Artifact Availability

Eclipse products for the Windows and Linux platforms into which OSATE and OSATE-DIM have
been installed are provided in a Zenodo repository (DOI: 10.5281/zenodo.6971721). In the
provided archive file, the eclipse directory contains the Eclipse product and the workspace
directory contains our test project as an artifact supporting the claims in the paper.

The steps to set-up the OSATE-DIM testing environment are as follows:
1. Unzip the archive.

2. Initialize the Eclipse IDE by clicking on the ‘osate’ executable file within the osate
directory of the archive.

3. You will be prompted by the OSATE2 Launcher, to select a workspace: Please select
the workspace directory which is provided within the archive.

OSATEZ2 Launcher X

Select a directory as workspace

OSATE2 uses the workspace directory to store its preferences and development artifacts.

Workspace: = osate2-2.11.0-vfinal-linux.gtk.x86_64/workspace - Browse...

Use this as the default and do not ask again

» Recent Workspaces

4. In the Eclipse IDE, within the AADL Perspective, you will import the test project by
clicking ‘Import Projects...” in the AADL Navigator or by clicking menu ‘File>>Import...".

In the Import wizard, select ‘General >> Projects from Folder or Archive’. Click ‘Next'.

¢ 3 Searc ect Ru)SA Analyses Hel
miig sHE D dIEBEBRi NP P ¥y @E® ! - | 8 €
2 AADL Nav x [AADL Dia = 8 Import o X

E%5% T @ & |select

AN
There are no projects in your workspace. Analyzes the content of your folder or archive File to find E "‘El
To add a project: projects and import them in the IDE.

% Create an AADL project Select animport wizard:

¥ Create a project...

ta Import projects...

type filter text

~ [=General
I Archive File
=2 Existing Projects into Workspace
L File System
[ClPreferences
&, working Sets

b = Git

In the ‘Import Projects from File System or Archive’ dialog, specify the Import source as
a Directory. The directory is contained within the workspace directory. It will look like this:

Import Projects from File System or Archive

o
Import Projects from File System or Archive —
This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE. f 4
Importsource: | O-vfinal-linux.gtk.x86_64/workspace/fr.mem4csd.osatedim.tests| ~ Directory... Archive...
type filter text elect A
Folder Import as Deselectn
| Ffr.mem4csd.osatedim.tests Eclipse e
1of 1 selected
Hide already open projects
Close newly imported projects upon completion

Use installed project configurators to:
Search for nested projects
Detect and configure project natures

Working sets

Add project to working sets

Show other specialized import wizards

@

<Back Next > Cancel

6. Click ‘Finish’.
7. You will now see the ‘frmem4csd.osatedim.tests’

project within the AADL Navigator.

Reproducing Results

1. Open the Plug-in Development Perspective by going to ‘Window >> Perspective >>
Open Perspective’. Select ‘Plug-in Development’ in the ‘Open Perspective’ dialog.

Open Perspective o X

AADL (default)
##Debug
[Git
a’ Java
¥ Java Browsing
T2’ Java Type Hierarchy
=" Modeling
@ Planning
{5 Resource
= Scripting
£%Team Synchronizing
\# Transformation Development

Use F2 to display the description for a selected perspective.

2. Unfold the ‘frmem4csd.osatedim.tests’ project and observe its structure:

v 122 fr.mem4csd.osatedim.tests
» =\ JRE System Library [JavaSE-1.8]
» =i Plug-in Dependencies
v [src
» £ frrmem4csd.osatedim.tests
~ [= Cases
b (= experiment
b (= mcdag
» (= ramses-ref-linux
[} AADL_Runtime.aadl
[RAMSES.aadl
» (= diagrams
b = META-INF
¥ (= run-configs
[2 TestDeltalnplace.testRAMSES.launch
|2/ TestState.testMCDAGStatke.launch
|2/ TestSkate.testRAMSESState.launch
b build.properties

B representations.aird

a. The src/ package contains the source code responsible for interfacing the
examples with the OSATE-DIM plug-in. It contains the classes and methods
which perform the changes/refinements on the instance models. Users can
observe each particular change and its program within this package, to also see
how OSATE-DIM can be interfaced with other AADL-based tools.

b. The cases/ directory contains the .aadl (Declarative) and .aaxI2 (Instance)
models that are used in the case-studies. The models are contained in specific
subdirectories according to the case-study (MC-DAG, RAMSES, Experiment)
and scenario (state-based, delta-inplace, delta-outplace)

c. To run the tests, go to the ‘Run >> Run Configurations’ menu : In the ‘Run
Configurations’ dialog box, you will see the JUnit tests associated with

Run Configurations o X
Create, manage, and run configurations —
Create a configuration that will launch a JUnit test. @
BEoEX BY~- Name: TestState.testMCDAGState
type filter text [E] Test | = Arguments | = JRE| %; Dependencies | %» Source B Environment| ™
=/ EASE Script © Runasingle test
< Eclipse Application Project: fr.mema4csd.osatedim.tests Browse...
¥ Java Applet
[T1Java Application Test class: fr.memdcsd.osatedim.tests TestState search...
~ JuJunit
JuTestDeltalnplace.testRAMSES Test method: testMCDAGState Search...
TestState.testMCDAGState
JuTestState.testRAMSESState Run all tests in the selected project, package or source folder:
Jt Junit Plug-in Test
& Launch Group

4 0sGi Framework
Include and exclude tags:

Test runner: Junit 4 -

Keep JUnit running after a test run when debugging

Show Command Line
Filter matched 11 of 11 items

d. Select one of them and Click ‘Run’

Observing the Results

1. After running a particular test, observe the newly created and modified files through the
Project Explorer view (in the ‘Plug-in Development’ perspective) or the ‘AADL Navigator’
view (in the AADL perspective).

& roject Explorer X ug-ins = = declarative.aa X o= Outline X L) z =
[Project Expl 2% Plug BES% Y § = 8 declarati dl = B I outli A& 8 =

package declarative
= public
with Data Model;
with RAMSES properties;

~ 2 fr.mem4csd.osatedim.tests
» =\ JRE System Library [JavaSE-1.8]
» =i Plug-in Dependencies

~ B Package Public declarative_public
O System main

B
H
T
g
3
2,

~ @ src) » O System cpu
. e system main
b H# fr.mem4csd.osatedim.tests end main; » @ System cpu.impl
~ [cases Processor core2
» (= experiment = system implementation main.impl 7 Process proc
subcomponents .
~ (= mcdag cpu: system cpu.impl {Scheduling Protocol => (Static); RAMSES properties::Is Processor => true;}; & Process proc.impl

b (= delta-inplace proc: process proc.impl {Deadline => 16@@ms;}; i Thread Group tg_phase1

g connections -
b & delta-outplace cpu_timing failure event proc_tfe: port cpu.timing failure event -> proc.tfe; Thread Group tg_phase1.impl
v & state cpu_hyperperiod proc recovery: port cpu.hyperperiod -> proc.recovery; Thread Stab
~ (= instances properties Thread Video

S RAMSES_properties::Execution_Slots => ([Computation Unit => reference (cpu.corel); Start_Time => 118@ms;
End_Time => 13@0ms;]) in modes (LO) applies to proc.tg_phasel.Log;
RAMSES properties::Execution Slots == ([Computation Unit == reference (cpu.corel); Start Time => 3@8ms;

4 declarative_main_impl_Instance_test.aaxl2 Thread Log

4% declarative_main_impl_Instance.aax|2 e 77 Thread Rec

[declarative_null.aadl e

End Time => 11€@ms;]) in modes (HI), ([Computation Unit => reference (cpu.corel);

Start_Time => 3@6ms; End Time

=> 906ms;]) in medes (LO) applies to proc.tg_phasel.Nav;

Processor corel

B declarative.aadl e RAMSES properties::Execution Slots => ([Computation Unit => reference (cpu.core2); Start Time => 6@60ms; Thread GPS
» (= ramses-ref-linux End Time => 860ms;]) in modes (LO) applies to proc.tg phasel.GPS; Thread Nav
% AADL_Runtime.aad!| S RAMSES properties::Execution Slots == ([Computation Unit => reference (cpu.core2); Start Time => @ms;] Memory internal_memory

End_Time => 66@ms;]) in medes

(LO) applies to proc.tg phasel.video;

2} RAMSES.aadl
b (= diagrams
b = META-INF
~ (= run-configs
2 TestDeltalnplace.testRAMSES. launch
2| TestState.testMCDAGState.launch
2] TestState.testRAMSESState.launch
1 build.properties
[representations.aird

Actual_Processor_Binding => (reference (cpu)) applies to proc;

RAMSES properties::Execution Slots == ([Computation Unit =» reference (cpu.core2); Start Time => 8@8ms;
End Time => 100@ms;]) in modes (LO) applies to proc.tg phasel.Rec;

Actual_Memory Binding => (reference (cpu.internal memory)) applies to proc;

RAMSES properties::Execution Slots => ([Computation Unit => reference (cpu.corel); Start Time => 13@0ms;
End Time => 168@ms;]) in modes (LO) applies to proc.tg phasel.Com;

RAMSES properties::Execution Slots == ([Computation Unit => reference (cpu.corel); Start Time => @ms;
End_Time => 360ms;]) in modes (HI), ([Computation_Unit == reference (cpu.corel); Start_Time => @ms;
End_Time => 30@ms;]) in modes (LO) applies to proc.tg phasel.Avoid;

RAMSES_properties::Execution Slots => ([Computation Unit => reference (cpu.corel); Start Time == 988ms;

End Time => 11@ems;]) in modes (LO), ([Computation Unit => reference (cpu.corel
Start_Time == 110@ms; End_Time == 1606ms;]) in modes (HI} applies to proc.tg_phasel.Stab;

end main.impl;

Thread Com
Thread Avoid

2. The tests also generate a comparison report as a test of the correctness of the
de-instantiation. This comparison report is generated and reported within the Console
view.

3. When de-instantiation takes place, OSATE-DIM also logs information to the console for
each performed step.

Running OSATE-DIM Independently

The user may want to test the de-instantiation of their own custom models. In such a case, the
user can use the graphical user interface provided by OSATE-DIM to affect de-instantiation.
This interface is described in the Tool Demonstration paper, Mittalet al. “OSATE-DIM Solves the
Instance Model-View Update Problem in AADL”, provided as extra notes for artifact evaluation.

