoshi Ishii (10) and Tess Brandon (5) 

(1) Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, U.K., Email: nick.rayner@metoffice.gov.uk, 
philip.brohan@metoffice.gov.uk, john.kennedy@metoffice.gov.uk 

(2) Lamont-Doherty Earth Observatory of Columbia University, P.O. Box 1000, Palisades, NY 10964-8000, U.S.A., 
Email: alexeyk@ldeo.columbia.edu 

(3) National Oceanography Centre, Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom, 
Email: eck@noc.soton.ac.uk  

(4) NOAA (National Oceanic and Atmospheric Administration)/National Climatic Data Center, 151 Patton Avenue, 
Asheville, NC 28801-5001, U.S.A., Email: Richard.W.Reynolds@noaa.gov 

(5) NOAA (National Oceanic and Atmospheric Administration)/National Oceanographic Data Center, 1315 East-West 
Highway, Silver Spring, MD 20910, U.S.A., Email: Kenneth.Casey@noaa.gov, Tess.Brandon@noaa.gov 

(6) NOAA/ESRL (National Oceanic and Atmospheric Administration/Earth System Research Laboratory) (R/PSD3), 
325 Broadway, Boulder, CO 80305, U.S.A., Email: Scott.D.Woodruff@noaa.gov 

(7) NOAA NESDIS STAR (National Oceanic and Atmospheric Administration/National Environmental Satellite-Data 
and Information-Service Satellite Applications and Research) and CICS/ESSIC (Cooperative Institute for Climate 

Studies /Earth Systems Science Interdisciplinary Center), 5825 Univ. Research Ct., Suite 4001, 
College Park, MD 20740, U.S.A., Email: Tom.Smith@noaa.gov 

(8) ESA/ESTEC (European Space Agency/European Space Research and Technology Centre) (EOP-SME (Environment 
Operational Programme-Small and Medium-sized Enterprises)), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands, 

Email: Craig.Donlon@esa.int 
(9) Norwegian Meteorological Institute, P.O.BOX 43, Blindern, N-0313 Oslo, Norway, Email: s.eastwood@met.no, 

lars.anders.breivik@met.no 
(10) Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, 

Japan, Email: maish@mri-jma.go.jp 

 
1. ABSTRACT 

There are many challenges in blending historical and 
modern observations of sea surface temperature (SST) 
into homogenous gridded data sets suitable for use in 
climate research. Many of these problems can be 
avoided if proper choices are made during design and 
deployment phases of new instrumentation and 
observing systems, as specified in the Global Climate 
Observing System (GCOS) climate monitoring 
principles 
(http://www.wmo.int/pages/prog/gcos/documents/GCO
S_Climate_Monitoring_Principles.pdf ). 
 
2. INTRODUCTION 

Sea surface temperature (SST) is one of the most 
important physical variables in the arena of climate 
change. The large thermal inertia of the surface ocean 
(as compared to the land or the atmosphere) makes SST 
a particularly suitable parameter for monitoring changes 
in the state of the climate system, for predicting 
seasonal-to-interannual climate variability, and for 
verifying projections of longer-term climate change. In 
order to project climate trends into the future, we need 
to know and understand their history. This task, in turn, 

requires observational samples long enough for secular 
trends and multi-decadal variability to be identifiable in 
the presence of the very energetic background of shorter 
period variability. Historical (century or longer) data 
sets of SST are needed for training coupled models for 
seasonal-to-interannual climate forecasts [1] and for 
verifying or constraining century-long climate 
projections [2]. Historical SST data sets are also 
essential for atmospheric reanalyses (e.g. [3] and [4]) 
and model-based studies of climate variability. They 
also play a major role in the calibration of 
paleoceanographic records, thus contributing to multi-
century and millennial climate reconstructions (e.g. [5] 
and [6]). 
 
For these tasks, the quality of information about past 
SST variations is almost as important as the quality of 
modern observations. The historical-SST community 
strives to make the best use of modern SST observations 
to improve analyses of the past. Here we summarise the 
progress and problems in this area in the last decade, 
since the OceanObs’99 review of SST analyses [7]. 
 
Most historical SST observations were extracted from 
the logbooks of ships, with buoy measurements and 

  

observations has led to a further temporally and 
geographically varying bias in the SST record. 
Accounting for this new bias is also important. 
However, since they provide a stable subset of data 
from 1993 onwards, drifting buoys can be used to better 
understand and correct historical ship observations. 

Moored buoys from different nations have relative 
biases, but geographical coverage is limited. Other 
sources of in situ SST data make a relatively minor 
contribution to the record and are not considered in this 
section (but see Sect. 4.1 for further discussion). 

Since the early 1980s, satellites have been retrieving a 
wealth of SST data. Like in situ data, satellite 
observations can suffer from biases geographically, 
temporally, and both within the lifetime of an individual 
sensor and between sensors. Combining in situ and 
satellite observations is additionally complicated both 
by the complex nature of the surface ocean and that 
every sensor, satellite and in situ, is measuring a 
different component of it. (More about satellite 
retrievals of SST can be found in [11]). However, stable 
sets of retrievals, such as from the Along Track 
Scanning Radiometer (ATSR) series or the Pathfinder 
reanalysis of Advanced Very High Resolution 
Radiometer (AVHRR), help us to better interpret the in 
situ record. The reverse is also true: extensive use is 
made of drifting buoy observations to calibrate or 
validate satellite retrievals. In addition, combining SST 
retrievals from different satellite instruments can further 
reduce biases (see e.g. [18]). 
 
The AVHRR Pathfinder program ([19] and [20]) uses a 
multi-step method to minimize spurious trends and 
maximize cross-satellite homogeneity. Radiances are 
converted to brightness temperatures based on each 
sensor’s operating temperature. The calculation of SST 
from these brightness temperatures is based on 
regression to in situ observations, which further ensures 
consistency across the transition from one satellite to the 
next. 
 
3.2. Sampling and measurement uncertainties 

In addition to systematic biases, all data types are 
affected by uncertainties due to measurement errors and 
under-sampling of variability. Measurement 
uncertainties in ship SST observations have been 
estimated by comparing pairs of nearby observations 
(Fig. 2a) [21]. The total variance of observations within 
each bin (Fig. 2b) should exceed measurement and 
sampling error variance by the real variance of the field 
there. High resolution satellite data (e.g. Pathfinder 
AVHRR, version 5 [20]) is useful for estimating this 
component (Fig. 2c) [22]. A combined sampling and 
measurement error for a single observation can be 
derived (Fig. 2d), but note that in the absence of an 
observation, sampling error equals the local SST 

anomaly standard deviation. Assuming the errors in a 
grid box are uncorrelated, the error in grid box averages 
is then obtained by dividing by the square root of the 
number of observations in each grid box. These values 
can exceed 1qC locally. As Figs. 2e and f demonstrate, 
the resulting error model successfully captures the 
major spatial features of Pathfinder-ICOADS 
difference. 

The distinction between random and bias errors can 
sometimes be blurred when observations from a random 
mixture of platform types with unequal biases are 
combined. For regions and periods where a single or 
small number of platforms contribute to the SST, 
estimate the common bias may remain even when 
random errors are reduced by averaging [23] and [24]. 

The availability of independent SST estimates from 
different platforms also allows estimates of uncertainties 
pertaining to each individual platform to be determined 
(e.g. [25]); note here another need for independent data. 

 
Figure 2. Effective observational error in in situ SST 

and its components: (a) random error estimate for one 
ship observation [21]; (b) actual standard deviation in 

ICOADS 1° x 1° monthly bins, 1960-2005; (c) SST 
variability within 1° x 1° monthly bins, 4 km Pathfinder 
v5 daily SST [20], 1985-2004; (d) standard error for a 
single observation in 1° x 1° monthly bins, estimated by 

combining (a) and (c); (e) standard deviation of SST 
difference between 1° x 1° monthly Pathfinder (night) 
and ICOADS, 2000-2004; (f) average ICOADS SST 

error in 1° x 1° monthly grid boxes during 2000-2004, 
estimated from a single observation error estimate and 
actual number of observations in ICOADS bins in each 

month. 
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for temperature @ 20cm depth,

grid values are meant to represent space-time grid box averages,
with corresponding uncertainty estimates provided,

independent of the in situ SST data.
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Here Ship SST random errors are estimated as follows:

Take ICOADS R.3.0 ship SST observations from 75◦S–75◦N for
1992-2010 that passed ICOADS own quality control (22M obs).

Bin them using monthly 1◦×1◦ grid, producing data sets Mo , So ,
No . For monthly 1◦×1◦ bins with No = 1 set bin values to “NaN”.

Using the same monthly 1◦×1◦ grid, bin all available daily 0.05◦×0.05◦

CCI SST analysis values, producing data sets Ma, Sa, Na.

Call ao values of CCI SST analysis daily 0.05◦×0.05◦ matchups to
ship SST opsevations o, included into binning above. Bin ao to
produce data sets Mao and Sao .

Let d = o − ao and bin d values to produce data sets Md and Sd .

For CCI SST analysis uncertainty values ea and their matchups eao to
ship SST observations o, produce binned data sets Mea and Sea as
well as Meao and Seao .
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Error assumptions

CCI SST analysis values are estimates of ta, daily 0.05◦×0.05◦ averages
of true 20 cm temperature t:

ta = a + εa,

Eεa = 0 , E (εa)2 = (ea)2.

Additionally, assume near-perfect cross-correlation of the analysis error
within monthly 1◦×1◦ grid boxes.

To simplify derivations, ship observations are related to the
“matched-up” version tao of same “truth” ta as the CCI analysis:

o = tao + b + εo

Here bias b is assumed climatologically-varying and constant within each
1◦×1◦ monthly bin; measurement errors εo are assumed independent of
true temperature variations tao and i.i.d. within each bin with mean 0 and
variance σ2

o .
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Bias removal and computing the actual differences RMS

For a given bin location with data available for M climatological months,
with Ym years available for each month m, the bias estimate is obtained by
climatological averaging of dM differences:

b̂(m) =
1

Ym

Ym∑
y=1

dM(y ,m) , m = 1, · · · ,M .

With the estimated bias removed, there are only

M∑
m=1

(Ym−1) = N−M

degrees of freedom (DOF) remaining for the RMS calculation:

D′′ =

 1

N−M

M∑
m=1

Ym∑
y=1

(
dM(y ,m)− b̂(m)

)21/2

.
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Estimating ED′′ 2 as the joint effect of random errors

ED′′ 2 =
1

N−M

M∑
m=1

(Ym − 1)

(
σBo(m)2

N h
o(m)

+Mq
ea(m)2

)
,

where
Mq

ea(m) =

 1

Ym

Ym∑
y=1

Mea(y ,m)2

1/2

is the climatological quadratic mean of the temporal Mea sample for the
given 1◦×1◦ bin location and, similarly, N h

o(m) is the climatological
harmonic mean of available No values for the same location.

Substituting to the intrabin variance σBo(m)2 in the expression for ED′′ 2
above its “pooled estimate”

σ̂Bo(m)2
def
=

∑Ym
y=1 (No(y ,m)− 1)So(y ,m)2∑Ym

y=1 (No(y ,m)− 1)
, m = 1, · · · ,M,

obtain the unbiased estimate E2 of ED′′ 2.
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How good/bad is the agreement now between E and D′′?

E , est. dM SD, 0.74◦C D′′, act. dM anom. SD, 0.91◦C
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E 100%, 81% DOF in D′′ calculation, 71.3 (mos)
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Impact of DOF on the empirical distribution of |ρ|
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Separation of sampling and measurement error parts in
σB o (or eM o = σB o/

√
No) estimates

Let υ2 be the variance of true SST within the bin,

then
σ2
Bo = υ2 + σ2o .

Unbiased estimate of measurement error variance is

σ̂2
o = S2d − S2eao .

There are two unbiased estimates of υ:

(1) υ̂2o = S2ao + S2eao is based only on the match-up sample of the analysis
data to the in situ observations;

(2) υ̂2 = S2a + S2ea is based on the full analysis sample.

υ̂2o is a part of an approximate split-off σ̂2
Bo ≈ υ̂2o + σ̂2o , but υ̂2 is a

better estimate, being based on much more data than what υ̂2o is
using.
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Seasonality of errors’ magnitudes

Alexey Kaplan (LDEO) ICOADS & ESA CCI SST =⇒ Ship SST σ err 27 June – 1 July 2022 19 / 26



Hypotheses on seasonality of variance estimates for error

Based on the visual inspection of previous figure, the seasonality of υ̂
and υ̂o might be significant, seasonality of σ̂o – not significant, while
the seasonality of σ̂B o is mixed.

Under a hypothesis that there are no significant seasonal dependence
of either of these estimates squared, Levene (1960) test results help
dismiss the hypothesis for υ̂o and especially for υ̂; for σ̂o the “no
seasonality” hypothesis is accepted.
Based on these conclusions, the following steps are implemented:

(1) measurement error estimates σ̂o should be averaged over all available
seasons;

(2) estimates of the true intrabin SST variance υ̂ (or υ̂o) should be
maintained in a seasonally-dependent form, e.g., υ̂ = υ̂(m), where m is
a climatological month.

(3) Recombining the estimate for σB o using the full analysis version υ̂(m),
will result in a superior estimate

σ̂B o(m)2 = σ̂2
o + υ̂(m)2 .
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Ship SST measurement error σ̂o, by method

All methods, 1.05◦C Engine Room Intake (ERI), 45.0%, 1.13◦C
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All methods, 1.05◦C Engine Room Intake (ERI), 45.0%, 1.13◦C
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Ship SST measurement error σ̂o, by method

All methods, 1.05◦C Engine Room Intake (ERI), 45.0%, 1.13◦C
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Ship SST measurement error σ̂o, by method

All methods, 1.05◦C Engine Room Intake (ERI), 45.0%, 1.13◦C
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Ship SST error: Comparison with Kent&Challenor (2006)

All

σ̂o by 30◦×30◦ , 1.07◦C KC2006 error, 1.26◦C Relative error ρ, 22%
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ERI σ̂o by 30◦×30◦ , 1.11◦C KC2006 error, 1.43◦C Relative error ρ, 22%
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BU σ̂o by 30◦×30◦ , 0.91◦C KC2006 error, 1.16◦C Relative error ρ, 27%
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Ship SST error: Comparison with Kent&Challenor (2006)

All σ̂o by 30◦×30◦ , 1.07◦C

KC2006 error, 1.26◦C Relative error ρ, 22%

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W 0˚
Longitude

60
˚S

30
˚S

0˚
30

˚N
60

˚N
La

tit
ud

e

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W 0˚
Longitude

60
˚S

30
˚S

0˚
30

˚N
60

˚N
La

tit
ud

e

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚ 150˚W 120˚W 90˚W 60˚W 30˚W 0˚
Longitude

60
˚S

30
˚S

0˚
30

˚N
60

˚N
La

tit
ud

e

ERI σ̂o by 30◦×30◦ , 1.11◦C KC2006 error, 1.43◦C Relative error ρ, 22%
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BU σ̂o by 30◦×30◦ , 0.91◦C KC2006 error, 1.16◦C Relative error ρ, 27%
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Ship SST error: Comparison with Kent&Challenor (2006)

All σ̂o by 30◦×30◦ , 1.07◦C KC2006 error, 1.26◦C

Relative error ρ, 22%
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ERI σ̂o by 30◦×30◦ , 1.11◦C KC2006 error, 1.43◦C Relative error ρ, 22%
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Ship SST error: Comparison with Kent&Challenor (2006)

All σ̂o by 30◦×30◦ , 1.07◦C KC2006 error, 1.26◦C Relative error ρ, 22%
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ERI σ̂o by 30◦×30◦ , 1.11◦C KC2006 error, 1.43◦C Relative error ρ, 22%
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BU σ̂o by 30◦×30◦ , 0.91◦C KC2006 error, 1.16◦C Relative error ρ, 27%
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Ship SST error: Comparison with Kent&Challenor (2006)

All σ̂o by 30◦×30◦ , 1.07◦C KC2006 error, 1.26◦C Relative error ρ, 22%
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ERI σ̂o by 30◦×30◦ , 1.11◦C KC2006 error, 1.43◦C Relative error ρ, 22%
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BU σ̂o by 30◦×30◦ , 0.91◦C KC2006 error, 1.16◦C Relative error ρ, 27%
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Ship SST error: Comparison with Kent&Challenor (2006)

All σ̂o by 30◦×30◦ , 1.07◦C KC2006 error, 1.26◦C Relative error ρ, 22%
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ERI σ̂o by 30◦×30◦ , 1.11◦C KC2006 error, 1.43◦C Relative error ρ, 22%
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Ship SST measurement error σ̂o, more methods

Electronic sensor, 3.7%, 0.35◦C Through hull sensor, 1.4%, 0.52◦C
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Global estimates of ship measurement error

Method name % of σ̂o ,◦C, by σ̂o ,◦C, by
observations 1◦×1◦ 30◦×30◦

engine room intake 45.061 1.13 1.11
empty method field 17.277 1.22 1.17
hull contact sensor 12.964 0.89 0.85
bucket 11.118 0.96 0.91
“other” 4.902 1.13 1.06
electronic sensor 3.707 0.35 0.39
“unknown or non-bucket” 2.436 0.60 0.79
through hull sensor 1.444 0.52 0.45
bait tanks thermometer 0.837 1.32 1.06
trailing thermistor 0.250 0.69 0.78
radiation thermometer 0.003 0.60 0.46

All 100.000 1.05 1.07
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Conclusions

Error model for monthly 1◦×1◦ averages of ship data from ICOADS
R.3.0 that allows for climatological biases and treats the remaining
errors as random was validated for 1992-2010 using ESA CCI SST
Analysis product (v01.0).

For 1◦×1◦ monthly bins with more than a single observation, errors
are within 20%(10%) of the model in more than 66%(50%) of all
locations with temporal coverage exceeding 50%(66%).
Another advantage made possible by using the analysis product in
this study, is the ability to split total random error estimates into the
sampling and measurement error components.
Seasonal variations in the error magnitude were traced to the
sampling error component, i.e., to the seasonality of true SST intrabin
variability; the seasonality of measurement error was not significant.
Measurement error estimates, including those obtained by ERI and
buckets, agree well with those by Kent and Challenor (2006).
Estimates for hull measurement types and for electronic sensors
(appearing to be the most accurate) were obtained as well.
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Publication

Results shown here partly are in a preprint accessible at ESSOAr:
Kaplan, A., Random error in space-time bin averages of sea surface
temperature o bservations from ships Earth and Space Science, in revision.

Accessible at
https://www.essoar.org/doi/abs/10.1002/essoar.10505940.1

Data sets are accessible at
http://rainbow.ldeo.columbia.edu/~alexeyk/ShipSSTerr/
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