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Abstract In Menashe Streams managed aquifer recharge (MAR) site (Israel) desalinated seawater (DSW)
is recharged since 2015, alongside ephemeral stream flows. This study quantifies the uncertainty of predictions
of the mixing of these two water sources in the aquifer. Mixing estimations are based on the significant
difference in the content of stable water isotopes between the water sources. Uncertainties driven from aquifer
heterogeneity and climate variability are compared. We use realistic flow and isotope-transport models in

a multiple-realization stochastic approach considering space and time for the two drivers of uncertainty.
Predictive uncertainty is evaluated via comparison of the temporal coefficient of variation of four realization
ensembles. Results show that the impact of subsurface structure uncertainty on the predictions is small,
compared to the uncertainty resulting from variability related to future hydrometeorological conditions. A
generalized conclusion from this result is the difficulty to make long-term predictions of the mixing ratios,
regardless of the level of certainty in the subsurface structure interpretation, when one source of recharge water
has significant annual fluctuations. Implication on prediction of magnesium concentration is demonstrated

as an example for prediction uncertainty of concentration of a solute of interest in one of the MAR sources.
Furthermore, we show that considering a single source MAR site, uncertainty in mixing of the MAR water
and native groundwater in wells upgradient of the recharge location is higher than prediction uncertainty in
wells located downgradient. Insights are also drawn regarding the change in uncertainty with distance from the
recharge pond of the DSW.

1. Introduction

In the last decades, managed aquifer recharge (MAR) is a continuously growing practice, as part of the efforts to
tackle water scarcity in various regions of the world. In these operations, water is recharged artificially, via desig-
nated ponds, canals, or wells, into the aquifer, which serves as a subsurface reservoir that has evident economic
advantages over an above-surface alternative. The source of the recharged water is project-specific and depends
on the purpose of the MAR operation, and can include, among others, river water, municipal wastewater, and
rainfall runoff (Dillon et al., 2020). At times, water from an atypical source is recharged, such as excess volumes
of desalinated seawater (DSW), the production of which has become abundant in the last decade, particularly in
arid and semiarid regions (Jones et al., 2019).

Since the 1960s, Menashe Streams MAR site in Israel provides a cost-efficient subsurface storage solution for
runoff water that otherwise would be lost to sea. In 2015, it became a double-source MAR site, since posttreated
reverse-osmosis DSW is recharged, in addition to ephemeral stream flows.

The introduction of DSW as source water for MAR is not unique to the Menashe Streams MAR site ("Menashe").
In Gulf countries, where climate is arid and DSW serves as the main source of water supply, this practice is
common—with field experiments in Kuwait, Qatar, and Abu-Dhabi taking place in 1960s, 1980s, and early
2000s, respectively (Abdulrazzak, 1997; Hutchinson, 1998; Stuyfzand et al., 2017). Parimalarenganayaki (2021)
concludes that soil aquifer treatment (SAT) with DSW is the most feasible of eight investigated MAR technics
applied in Gulf countries. Zekri et al. (2021), using optimization techniques, conclude that 84% of the annual
surplus of produced DSW in the metropolitan area of Muscat, Oman can be reused via storage and recovery,
instead of returned to the sea, thus providing net benefit value of around $16 million per year. The Israeli Medi-
terranean case is conceptually different than that of most Gulf countries because DSW is injected to a naturally
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potable-water aquifer rather than a saline aquifer; hence, regional spreading and mixing of the DSW in the aquifer
is desired (e.g., for remineralization).

Whether an MAR site is initially designed, or redesignated to operate as a double source, later, during operation
years, there is a need to understand the affect it will have on the system in terms of mixing of the two types of
water in the aquifer. In the case of Menashe, this need is emphasized by public health concerns caused by the
lack of Mg?* in recharged DSW (Awvni et al., 2013; Rosen et al., 2018) and its potential remineralization due to
mixing with naturally fresh mineral rich groundwater (Ganot et al., 2017; Ganot, Holtzman, Weisbrod, Russak,
et al., 2018; Ronen-Eliraz et al., 2017).

Scenarios, such as this, should be thoroughly examined (e.g., via reactive transport models) to support decision
making at the site. In particular, stochastic models should be developed to evaluate the uncertainty in predic-
tions. In applications of remediation techniques, seawater intrusion, aquifer depletion, and others, the advan-
tages of stochastic modeling are widely discussed (Carle & Fogg, 2020; Fiori et al., 2016; Gotovac et al., 2009;
Rajaram, 2016; Sanchez-Vila & Fernandez-Garcia, 2016) and applied (He et al., 2013, 2014, 2015; Moreno &
Paster, 2018; Pool et al., 2015; Teramoto et al., 2021), often as a means to account for the modeling uncertainty
which can be caused by various factors, e.g., subsurface heterogeneity, geologic interpretation, and model param-
eterization. An extensive literature collection deals with deterministic modeling of processes in MAR sites, as
reviewed by Ringleb et al. (2016). However, in contrast to the above mentioned subbranches of hydrogeology,
only a handful of authors apply stochastic or probabilistic approaches and account for the modeling uncertainty at
MAR sites (Maples et al., 2019, 2020; Rodriguez-Escales et al., 2017, 2018; Sasidharan et al., 2019; Vanderzalm
et al., 2013), and even then, mainly synthetic or hypothetical MAR sites are used for the investigations.

Maliva (2015) suggests that it would be beneficial to apply stochastic methods when modeling MAR systems, in
order to adequately represent spatial heterogeneity in aquifer properties. However, another major source of uncer-
tainty is introduced by the variability of climate, which can affect operational decision making at an MAR site. In
MAR systems, dramatic hydrodynamic conditions in the subsurface are common, where very high recharge rates
during relatively short periods of time occur. For example, in the Menashe Streams MAR site, a column of >20 m
of water has been recharged at a 10.7 ha infiltration pond within a period of a few weeks (Ganot et al., 2017),
compared to ~20 cm yr~! of natural recharge, in which only a fraction of the direct rainfall reaches the water table.

In this work, we perform numerical experiments to enhance our understanding of modeling uncertainty in an
MAR site. The experiments are conducted using a new predictive model of the Menashe Streams MAR site, built
in a stochastic Monte Carlo framework incorporating hydrologic and water-isotope field data, and insight from
recorded runoff recharge data from over 50 years of MAR operation.

The goal of this work is to incorporate the two main sources of predictive uncertainty in such an MAR site: aqui-
fer heterogeneity and the variability of climatic conditions, in a stochastic approach, and to assess and compare
their individual influence on predictive uncertainty of flow and transport modeling in (a) various locations in the
MAR site (e.g., with growing distance from the infiltration ponds) and (b) different scenarios of MAR operation
(e.g., climate-dependent operation with runoff recharge versus stable operation with DSW only).

We address these issues of two-source mixing within the aquifer, keeping in mind that mixing of native ground-
water with recharged DSW can represent a general case in which water from a new (additional) source is intro-
duced into an existing single source MAR site. Similar two-source mixing cases are becoming more common due
to the worldwide expansion of MAR and integrated water resources management (e.g., Zhang & Wang, 2021).
To the best of our knowledge, the work presented here is the first to deal with issues of predictive uncertainty
pertaining to a case study of a large-scale operating MAR site.

The paper is organized as follows. Section 2 contains a description of Menashe MAR site and of the hydrological
and isotope data that supports the study, followed by a comprehensive description of the numerical experiment
development process. Section 3 presents the obtained results which are discussed within the context of various
topics of interest (e.g., varying distances, types of uncertainty, etc.), as well as a discussion regarding the applica-
bility and the generalization of the presented approach. Finally, conclusions are drawn in Section 4.
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2. Materials and Methods
2.1. Site Description

The Menashe Streams MAR site, located above the northern part of the unconfined, sandy Israeli (Mediterra-
nean) coastal aquifer, was designed and constructed in the 1960s as part of an effort to maintain water security in
a semiarid Mediterranean climate. Winter ephemeral streams from a 110 km? Menashe Hills catchment, where
runoff is high and infiltration is low, are diverted via a 16-km long channel, into a settling pond and from there,
depending on water level and turbidity, flow is channeled into three infiltration ponds (referred to in this work
as ponds #1, #2, and #3; Figure 1) via a system of hydraulic control structures. The site is situated on a sandy
dune landscape at a mean elevation of 30 m above sea level and is dominated by a Mediterranean climate, with
average temperatures of 20.2 °C and a mean precipitation of 556 mm yr~!. The aquifer, stretching over an area of
2,000 km? along the coast, has thickness varying between 200 m on the coastline (western boundary) and several
meters at the eastern boundary. It is composed of Pleistocene calcareous sandstone, sand and interleaved with
continuous marine, and continental silt and clay lenses, overlying a highly impermeable Saqiye clay beds of the
Yafo Formation (Kurtzman et al., 2012; Figure 1c). The regional mean groundwater level fluctuates between 0
and 8 m above sea level due to intense winter recharge of runoff water (historic annual mean of 10 million cubic
meters (Mm?)) and summer production fluxes driven by dozens of designated wells (Figure 1). Since 2015,
annual mean of ~2.1 Mm? reverse-osmosis DSW from the Hadera Desalination Plant (total annual produc-
tion ~130 Mm? yr~!) constitutes an additional source of water for the MAR site, usually, when maintenance is
conducted at the National Water Carrier (days-weeks/year). Therefore, a certain annual volume is bypassed to
pond #3, due to its geographical proximity to the DSW pipeline (Figure 1), which de-facto turns Menashe MAR
site into a double-source MAR site.

2.2. Data
2.2.1. Sources and Sinks

Annual recharge data from the two sources (DSW and rainfall runoff, Table 1) was provided by Mekorot (the
national water company). Monthly production data collected at 48 public and private wells were provided by the
Israeli Water Authority and Mekorot (Table 1; per well production rates are not presented herein due to confiden-
tiality), along with head data from several selected wells (Section 2.3.4). Rainfall data from a rain gauge located
in proximity to the site (at Gan Shmuel) was acquired from the Israeli Meteorological Service website. Table 1
includes 3 years of published data (Ganot, Holtzman, Weisbrod, Bernstein, et al., 2018) and 2 years of newly
acquired data (2018-2019).

2.2.2. Water Isotopes

In a biannual sampling campaign (2018-2019), water samples from five active production wells located in the
vicinity of the infiltration ponds (M7, M21, M2, M9, and M6; Figure 1) were collected in sealed polyethylene
tubes and kept on ice until reaching the lab. Care was taken to avoid headspace and prevent evaporation. Samples
were analyzed for stable water isotopes by a cavity ring-down spectroscopy (CRDS) analyzer (L2130-i, Picarro)
in the Zuckerberg Institute for Water Research (ZIWR) at Ben Gurion University and results are presented in
Table 2. The isotopic values are expressed in 8?H (%o), and calculated relative to a standard as follows:

Rsamp]e

standard

Ssampie (in %o) = ( - 1> % 1,000 (1

where R = 2H/'H is the ratio between heavy and light isotopes. Calibration was conducted using the international
VSMOW-SLAP scale with an accuracy of +0.5%o. The desalinated water carries the relatively enriched (heavy)
signature of the east Mediterranean seawater and remains high during the reverse-osmosis desalination process.
Therefore, 8?H can be used to trace the spreading and mixing of the DSW plume within the aquifer, following
a binary system assumption, which was proven to be suitable for the Menashe MAR site by Ganot, Holtzman,
Weisbrod, Bernstein et al. (2018). According to this approach, a significant contrast exists between the enriched
(heavy) DSW (8°H = 11.3%o) and the depleted (light) natural water (i.e., fresh groundwater sampled before
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Figure 1. Map of the study region. (a) Location of the Israeli Coastal Aquifer (yellow) and model domain (black polygon). (b) The Menashe Streams managed aquifer
recharge (MAR) site. Rainfall runoff from an upstream north-eastern catchment is diverted into the settling and infiltration ponds, and surplus desalinated seawater
(DSW) is diverted to pond #3 from the Hadera Desalination Plant (Background aerial: © Google Earth 2021). (c) Representative geological cross-section (source:
Hydrological Service of Israel). Cross-section location marked with dashed red line at (b).
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Table 1 2015, runoff and rain; 8*H = —22.7 %o). The §?H value of each water sample
Annual Recharge Volumes in Menashe MAR Site in 2015-2019, From Two containing a mixture between the two endmembers is then used to establish
Sources, and Annual Production Volumes the normalized concentration of DSW (“Cy.” can also be referred to as

Annual recharge volumes in Mm3 “DSW fraction” or “mixing ratio”) in the sample (Equation 2 and Table 2).

The data presented in Table 2 supplement the existing published data (Ganot,

Year Rrii;l(f?lll DSW P;'r(:;il;crtii\?;;r:”t/{lrz 3(£rgo$ E;ltl;ii)c Holtzman, Weisbrod, Bernstein, et al., 2018) from the years 2015-2017
2015 32 2.6 139 Cour = 6 Hsample — 6" Hireswater « 100 @)
2016 0 1.3 15.4 62Hpsw — 6*Hireshwater

2017 1.7 0.6 14.4

2018 7.8 2.2 15.6

2019 13.1 3.7 17.1 2.3. Model Development

First the model domain and the stochastic hydrogeological framework is

presented (Figure 2; Section 2.3.1), followed by a description of the model's
predictive phase, which builds on randomized time series of runoff recharge (Section 2.3.2). A numerical exper-
iment consisting of four scenarios is described in Section 2.3.3 (Figure 3). The predictive stage in all scenarios
of the numerical experiment follows a 5-year historic stage (2015-2019), which is described in Section 2.3.4 and
was used to calibrate and validate the properties of the four categorical variables that were used in all the reali-
zations of the aquifer. Additionally, this single calibrated and validated realization (referred to as the “validated
realization”) is applied as the single aquifer realization in the scenario accounting for the climatic uncertainty (the
blue scenario, Section 2.3.3).

2.3.1. Model Domain and Stochastic Subsurface Model

The entire model domain covers ~70 km? (see domain boundaries in Figure 1) with a 70 x 70 m horizontal cell
size. In the vertical direction, the aquifer thickness varies between 50 and 100 m, which are divided into 24 layers
with a z-direction cell length of maximum 5 m. These cell dimensions were chosen to be able to represent aquifer
heterogeneity with sufficient accuracy while keeping a balanced trade-off with computational costs. In total, the
computational 3D grid consists of 470,000 cells.

The subsurface is represented by four categorical variables (i.e., hydrogeological units, hydrofacies, Table 3),
as interpreted from over 100 borehole logs drilled during numerous geological studies conducted in the
region over the decades (Figure 1b). The Transition Probability (T-ProGS) method, which is a Markov chain
approach to geostatistical analysis and simulation of spatial distributions of categorical variables (Carle, 1999),
was applied to generate the hydrogeological model of the subsurface in a single (Ganot, Holtzman, Weisbrod,
Bernstein, et al., 2018) and multirealization approach, all conditioned to the log data. In the single realization
approach subsurface model, constructed in a previous study (Ganot, Holtzman, Weisbrod, Bernstein, et al., 2018;
Section 2.3.4), the model domain includes two subdomains (~2/3 western and 1/3 eastern, location of separation
plane is marked with a dashed black line; Figure 1b) in order to increase hydrogeological realism, in which an
evident difference exists in characteristics between two statistical subregions, as reflected in well logs' data (i.e.,

;i;)l\e/azlues at Five Sampled Wells (Years 2018-2019) and the Respective DSW Concentrations

Well M7 Well M21 Well M2 Well M9 Well M6
Date 8%H (%o0) Cpsw (%) 8%H (%o) Cpsw (%) 8%H (%o) Chsw (%) 8%H (%o) Cpsw (%) 8%H (%0)  Cpsw (%)
01 May 2018 -17.7 14.7 -17.8 14.3 -9.2 39.5 -10.3 36.4 -10.0 37.2
14 October 2018 —-16.1 19.3 -16.9 17.1 —6.7 46.9 -11.9 31.8 -11.2 33.7
14 May 2019 -12.1 31.1 —12.1 31.1 -11.0 342 —55 50.6 -7.0 46.0
31 December 2019 —-16.3 18.8 -12.8 29.0 - - =15 44.8 -74 44.8

Note. Well M2 malfunctioned in the second campaign of 2019.
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Table 3
Hydrofacies Characteristics and Their Validated Model Parameters
Hydrogeological unit 1 2 3 4
Rock type Gravel, beach rock, calcareous Calcareous sandstone, sand ~ Loam, sandy loam, loamy Clay and silt of marine or
sandstone with shells and gravel sand, marine silty sand terrestrial origin
Unit proportions in eastern 7.7 35.7 37.0 19.6
subdomain (%)
Unit proportions in western 2.5 712 17.3 9.0
subdomain (%)
Unit proportions in entire 4 59 23.5 13.5
domain (%)
Vertical mean lens length* 5.45 14.6 6.87 4.63
(m)
Horizontal/vertical lens 10.0 19.4 10.0 70.0
ratio® (-)
Horizontal K (K interval®) 50 (25, 75) 12 (6, 18) 6(3,9) 0.01 (0.005, 0.015)
(md™)
Vertical K (m d=") 12.5 3 1.5 0.01
Specific storage (m~") 0.002 0.0015 0.001 0.001
Specific yield 0.35 0.12 0.12 0.1
Longitudinal dispersivity (m) 20 20 20 20
Porosity 0.35 0.19 0.17 0.1

aWestern subdomain. *See Section 2.3.3.

higher % of clay in the east; Figure 1c and Table 3). The western and eastern subdomains were generated sepa-
rately, as following: (a) geostatistical properties of the categorical variables of the eastern and the western subdo-
mains were calculated using log data collected from boreholes to the east and west of the subdomain separation
plane, respectively (Figure 1b). (b) Two aquifer realizations were generated, conditioned to logs of the eastern
and western subdomains, respectively. (c) The two realizations were superposed in a way that to the east of the
separation plane, the eastern realization prevails and to the west of it—the western realization prevails. Thus, a
single realization was created, which is conditioned to the entire set of log data. The significant differences in
volumetric proportions of the four hydrofacies between the two subdomains (Table 3) are indicative of the statis-
tical difference between the subdomains, which is accounted by the above-described superposition method. The
calibrated hydrogeologic properties of the single subsurface model are presented below (Table 3, Section 2.3.4).

Herein, for the multirealization approach, 30 equally probable subsurface realizations are generated via T-ProGS
(Figure 2). Thirty was found to be a sufficient number of subsurface realizations to reach statistical convergence
as shown in Appendix A. The above described east-west separation was kept. We note that the eastern part of
the flow domain has very little effect on the stochastic model results at locations of interest near the infiltration
ponds and westward. The most eastern well analyzed is M21 which is 17 grid cells far from the east-west sepa-
ration line (Figures 1 and 2). Thus, the eastern part of the single validated realization from Ganot, Holtzman,
Weisbrod, Bernstein et al. (2018) was inserted in all realizations to the east of the separation plane, replacing the
coinciding generated subset of cells (Figure 2). Furthermore, the calibrated values of the hydrogeologic proper-
ties were adopted from the single realization model (Ganot, Holtzman, Weisbrod, Bernstein, et al., 2018) to the
multirealization model.

Table 3 presents a summary of the types and proportions of the four hydrofacies used to represent the subsur-
face, their main geostatistical properties (vertical mean lens length, i.e., the T-ProGS equivalent to the classic
correlation length), and other properties calibrated in Ganot, Holtzman, Weisbrod, Bernstein et al. (2018, see
Section 2.3.4). Finally, we note that model boundaries are deliberately located far away from the subdomain of
interest (proximity of the infiltration ponds), thus model results are not affected by issues of seawater intrusion
and tides.
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Figure 2. Nine random subsurface realizations (out of 30) used for scenarios with a variable subsurface (5x vertical magnification). The settling and infiltration ponds
of Menashe managed aquifer recharge (MAR) site are marked in blue for spatial reference (see Figure 1). The four colored facies' hydraulic conductivities correspond
with the hydrological units in Table 3.

2.3.2. Uncertainty of Runoff Recharge and the Transient Model Stages

All predictive simulations in this study consist of two subsequent stages: (a) a 5-year historic stage (2015-2019,
“stage I,” see Section 2.3.4) and (b) a 25-year long projection phase (2020-2044, “stage II,” described herein).
Stage II incorporates the following assumptions and properties: (a) Specified time-varying heads at boundary
wells (i.e., wells located on the bounding polygon of the model and provide the temporal data for the specified
head boundary condition) are set to reoccur annually according to the monthly observed heads of the latest avail-
able data (year 2019). In preliminary simulations (not described here), the model was found to be not sensitive
to other possible settings of well boundary conditions (e.g., constant head values which are set as the means of
available data at each well), due to the remoteness of the boundaries of the model from the subdomain of inter-
est. (b) Production rates are annually reoccurring, with the same spatial and temporal distribution as those of
2019, i.e., 17.1 Mm3 total annual production. (c¢) The managed recharge of DSW is reoccurring annually, exclu-
sively into pond #3 and with a constant volume which is the annual mean of 2015-2019, i.e., 2.14 Mm3. (d) In
scenarios with double-source recharge during stage II, annual runoff recharge is predetermined as follows: (I) A
gamma distribution (applicable to distributions of annual river flow and precipitation; Markovic, 1965) is fitted
to the histogram of 50 years of historic recharge data from the Menashe MAR site (Kurtzman & Guttman, 2020)
resulting in shape and rate parameters of 1.552 and 0.156, respectively (Figure 4a). (I) A time series of 25 years
of runoff recharge volume is randomized to fit the gamma distribution (Figure 4). For the stochastic-climatic
ensemble, 30 such equally probable time series were generated (Figure 4b). It should be noted that 30 was found
to be a sufficient amount of realizations for our purpose as shown in Appendix A. (III) Annual runoff recharge
volumes of each year are distributed among the settling ponds, pond #1 and pond #2 according to Equation 3,
where Vr;, Vsp,, Vi, and V5, are recharge volumes (Mm?) in year i at the entire site, the settling pond, infiltration
pond #1 and infiltration pond #2, respectively (Figure 1). In short, runoff is distributed so that the first 3 Mm3
are assigned to the settling pond while any volumes above 3 Mm?3 are divided in between the two infiltration
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Table 4
Simulated Ensembles and Their Characteristics
Ensemble (color) Subsurface structure Aquifer parameters Stage II runoff recharge Stage II DSW recharge
Single Sub-Multiple RR (blue) Validated realization (Ganot, Holtzman, Validated, constant Varying randomized time series Constant annual

Weisbrod, Bernstein, et al., 2018)
Multiple Sub-Single RR Stochastic realizations
(green)
Multiple Sub-0 RR (yellow) Stochastic realizations

Multiple Sub Rand K-0 RR Stochastic realizations
(magenta)

at each simulation (Figure 4b)

Validated, constant Single randomized time series at Constant annual
each simulation

Validated, constant No runoff recharge Constant annual

Randomized inner-facies K No runoff recharge Constant annual

ponds. (IV) Annual volumes of runoff and DSW recharge were temporally distributed over each single year

with reoccurring typical tendencies of recharge fluxes (according to the infiltration-recharge calibrated model of
Ganot et al. (2017)). (e) Direct precipitation is applied uniformly on the entire model domain with reoccurring
monthly rates (i.e., means of historic monthly data with a 0.4 recharge coefficient, which is a realistic coefficient

for sparsely vegetated, sandy soil in the Mediterranean climate, used in similar regions to the studied aquifer)

2.3.3. Simulated Ensembles

Vipi = V1. Vri<3
Vii=V2=0
3 Vipi =3 Vri>3¢
Vi =0.6(Vr;—3)
V2, =04V —3)

L J

3

In order to address the issues of interest, numerical experiments were conducted, consisting of four simulation

ensembles, as following (summarized in Table 4 and Figure 3): (a) Single Sub-Multiple RR (blue ensemble in

following plots) consists of 30 simulations with the same reoccurring (validated) subsurface realization and a

different randomized runoff recharge scenario at stage II for each simulation (Figure 4b). Mean annual runoff
recharge of the different realizations varies between 7.7 and 12.9 Mm3. (b) Multiple Sub-Single RR (green
ensemble): 30 stochastic subsurface realizations (Figure 2) and a single, reoccurring, scenario of randomized

runoff recharge at stage II (see Figure 4c). Runoff recharge realization #3 was chosen since its mean annual

runoff recharge of 9.9 Mm?3 (st. dev. = 5.5), is close to the historic mean value. Ensembles (a) and (b) are

designed in a way that allows to account for an individual source of uncertainty by “canceling” the other in

a given ensemble. However, the decision of using a single reoccurring realization of the subsurface (in (a))

and of runoff recharge time series (in (b)), is accounted for by means of a sensitivity analysis of the ensemble

to a chosen deterministic “reality.” In both ensembles (a) and (b), the same analysis was performed with a

different, arbitrary deterministic single realization which did not affect the statistics of the ensemble and main

conclusions of this study. (c) Multiple Sub-0 RR (yellow ensemble): 30 stochastic subsurface realizations
and a single source of recharge (DSW) at stage II. (d) Multiple Sub Rand K-O RR (magenta ensemble): 30
stochastic subsurface realizations with hydraulic conductivity randomized within the category (hydrofacies)

and a single source of recharge (DSW) at stage II. Parameter values used for the ensembles (a), (b), and (c), as
shown in Table 3, are as calibrated in Ganot, Holtzman, Weisbrod, Bernstein et al. (2018) and validated here
(Section 2.3.4). Ensemble (d) was constructed in order to account for the uncertainty presented by well-log

geological interpretation when using discrete categorical variables, and for the fact that values which are cali-

brated for a certain subsurface realization are applied (in ensembles (b) and (c)) with other equally probable

realizations, without recalibration. In ensemble (d), at each realization, each grid cell is assigned a value of

hydraulic conductivity, which is randomized from a uniform distribution according to its preassigned facies.

The minimum and maximum bounds of the distribution for each facies were set as 50% and 150% of the
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Figure 3. Schematic of the conducted numerical experiment with four ensembles.

validated values of horizontal hydraulic conductivity (Table 3), to create ranges of values that would remain
realistic.

In total, 120 simulations were conducted using the Python scripting package FloPy (Bakker et al., 2016), incorpo-
rating MODFLOW-2005 (Harbaugh et al., 2017), and MT3DMS (Zheng & Wang, 1999) for flow and transport,
respectively. Each simulation consists of 2,125 stress periods: 1,825 daily stress periods at stage I followed by
300 monthly stress periods at stage II.

2.3.4. The Calibrated/Validated Realization

The hydraulic and geostatistical properties of the generated subsurface realizations (Figure 2 and Table 3) were
adopted (Section 2.3.1) from a single realization that was calibrated to 2015-2017 data (Ganot, Holtzman, Weis-
brod, Bernstein, et al., 2018) and validated herein with the new 2018-2019 data. The single realization flow
and transport model were run with MODFLOW (Harbaugh et al., 2017) and MT3DMS (Zheng & Wang, 1999)
codes, respectively, with daily stress periods and the following boundary conditions: specified hydraulic head
of 0 was set at the aquifer western boundary at sea level (due to the nonsensitivity of the model to western head
boundary conditions, tidal conditions were not implemented) and a time-varying head was specified at north-
ern, southern, and eastern aquifer boundaries according to head observations at wells located in the vicinity of
the boundaries. The same type of boundary conditions was used for the stochastic realization runs of stage II
(Section 2.3.2). Inputs of managed recharge for the calibrated realization model were distributed between ponds
#1 and #2 as described in Equation 3. Infiltration pond #3 is strictly used for DSW recharge. Inputs of pumping
rates and operation times of production wells distributed throughout the region were taken according to data
provided by the Water Authority and Mekorot for the calibration and validation period (2015-2019). In the water
isotope-transport model, following Section 2.2.2, mass influx boundary conditions of 100% were set at the sea
boundary and for pond #3 recharge (which receives only DSW), and 0% elsewhere (ambient natural groundwater,
runoff recharge, and direct rainfall-recharge). These percentages indicate the concentration of DSW in the water.
Figures 5a and 5b show simulated head results and available observed values at wells M8 and M5 (Figure 1). To
account for missing values in these two wells and provide further validation assurance, an additional observa-
tion well was used, well T1, which was not used during the calibration process of the model. Results shown in
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Figure 4. (a) Gamma distribution PDF (red) fitted to the histogram of 50 years of runoff recharge (gray bins). (b) Thirty synthetic time series of annual runoff recharge
volumes, randomized from gamma distribution fitted to historic data. Each stacked bar represents the total annual runoff recharge value for the entire site, used as input
for ensemble Single Sub-Multiple RR (blue ensemble). Each of the 25 columns within a single bar represent a year of stage II (20202044 from the bottom up). (c) A
single synthetic time series of annual recharge values, reoccurring at stage II of each simulation of the Multiple Sub-Single RR (green) ensemble. Spatial distribution
(by the single pond) is assigned according to Equation 3 (Figure 1).
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Figure 5. (a—c) Observed and simulated head values at wells M8, M5, and T1, respectively. Wells M8 and M5 were used for calibration (2015-2017) and validation
(2018-2019). Well T1 (sampled monthly) was not used for calibration, thus the whole 5 years serve as a validation period. Highly scattered values and missing data at
wells M8 and M5 are due to periodic pumping and malfunction.

Figure 5c present a good fit between observed and simulated heads as indicated by the correlation coefficients
between observed and simulated heads: 0.98, 0.95, and 0.94 for the calibration (n = 42), validation (n = 25),
and entire period (n = 67), respectively. Larger error observed in 2019 is on account of the dramatic hydrologic
conditions of this year, compared to calibration years in which there was much smaller runoff recharge (Table 1).

Validation of the transport model was performed against isotope data (Table 2) from five wells collected during
four additional field campaigns, performed in May 2018, October 2018, May 2019, and December 2019. In the
model, tracer concentrations are normalized according to Equation 2. A reasonably good fit between observed
and simulated concentrations is presented in Figure 6 with correlation coefficient values of 0.75, 0.81, and 0.88
in the calibration (n = 21), validation (n = 19), and total period (n = 40), respectively. The DSW breakthrough
curves of the 5-year phase of the calibration and consecutive validation years (2015-2019; “stage I”’) are presented
in Section 3.

3. Results and Discussion

In the following sections and figures, resulting heads and mixing ratios are in units of meters and %, in a
sample, respectively. The predictive uncertainty of heads and mixing ratios is presented here via the transient
coefficient of variation (CV, i.e., standard deviation of a population normalized by its mean) of mixing ratios
(“CV _one.psw ) at several selected locations during stage II.

3.1. Distance From Recharge Pond

We investigate groundwater heads and DSW to runoff water mixing ratios as well as the uncertainty of their
predictions at varying distances from the infiltration ponds. Synthetic Monitored Locations (SML) are defined
(Figure 1). These SML are six model cells located within a distance between 1.0 and 2.75 km downgradient
(west) from an assumed central point in pond #3 (where the DSW is recharged), with 0.35 km separating any two
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Figure 6. Comparison of observed and simulated desalinated seawater (DSW) concentration values at five wells used for
transport model validation.

consecutive SML cell centers. Vertically, the SMLs are located at a middomain layer (layer 12 out of 24) and were
chosen at locations without pumping wells in their proximity, in order to depict the state of the aquifer in regions
not directly affected by pumping.

In Figure 7, heads and mixing ratios (proportional to 8?H values; Table 2, Equation 2) at the six locations are
presented. The closest location (SML #1) was chosen at 1 km, which is the minimum distance to have 0 DSW
concentration at the beginning of stage II. It is clearly seen in Figures 7a—7f that predicted head results are promi-
nently more variable for the “Single Sub-Multiple RR” (blue) ensemble compared to other ensembles (regardless
of distance). From Figures 7g-71, it is evident that the first arrival of the DSW plume progresses ~70 m yr~! in
all simulated ensembles (typical order of magnitude of velocity in this aquifer ~100 m yr~! far from pumping
wells, e.g., Kurtzman et al., 2012).

Figure 8 presents the CV of DSW concentrations as a function of time for the four different simulation ensembles.
Before the first arrival of DSW to the SML, there is no uncertainty associated with the mixing ratio, i.e., CV is 0
initially. Then, CV rises to a peak a few years after the first arrival.

A peak CV value of 2.0 is found for the Single Sub-Multiple RR (blue) ensemble (Figure 8a), at a distance of
1 km, ~2 years into the predictive stage, where it is larger than other ensembles' CV by up to a factor of 2.6, at
this distance. The blue peak drops significantly with distance (by ~100% within 1 km; Figure 8a) indicating the
decreased impact of climatic variability (represented by runoff recharge) on the uncertainty at larger distances
from the recharge source. However, this is not the case in the Multiple Sub-Single RR (green) ensemble, where
maximum peak CV values drop after the first SML but then rise back up and are generally between 0.6 and 0.9,
with no evident trend which proves that uncertainty of predictions is not necessarily proportional to distance,
when the aquifer heterogeneity is the main source of uncertainty.
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Figure 7. Transient groundwater heads (a—f) and fractions of desalinated seawater (DSW) values (g1 and Equation 2) at Synthetic Monitored Locations (SMLs) 1-6,
respectively, as a function of time, for the four simulation ensembles. The cells are located at increasing distances from pond #3 (DSW infiltration pond), from 1 to
2.75 km at SMLs 1 and 6, respectively (350 m between two consecutive cells, see Figure 1).
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Figure 8. Coefficient of variation (CV) of desalinated seawater (DSW) concentrations as a function of time at increasing distances from pond #3 for the predictive
stage (2020-2044), considering the four simulation ensembles: (a) double-source managed aquifer recharge (MAR) ensembles (i.e., with DSW and runoff recharge) and
(b) single constant source MAR ensembles (i.e., DSW only). Note difference in vertical axis scales.

Peak CV values of all three ensembles with deterministic recharge time series are stable over distance (green
scenario in Figure 8a and both scenarios in Figure 8b), while the stochastic recharge scenario is not (blue scenario;
Figure 8a), due to high variability in annual recharge volumes.

3.2. Climate Driven Versus Subsurface Driven Uncertainty

Two main drivers of uncertainty that can be discussed in the context of predictive uncertainty of subsurface
mixing processes at an MAR site are uncertainty attributed to the heterogeneity of the subsurface and the uncer-
tainty arising from climatic variability (which affects recharge rates). In order to discuss the separate contribution
of each driving source, we compare the results of two ensembles: Single Sub-Multiple RR (blue ensemble) and
Multiple Sub-Single RR (green ensemble).

Figures 9a—9¢ present simulated and observed DSW fraction (2015-2019) and predictions (2020-2044) in the
water produced (simulated) at downgradient production wells M2, M9, and M6 as well as upgradient wells M7
and M21 (Figure 1). A measure for the degree of uncertainty is the envelope of probability, i.e., the envelope
surrounding the clustered curves in these figures, for each ensemble. A much narrower envelope of probability
is seen for the Multiple Sub-Single RR (green) ensemble, which leads to lower CV values in Figures 9f-9j, in
comparison to the Single Sub-Multiple RR (blue) ensemble in all wells throughout the entire stage II simulation.
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Figure 9. (a—e) Resulting concentrations of desalinated seawater (DSW) as simulated in wells M7, M21, M2, M9, and
predictive stage.
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An exception is seen in the two first years of the predictive stage at wells M9 and M6 (Figures 9i-9j). In the green
ensemble, the maximum CV peaks (CV = 1.0) can be observed in well M2 (Figure 9h). In all other locations,
and apart from these peaks, the green ensemble presents relatively low predictive uncertainty, which leads to
a conclusion that well-scale mixing predictions can be made confidently at a double-source MAR site, when
recharge volumes from both sources are predefined, regardless of structural uncertainty. The significant uncer-
tainty caused by the randomization of future annual recharge of runoff volumes at each realization can be further
noticed by the sudden rise of CV in all downgradient wells around the beginning of the second half of stage I in
the Multiple Sub-Single RR (green) ensemble. This coincides with the increase in mean annual runoff recharge
volume (Figure 4c), reoccurring at each simulation at this ensemble, from 7.8 Mm?3 at the first half of stage II
(2020-2031) to 12.2 Mm? at the second half (2032-2044).

3.3. MAR Source Type

To demonstrate the importance and usefulness of the new model, we present an implementation of an additional
scenario represented by the Multiple Sub-0 RR (yellow) ensemble, as follows. We assume that due to a hypothet-
ical reason (e.g., land use policies) it is decided that only pond #3 remains operative and DSW is the sole source
of recharge with a constant annual flux. However, production rates at wells remain the same. In this ensemble,
as seen in Figure 9, DSW fractions at downgradient wells (M2, M6, and M9) stabilize at a value above 80%
after ~10 years into stage II, maintaining a sustainable recharge and recovery operation with easily controlled
concentrations and low predictive uncertainty. These high fractions of DSW in downgradient wells are close to
the deterministic prediction for these wells predicted by Ganot, Holtzman, Weisbrod, Bernstein et al. (2018).
The similarity is due to the fact that in Ganot, Holtzman, Weisbrod, Bernstein et al. (2018) the deterministic
prediction was based on reoccurring 2015 MAR operation, in which runoff recharge was small and was all in the
settling pond whereas DSW recharge was relatively high (Table 1), not very far from the MAR scenario of the
yellow ensemble here. On the other hand, at upgradient wells (M7 and M21), DSW fraction of produced water
is fluctuating annually between 10% and 45% due to incoming fluxes of natural groundwater from the east and
the predictive uncertainty is higher (Figure 9, yellow and magenta). Moreover, comparing CV results of Multiple
Sub-Single RR (green) and Multiple Sub-0 RR (yellow) ensembles, in which the representation of structural
uncertainty is equivalent, but recharge sources and volumes differ, suggests that structural uncertainty has a larger
effect on predictive uncertainty in a double-source MAR site in comparison to a single source MAR site, mainly
in the second part of stage II, where runoff recharge volumes are higher. This is inconclusive, however, due to
similar CV values at the first part of stage II, when runoff recharge is moderate.

3.4. Hydraulic Conductivity Uncertainty

The role of hydraulic conductivity uncertainty in predictions is investigated via the Multiple Sub Rand K-0 RR
(magenta) ensemble in Figure 9. The similarity between CV results of this ensemble and the Multiple Sub-0
RR (yellow) ensemble at all locations and times (Figures 9f-9j) are indicative of the fact that representation of
the additional structural uncertainty caused by inner facies variability of hydraulic conductivity, in most cases,
does not impact the predictive uncertainty. The inner facies variability causes only slight increase in uncertainty
at well MO close to the breakthrough of the new source of recharge water (Figures 9d and 9i). Furthermore, in
the four closest SMLs to pond #3 (e.g., within 2.05 km from the pond), a slight decrease occurs in the CV peaks
(Figure 8b).

Another conclusion arising from the comparison of Multiple Sub Rand K-O RR (magenta) ensemble and the
Multiple Sub-0 RR (yellow) ensemble regards the calibration procedure. Their similarity suggests that (at least
in the case of our model) hydraulic conductivity values of a hydrofacies subsurface model, which are calibrated
and validated against transient data for a certain aquifer realization, can be confidently applied for other, equally
probable realizations generated with the same geostatistical parameters, without the need to recalibrate for each
realization. This is a result of the finding that heterogeneity is more dominantly represented by the four facies
distribution in space, than the inner facies heterogeneity.
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Table 5
Predicted Probabilities (P) to Meet the Recommended Minimum Concentration for [Mg?*] in Produced Water in Five
Different Wells and Four Simulated Ensembles (P = # of Realizations [Mg?**] > 10.0 mg L~'/# of Realizations in Ensemble)

M7 M21 M2 M9 M6

Average [Mg?*] before DSW recharge (mg L~!) 14 11.2 11 9.7 11.9
P ([Mg?**] > 10 mg L) in January 2030
Single Sub-Multiple RR (blue) 1 0.70 0.56
Multiple Sub-Single RR (green) 1 0 0.06
Multiple Sub-0 RR (yellow) 1 0 0
Multiple Sup Rand K-0 RR (magenta) 0.96 0 0

S O o ©
S © o ©

Note. See Figure 1 for wells and DSW infiltration pond location.

3.5. Applicability of Modeling Approach

The stochastic experiment presented in this work can be applicable to other multisource MAR sites—existing
or in the design stage. In case of a design of a new MAR site, the described approach that suggests isolating the
uncertainty from different sources within different ensembles (e.g., green and blue), is intended, among others,
to provide practitioners a tool, to get initial understanding of the uncertainty levels embedded within different
sources. Such insight can help optimize resources allocation in the design stage of a new site. For example, when
only subsurface related uncertainty is considered, one can decide that the uncertainty levels of the long-term
predictions of mixing ratios of the two recharged water types are too high, and try reducing them by maximiz-
ing subsurface investigation (e.g., borehole data, geophysical campaign, etc.). However, one might realize that
allocating more resources to subsurface exploration, would be wasteful, as it will not contribute to reducing the
uncertainty embedded in hydroclimatic conditions of prediction years. We are aware, however, that sites with
such a rich history of recorded data as Menashe are not a commodity. Where time series of runoff recharge are
not available because of lack of recorded data, rainfall-runoff models can be used to generate them (considering
rainfall data is much more common).

In existing single-source sites, where there is an intention to add recharge water from an additional source (e.g.,
DSW; Zhang & Wang, 2021), the operator should take public health issues in considerations, as mixing of the
DSW with naturally fresh groundwater reduces the Mg?* concentration within the produced water. In this work,
this can be demonstrated via well M2, which prior to DSW recharge campaigns, produced water with 11 mg L~!
[Mg?*] (above minimum World Health Organization (WHO) recommendation of 10 mg L~' [Mg?*] for public
health considerations; Rosanoff, 2013), while the mean predicted Mg?* concentrations for January 2030 are
lower: 9.49 mg L~! (CV = 1.03) and 9.61 mg L~! (CV = 0.18), in the blue and green ensembles, respectively.
These values were calculated under the assumption of conservative behavior of Mg?* in the aquifer after it
reaches 2.8 mg L~! in the shallow groundwater under the infiltration pond (Ganot, Holtzman, Weisbrod, Russak,
et al., 2018). Probabilities for exceeding a 10 mg L~ threshold in an arbitrary future time (January 2030) in five
wells for the four different ensembles are presented in Table 5. The issue of Mg?* levels dropping below the mini-
mum WHO recommendation can be clearly seen via the low probabilities in the table. Such analysis is advan-
tageous for stake-holders and represents a more realistic picture of reality when it is presented in a probabilistic
approach, considering various sources of uncertainty.

The problem of an MAR water carrying contaminants and their dilution in the aquifer is of special interest in
MAR systems that uses the subsurface for SAT of low-quality water. A good example for dealing with mixing
and its uncertainty of tracers of secondary effluents in wells surrounding the SAT infiltration pond of the Shafdan
reclamation system (Icekson-Tal et al., 2003) is given by Gasser et al. (2010). The analysis of the dilution uncer-
tainty of the relatively nonreactive pharmaceutical-carbamazepine is dealt in a steady-state approach. This fits the
relatively steady state of the MAR-SAT source there (Tel Aviv Metropole's secondary effluents), and surrounding
diluting aquifer which is relatively balanced with small fluctuations of natural recharge and abstractions. On the
contrary, in the double-source MAR site analyzed here the quantity of the diluting water (runoff) is extremely
variable in time and uncertain (Figure 4). Concentrating the recharge of runoff from ~100 km? watershed to
~40 ha infiltration basins amplifies the climatic uncertainty to overrule the structural uncertainty in wells close to
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the infiltration basin in our case (Figure 9). Nevertheless, this climatic uncertainty declines with growing distance
from the infiltration basins (Figure 8a). Hence, the modeling approach demonstrated in this study will be more
advantageous in ephemeral runoff MAR sites.

4. Conclusions

The main result of this work is that in a double-source MAR site, when well-scale water mixing predictions are
required, they can only be made with sufficient certainty (e.g., CV . psw < 1.0 in the Menashe MAR site, the
highest CV value for the green ensemble; Figure 9h) if no climate-dependent uncertainty is involved. Subsurface
heterogeneity is found to be an uncertainty driver of lesser significance than climate variability; however, the ratio
between the peaks of uncertainty caused by the two drivers decreases and the similarity between them increases
with growing distance from the pond in which the additional MAR source is recharged (Figure 8a).

When it is important for an MAR site operator to achieve certain mixing thresholds of the two water sources (e.g.,
to meet water-quality recommendations), it is beneficial if the process is simulated stochastically, via multiple
aquifer realizations, in order to account and quantify hydrogeological uncertainty. This fundamental benefit of
stochastic modeling is apparent in the results of Figures 9a—9e, where observed values are more likely to be
represented by the envelope of the stochastic results, than by the single validated realization (deterministic)
model. However, with a source of recharge water which is strongly fluctuating annually (e.g., runoff), it is very
difficult to make any long-term predictions of the mixing ratios, regardless of the level of certainty in the subsur-
face structure interpretation. Thus, when there is a need to maintain within defined mixing thresholds, recharge
volumes of the various sources should not only be planned ahead and controlled, but also, preferably, without
large annual variations.

This work also shows how stochastic modeling can be used to address a pertinent issue of minimum Mg?* levels
recommended in drinking water. Results show that due to mixing of the low Mg?* level DSW with native aquifer
water, there is a high probability of overall Mg?* concentrations dropping below the recommended minimum.
Although for this analysis we only consider mixing, ignoring enrichment of DSW which takes place in the deep
aquifer, it is a step toward further planned research, which will incorporate reactive transport in addition to
mixing.

The obvious drawback of this study is its case-uniqueness; nevertheless, it can provide valuable insights for MAR
site planners and operators in locations with similar climatic and hydrogeological conditions, which is probably
where such double-source schemes would be considered in the first place. Moreover, the presented methodology
for assessing uncertainty from different sources (i.e., structural and climatic) for a double-source MAR site can
be generalized (at least) for other MAR sites, existing or designed, with two sources of recharged water, where
one source is with a lesser volume (i.e., the DSW in our case), when the question of interest is either the dilution
of recharged contaminated water from the secondary source, or like in our case, the remineralization (e.g., with
Mg) of demineralized recharged water.

In future work, potential reactive mineral enrichment of the injected DSW will be quantified stochastically and
the impact on predictive uncertainty will be investigated, a process which will be strongly supported by lessons
learned from this work.

Appendix A: Statistical Conversion

The coefficient of variation of the mixing ratios “CV_ . pew. 18 used in this study to quantify uncertainty of the
DSW breakthrough curve. The statistically accepted large sample size 30 was chosen for the number of realiza-
tions in all ensembles. Herein, we test whether 30 is a large enough sample or does the statistics converge at this
number of realizations. Figure A1 presents the CV_ . 4w Values in the locations that produce the most uncertain
results (well M2, SML1, SML2), both for the “blue” and for the “green” ensembles, where the 30 realizations
represent 30 various runoff recharge scenarios, and 30 various subsurface representations, respectively. The tran-
sient CV values were calculated from varying ensemble sizes, with n =5, 10, 15, 20, 25, and 30 realizations from
the respective ensemble.
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Figure Al. (a—f) Evolution of the coefficient of variation of the desalinated water breakthrough values at well M2, SML 1 and SML 2 (from top to bottom) for “blue”
(left) and “green” (right) ensembles, with varying ensemble sizes ().

As the differences between the CV values at n = 25 and at n = 30 become negligible, for both ensembles, and the
CV values stabilize sufficiently for the cause of our study, it can be safely stated that n = 30 is a sufficient number
of realizations to reach statistical convergence. It should be noted that increasing the number of realizations is
always important for the sake of improving statistical convergence, however, taking in account the computational
costs of the highly spatially and temporally discretized model such as here, n = 30 introduces balanced trade-off
between accuracy (e.g., statistical convergence) and computational costs.

RUDNIK ET AL.

19 of 21

35U9D1 ] SUOWILLIOD SAITER1D 3|edt|dde a1 Ag paUBA0B 8.2 DRI YO ‘98N J0 3| 10§ AReIq1T UIIUO AS|IA UO (SUOTPUOD-PUE-SWLBYWOD"AS | 1M AReq1puluo//Sdiy) SUOIIPUOD PU. WS | 841995 *[2202/0T/22] U0 AkeiqiTauliuo AS1IM ‘pess| aUeiyoo0 Ad TrZTE0MMTZ02/620T 0T/10p/wod A8 i Akeiq putiuo'sandnfe//sdny woiy popeojumoq ' ‘220z ‘€26, 76T



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR031241

Acknowledgments

The research leading to these results
received funding from the European
Union's Horizon 2020 Research and
Innovation Programme under the Marie
Sktodowska-Curie Grant Agreement No.
814066 (Managed Aquifer Recharge Solu-
tions Training Network—MARSoluT).

Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

Data Availability Statement

The underlying research data and code can be obtained from the following link: https://doi.org/10.5281/
zenodo.5512830.

References

Abdulrazzak, M. J. (1997). Water supply augmentation through artificial groundwater recharge techniques: Water Sciences & Technology Asso-
ciation. In Proceedings of the Third Gulf Water Conference, Muscat, Sultanate of Oman (pp. 241-281).

Avni, N., Eben-Chaime, M., & Oron, G. (2013). Optimizing desalinated seawater blending with other sources to meet magnesium requirements
for potable and irrigation waters. Water Resources, 47, 2164-2176. https://doi.org/10.1016/j.watres.2013.01.018

Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., & Fienen, M. N. (2016). Scripting MODFLOW model development
using Python and FloPy. Groundwater, 54(5), 733-739. https://doi.org/10.1111/gwat.12413

Carle, S. F. (1999). T-PROGS: Transition Probability Geostatistical Software (p. 84). Davis, CA: University of California. Retrieved from http://
gmsdocs.aquaveo.com/t-progs.pdf

Carle, S. F., & Fogg, G. E. (2020). Integration of soft data into geostatistical simulation of categorical variables. Frontiers of Earth Science, 8,
565707. https://doi.org/10.3389/feart.2020.565707

Dillon, P., Fernandez Escalante, E., Megdal, S. B., & Massmann, G. (2020). Managed aquifer recharge for water resilience. Water, 12(7), 1846.
https://doi.org/10.3390/w12071846

Fiori, A., Cvetkovic, V., Dagan, G., Attinger, S., Bellin, A., Dietrich, P., et al. (2016). Debates—Stochastic subsurface hydrology from theory to
practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is character-
ization and stochastic theory good for? Water Resources Research, 52, 9228-9234. https://doi.org/10.1002/2015WR017525

Ganot, Y., Holtzman, R., Weisbrod, N., Bernstein, A., Siebner, H., Katz, Y., & Kurtzman, D. (2018). Managed aquifer recharge with reverse-os-
mosis desalinated seawater: Modeling the spreading in groundwater using stable water isotopes. Hydrology and Earth System Sciences, 22,
6323-6333. https://doi.org/10.5194/hess-22-6323-2018

Ganot, Y., Holtzman, R., Weisbrod, N., Nitzan, I., Katz, Y., & Kurtzman, D. (2017). Monitoring and modeling infiltration-recharge dynam-
ics of managed aquifer recharge with desalinated seawater. Hydrology and Earth System Sciences, 21, 4479—4493. https://doi.org/10.5194/
hess-21-4479-2017

Ganot, Y., Holtzman, R., Weisbrod, N., Russak, A., Katz, Y., & Kurtzman, D. (2018). Geochemical processes during managed aquifer recharge
with desalinated seawater. Water Resources Research, 54, 978-994. https://doi.org/10.1002/2017WR021798

Gasser, G., Rona, M., Voloshenko, A., Shelkov, R., Tal, N., Pankratov, I., et al. (2010). Quantitative evaluation of tracers for quantification
of wastewater contamination of potable water sources. Environmental Science & Technology, 44(10), 3919-3925. https://doi.org/10.1021/
es100604c¢

Gotovac, H., Cvetkovic, V., & Andricevic, R. (2009). Flow and travel time statistics in highly heterogeneous porous media. Water Resources
Research, 45, W07402. https://doi.org/10.1029/2008 WR007 168

Harbaugh, A. W., Langevin, C. D., Hughes, J. D., Niswonger, R. N., & Konikow, L. F. (2017). MODFLOW-2005 version 1.12.00, the U.S.
Geological Survey modular groundwater model. U.S. Geological Survey Software. https://doi.org/10.5066/F7RF5S7G

He, X., Hgjberg, A. L., Jgrgensen, F., & Refsgaard, J. C. (2015). Assessing hydrological model predictive uncertainty using stochastically gener-
ated geological models: Hydrological Modelling Using Stochastic Geological Models. Hydrological Processes, 29, 4293-4311. https://doi.
org/10.1002/hyp.10488

He, X., Koch, J., Sonnenborg, T. O., Jgrgensen, F., Schamper, C., & Christian Refsgaard, J. (2014). Transition probability-based stochas-
tic geological modeling using airborne geophysical data and borehole data. Water Resources Research, 50, 3147-3169. https://doi.
org/10.1002/2013WR014593

He, X., Sonnenborg, T. O., Jgrgensen, F., Hgyer, A.-S., Mgller, R. R., & Jensen, K. H. (2013). Analyzing the effects of geological and parameter
uncertainty on prediction of groundwater head and travel time. Hydrology and Earth System Sciences, 17, 3245-3260. https://doi.org/10.5194/
hess-17-3245-2013

Hutchinson, C. B. (1998). Simulation of aquifer storage recovery of excess desalinated seawater. U.S. Geological Survey Open-File Report
98-410; USGS: Al Ain area, Abu Dhabi Emirate. Retrieved from https://pubs.usgs.gov/of/1998/0410/report.pdf

Icekson-Tal, N., Avraham, O., Sack, J., & Cikurel, H. (2003). Water reuse in Israel-the dan region project: Evaluation of water quality and relia-
bility of plant's operation. Water Science and Technology: Water Supply, 3(4), 231-237. https://doi.org/10.2166/ws.2003.0067

Jones, E., Qadir, M., vanVliet, M. T. H., Smakhtin, V., & Kangmu, S. (2019). The state of desalination and brine production: A global outlook.
Science of the Total Environment, 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076

Kurtzman, D., & Guttman, J. (2020). Managed aquifer recharge with various water sources for irrigation and domestic use: A perspective
of the Israeli experience. In A.Mukherjee, B. R.Scanlon, A.Aureli, S.Langan, H.Guo, & A. A.McKenzie (Eds.), Global groundwa-
ter, source, scarcity, sustainability, security, and solutions, (pp. 597-607). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/
B978-0-12-818172-0.00044-X

Kurtzman, D., Netzer, L., Weisbrod, N., Nasser, A., Graber, E. R., & Ronen, D. (2012). Characterization of deep aquifer dynamics using
principal component analysis of sequential multilevel data. Hydrology and Earth System Sciences, 16, 761-771. https://doi.org/10.5194/
hess-16-761-2012

Maliva, R. G. (2015). Managed aquifer recharge: State-of-the-art and opportunities. Water Science and Technology: Water Supply, 15, 578-588.
https://doi.org/10.2166/ws.2015.009

Maples, S. R., Fogg, G. E., & Maxwell, R. M. (2019). Modeling managed aquifer recharge processes in a highly heterogeneous, semi-confined
aquifer system. Hydrogeology Journal, 27, 2869-2888. https://doi.org/10.1007/s10040-019-02033-9

RUDNIK ET AL.

20 of 21

5UD1T SUOWILIOD A1) 3|edt|dde a3 Aq pausenob ae sapie YO ‘esn JO sajn Joj ARid i auliuQ AS|IAA UO (SUO I} IPUOD-pue-SWLIBY WD A3 | 1M AReiq 1 BUUO//SANY) SUOIPUOD pue SWiB | 3Y} 89S *[2202/0T/.2] uo ArigiauliuQ A ‘peis| aueiydod Ag THZTE0HMTZ02/620T OT/I0p/wod A8 im ARlg1puluosgndnfe//sdny wouy papeoumod ‘S ‘220z ‘€L6. 76T


https://doi.org/10.5281/zenodo.5512830
https://doi.org/10.5281/zenodo.5512830
https://doi.org/10.1016/j.watres.2013.01.018
https://doi.org/10.1111/gwat.12413
http://gmsdocs.aquaveo.com/t-progs.pdf
http://gmsdocs.aquaveo.com/t-progs.pdf
https://doi.org/10.3389/feart.2020.565707
https://doi.org/10.3390/w12071846
https://doi.org/10.1002/2015WR017525
https://doi.org/10.5194/hess-22-6323-2018
https://doi.org/10.5194/hess-21-4479-2017
https://doi.org/10.5194/hess-21-4479-2017
https://doi.org/10.1002/2017WR021798
https://doi.org/10.1021/es100604c
https://doi.org/10.1021/es100604c
https://doi.org/10.1029/2008WR007168
https://doi.org/10.5066/F7RF5S7G
https://doi.org/10.1002/hyp.10488
https://doi.org/10.1002/hyp.10488
https://doi.org/10.1002/2013WR014593
https://doi.org/10.1002/2013WR014593
https://doi.org/10.5194/hess-17-3245-2013
https://doi.org/10.5194/hess-17-3245-2013
https://pubs.usgs.gov/of/1998/0410/report.pdf
https://doi.org/10.2166/ws.2003.0067
https://doi.org/10.1016/j.scitotenv.2018.12.076
https://doi.org/10.1016/B978-0-12-818172-0.00044-X
https://doi.org/10.1016/B978-0-12-818172-0.00044-X
https://doi.org/10.5194/hess-16-761-2012
https://doi.org/10.5194/hess-16-761-2012
https://doi.org/10.2166/ws.2015.009
https://doi.org/10.1007/s10040-019-02033-9

A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR031241

Maples, S. R., Foglia, L., Fogg, G. E., & Maxwell, R. M. (2020). Sensitivity of hydrologic and geologic parameters on recharge processes
in a highly heterogeneous, semi-confined aquifer system. Hydrology and Earth System Sciences, 24, 2437-2456. https://doi.org/10.5194/
hess-24-2437-2020

Markovic, R. D. (1965). Probability functions of best fit to distributions of annual precipitation and runoff (Hydrology paper, No. 8). Fort Collins,
CO: Colorado State University.

Moreno, Z., & Paster, A. (2018). Prediction of pollutant remediation in a heterogeneous aquifer in Israel: Reducing uncertainty by incorporating
lithological, head and concentration data. Journal of Hydrology, 564, 651-666. https://doi.org/10.1016/j.jhydrol.2018.07.012

Parimalarenganayaki, S. (2021). Managed aquifer recharge in the Gulf countries: A review and selection criteria. Arabian Journal of Geosciences,
46, 1-15. https://doi.org/10.1007/313369-020-05060-x

Pool, M., Carrera, J., Alcolea, A., & Bocanegra, E. M. (2015). A comparison of deterministic and stochastic approaches for regional scale inverse
modeling on the Mar del Plata aquifer. Journal of Hydrology, 531, 214-229. https://doi.org/10.1016/j.jhydrol.2015.09.064

Rajaram, H. (2016). Debates—Stochastic subsurface hydrology from theory to practice: Introduction. Water Resources Research, 52,9215-9217.
https://doi.org/10.1002/2016 WR020066

Ringleb, J., Sallwey, J., & Stefan, C. (2016). Assessment of managed aquifer recharge through modeling—A review. Water, 8, 579. https://doi.
0rg/10.3390/w8120579

Rodriguez-Escales, P., Canelles, A., Sanchez-Vila, X., Folch, A., Kurtzman, D., Rossetto, R., et al. (2018). A risk assessment methodology to
evaluate the risk failure of managed aquifer recharge in the Mediterranean Basin. Hydrology and Earth System Sciences, 22, 3213-3227.
https://doi.org/10.5194/hess-22-3213-2018

Rodriguez-Escales, P., Fernandez-Garcia, D., Drechsel, J., Folch, A., & Sanchez-Vila, X. (2017). Improving degradation of emerging organic
compounds by applying chaotic advection in Managed Aquifer Recharge in randomly heterogeneous porous media. Water Resources Research,
53, 4376-4392. https://doi.org/10.1002/2016 WR020333

Ronen-Eliraz, G., Russak, A., Nitzan, I., Guttman, J., & Kurtzman, D. (2017). Investigating geochemical aspects of managed aquifer recharge
by column experiments with alternating desalinated water and groundwater. Science of the Total Environment, 574, 1174-1181. https://doi.
org/10.1016/j.scitotenv.2016.09.075

Rosanoff, A. (2013). The high heart health value of drinking-water magnesium. Medical Hypotheses, 81(6), 1063—1065. https://doi.org/10.1016/j.
mehy.2013.10.003

Rosen, V. V., Garber, O. G., & Chen, Y. (2018). Magnesium deficiency in tap water in Israel: The desalination era. Desalination, 426, 88-96.
https://doi.org/10.1016/j.desal.2017.10.027

Sanchez-Vila, X., & Fernandez-Garcia, D. (2016). Debates—Stochastic subsurface hydrology from theory to practice: Why stochastic modeling
has not yet permeated into practitioners? Water Resources Research, 52, 9246-9258. https://doi.org/10.1002/2016 WR019302

Sasidharan, S., Bradford, S. A., éimfmek, J., & Kraemer, S. R. (2019). Drywell infiltration and hydraulic properties in heterogeneous soil profiles.
Journal of Hydrology, 570, 598—611. https://doi.org/10.1016/j.jhydrol.2018.12.073

Stuyfzand, P., Smidt, E., Zuurbier, K., Hartog, N., & Dawoud, M. (2017). Observations and prediction of recovered quality of desalinated seawa-
ter in the strategic ASR project in Liwa, Abu Dhabi. Water, 9, 177. https://doi.org/10.3390/w9030177

Teramoto, E. H., Engelbrecht, B. Z., Gongalves, R. D., & Chang, H. K. (2021). Probabilistic backward location for the identification of multi-source
nitrate contamination. Stochastic Environmental Research and Risk Assessment, 35, 941-954. https://doi.org/10.1007/s00477-020-01966-y

Vanderzalm, J. L., Page, D. W., Barry, K. E., & Dillon, P. J. (2013). Application of a probabilistic modelling approach for evaluation of nitrogen,
phosphorus and organic carbon removal efficiency during four successive cycles of aquifer storage and recovery (ASR) in an anoxic carbonate
aquifer. Water Resources, 47, 2177-2189. https://doi.org/10.1016/j.watres.2013.01.038

Zekri, S., Triki, C., Al-Maktoumi, A., & Bazargan-Lari, M. R. (2021). Optimization of storage and recovery of seasonal surplus desalinated water
in a coastal aquifer. Arabian Journal of Geosciences, 14, 100. https://doi.org/10.1007/s12517-020-06340-4

Zhang, Z., & Wang, W. (2021). Managing aquifer recharge with multi-source water to realize sustainable management of groundwater resources
in Jinan, China. Environmental Science and Pollution Research, 28, 10872—10888. https://doi.org/10.1007/s11356-020-11353-3

Zheng, C., & Wang, P. P. (1999). MT3DMS: A modular three-dimensional multi-species transport model for simulation of advection, dispersion,
and chemical reactions of contaminants in ground-water systems. Documentation and user’s guide. In Contract Report SERDP-99-1. US Army
Engineer Research and Development.

RUDNIK ET AL.

21 of 21

85U8D|7 SUOLIWIOD dAIeID) 3|cedljdde auy Aq pausenoh afe sapie YO ‘8sn JO sajni J0j AriqiT aUIUO A3]I/N UO (SUO}IPUOI-PUE-SWLIB)LIOD A3 | 1M AReiq 1 pU T UO//SANY) SUORIPUOD pUe SWis | 3y 38S “[2Z02/0T/.2] Uo AkiqiauluQ 4|1 ‘ pess| auelydod Aq THZTE0MMTZ0Z/620T OT/I0p/wod A8 |1m Areiq jeuljuosqndnBe//sdny wo.j pepeojumoq ‘S ‘2202 ‘€L6.v76T


https://doi.org/10.5194/hess-24-2437-2020
https://doi.org/10.5194/hess-24-2437-2020
https://doi.org/10.1016/j.jhydrol.2018.07.012
https://doi.org/10.1007/s13369-020-05060-x
https://doi.org/10.1016/j.jhydrol.2015.09.064
https://doi.org/10.1002/2016WR020066
https://doi.org/10.3390/w8120579
https://doi.org/10.3390/w8120579
https://doi.org/10.5194/hess-22-3213-2018
https://doi.org/10.1002/2016WR020333
https://doi.org/10.1016/j.scitotenv.2016.09.075
https://doi.org/10.1016/j.scitotenv.2016.09.075
https://doi.org/10.1016/j.mehy.2013.10.003
https://doi.org/10.1016/j.mehy.2013.10.003
https://doi.org/10.1016/j.desal.2017.10.027
https://doi.org/10.1002/2016WR019302
https://doi.org/10.1016/j.jhydrol.2018.12.073
https://doi.org/10.3390/w9030177
https://doi.org/10.1007/s00477-020-01966-y
https://doi.org/10.1016/j.watres.2013.01.038
https://doi.org/10.1007/s12517-020-06340-4
https://doi.org/10.1007/s11356-020-11353-3

	Exploring Predictive Uncertainty at a Double-Source Managed Aquifer Recharge Site via Stochastic Modeling
	Abstract
	1. Introduction
	2. Materials and Methods
	2.1. Site Description
	2.2. Data
	2.2.1. Sources and Sinks
	2.2.2. Water Isotopes

	2.3. Model Development
	2.3.1. Model Domain and Stochastic Subsurface Model
	2.3.2. Uncertainty of Runoff Recharge and the Transient Model Stages
	2.3.3. Simulated Ensembles
	2.3.4. The Calibrated/Validated Realization


	3. Results and Discussion
	3.1. Distance From Recharge Pond
	3.2. Climate Driven Versus Subsurface Driven Uncertainty
	3.3. MAR Source Type
	3.4. Hydraulic Conductivity Uncertainty
	3.5. Applicability of Modeling Approach

	4. Conclusions
	Appendix A: Statistical Conversion
	Conflict of Interest
	Data Availability Statement
	References


