
NetOr: An Inter-domain Vertical Service
Orchestrator for 5G Networks

João Alegria, Rafael Direito, Daniel Gomes, Daniel Corujo, Diogo Gomes

Instituto de Telecomunicações and Universidade de Aveiro, Portugal
Email: {joao.p, rdireito, dagomes, dcorujo, dgomes}@av.it.pt;

Abstract—Current 5G vertical service orchestration solutions
suffer from several limitations, mainly: (i) lack of standardiza-
tion, (ii) monolithic architectures, and (iii) low support for inter-
domain scenarios, for instance. This paper proposes the devel-
opment of a new 5G vertical service orchestration platform that
solves these problems and supports intricate use cases. This new
system, named NetOr, will inherit many of the abstractions and
functionalities already employed while tackling the mentioned
issues while providing increased maintainability, flexibility, and
scalability, since a Service-Oriented Architecture was followed.

Index Terms—5G, Orchestration, NFV, Vertical, Slicing, Multi-
Domain, Inter-domain, Micro-Services

I. INTRODUCTION

Besides being the new generation of radio networks, Fifth
Generation (5G) technologies also consider some core con-
cepts such as Service-based Architectures, Software-Defined
Networks (SDN), Network Functions Virtualization (NFV),
and End-to-End (E2E) Network Slicing [1]. These technolo-
gies favor the virtualization of specialized network hardware,
decreasing the infrastructure’s cost while increasing the num-
ber of scenarios supported without changing the infrastructure.
With the evolution in NFV and the efforts to support and
integrate such technologies, scenarios and services with higher
complexity appear.

Some of the more intricate and discussed are the inter-
domain scenarios, where the E2E service spans across multiple
administrative domains, increasing the service’s coverage area.
Solutions and systems supporting these scenarios already exist,
but their support is limited and still in an embryonic phase.
Thus, a new inter-domain approach is required to deploy a
fully-fledged E2E inter-domain vertical service across different
administrative domains with minimal prior knowledge of each
other. This mechanism heavily relies on the network slicing
capabilities of segmenting the entire network, ranging from
Radio Access Network (RAN), Transport Networks (TNs), and
Core Network (CN). In this scenario, the network slice is the
entity that composes and manages different network services
or other network slices, thus having a key role in establishing
the inter-domain vertical services.

To provide distributed inter-domain vertical services, Verti-
cal Service Orchestrators can be put to use, since they easily
handle the instantiation and management of these services.
Although, several known problems (discussed in Section II)
may jeopardize the correct establishment and management of
E2E inter-domain services.

With this paper, we aim to tackle the deficiencies of the most
modern Vertical Service Orchestrators by presenting a Proof-
of-Concept (PoC) for a new E2E Slicing Platform developed
through a service oriented architecture, ultimately enabling
increased maintainability, flexibility, and scalability. Regarding
the paper’s structure, it is organized as follows. Section II
addresses and compares the State of the Art (SoA) in regards to
modern Vertical Service Orchestrators. Section III introduces
NetOr, a Network Orchestrator that aims to fix the problems
encountered and described in Section II, hoping to advance the
SoA regarding E2E Network Slicing. The mechanisms used
to provide multi-domain E2E slices are described in Section
IV, and their results are then presented in Section V. Lastly,
Section VI presents some concluding remarks.

II. VERTICAL SERVICE ORCHESTRATORS

This Section presents an analysis of several Vertical Service
Orchestrators, detailing how they orchestrate E2E Vertical
Services and presenting their advantages and drawbacks.

A. Openslice

Created as a 5GinFire 1 spinoff, Openslice takes advan-
tage of the most relevant components for an open-source
Operations Support System (OSS)/Bussiness Support System
(BSS) platform. It also supports onboarding Virtual Net-
work Functions (VNFs), Containerized Network Functions
(CNFs) and Network Services (NSs), instantiating NSs, and
has TMForum2 Open APIs support regarding Service Catalog
Management, Ordering, and more.

The Openslice system defined some abstractions over the
VNFs, CNFs and NSs complexities, allowing verticals to
request a given service in the most seamless way possible,
focusing only on the problem’s logic. The first was the Service
concept, which consists of the abstraction of all the underlying
complexities and enables providing a single, coherent, and
correct service, ready to be instantiated and deployed. Other
concepts are the Resource Facing Services (RFSs) that encap-
sulate all services directly connected to the infrastructure (such
as the Network Service Descriptors (NSDs)) and Customer
Facing Services (CFSs), which encapsulate all services and
specifications that directly interact with the user. Both RFSs
and CFSs are fundamental components of the Service concept.

1https://5ginfire.eu/
2https://www.tmforum.org/



To create a Service, a CFS Specification needs to be defined,
possibly having Service Specification Relationships attached
to interconnect the RFSs to CFSs [2]. Additionally, it has 2
specialized web portals.

As advantages, this platform has the high-level Service ab-
straction, the separation of customer/resource facing services,
and the specialized distinct Web Portals. On the other hand, the
lack of network slicing capabilities, the minimal multi-domain
support, and the monolithic architecture are the disadvantages
of this system.

B. ONAP

Open Network Automation Platform (ONAP) is an open-
source platform that provides real-time and policy-driven or-
chestration, management, and automation of network and edge
computing services, enabling rapid management of services
and their lifecycles [3]. It supports E2E 5G Network Slicing,
defining an E2E Slice as a network service composed of
RAN, TN, and CN slice sub-nets. To provide Network Slicing,
ONAP relies on the three layers of slice management functions
defined in 3GPP TR 28.801 [4], providing an internal Com-
munication Service Management Function (CSMF), a Network
Service Management Function (NSMF), and a Network Slice
Subnet Management Function (NSSMF). Although, ONAP
also allows the usage of external NSSMFs, which is made
possible through an adaptor specifically designed to support
this functionality. ONAP also offers transparent monitoring of
the Network Slice Instances (NSIs), through the slice manager
interfaces that expose a vast collection of Key Performance
Indicatorss (KPIs), enabling the continuous and exhaustive
monitoring of these slices. On top of these KPIs, it is possible
to configure several SLAs and policies, which ONAP will then
manage in order to prevent the degradation of the NSIs [5].

To achieve all this, the creation, management, and operation
of network slices are delegated throughout several ONAP
internal components: (i) the Service Orchestrator (SO), which
triggers the creation, update, and termination of services,
(ii) the ONAP Optimization Framework (OOF), which is
supposed to provide a policy-driven placement of VNFs across
multi-domain infrastructures, although it has not been fully
exploited, the (iii) SDN-C which provisions and manages net-
work resources, (iv) the APP-C, which manages the lifecycle
of VNFs, and lastly the Active and Active and Available
Inventory (AAI), which observes the resources and services,
along with their relations, in real-time.

Although ONAP has made quite a few advancements in
E2E Network Slicing, it still deals with the inherent problems
of defining a network slice as a network service, where all
its internal VNFs have to be instantiated in the same tenant,
which is not adequate to scenarios where performance is of
utmost importance. These scenarios require VNFs to be placed
where their performance and cost are most efficient, which, so
far, is a feature that ONAP does not provide.

C. Vertical Slicer - 5G-Transformer

The 5G-Transformer is a 5G Infrastructure Public Private
Partnership (5G-PPP) project aimed at improving the mobile
transportation network and transforming it into an SDN/NFV-
based network, integrating network slicing [6]. The project
designed and implementend a 5G platform with three main
components: the Vertical Slicer, the Service Orchestrator, and
the Mobile Transport and Computing Platform.

The 5G-Transformer (5GT)-Vertical Slicer (VS) is the ver-
ticals entry point for the system and an OSS/BSS component
of the 5GT administrative domain. This entity is responsible
for coordinating and arbitrating vertical services, accessible
to verticals through a high-level interface focused on their
logic and needs [7]. A vertical must establish a Service Level
Agreement (SLA) with the 5GT platform, a series of Service
Level Objectives (SLOs) specified by verticals and based on
their service needs (for example, the maximum E2E latency
of 20 ms). Any SLA degradation may cause severe problems
to verticals by compromising the technical behavior of its
services. In some cases, such degradations can impact the
reputation and business leadership of the vertical. For the
high-level abstraction needed by verticals, the 5GT platform
uses Vertical Service Blueprint (VSB) to define a network
service composition, creating a scaffold ready to use when
needing that topology. As a VSB extension, a vertical must
create a Vertical Service Descriptor (VSD) by completing
it with Quality of Service (QoS) parameters, resulting in a
ready-to-use deployment recipe that will instantiate the defined
topology and follow the given QoS values. The platform maps
each VSD onto network slices, which in the 5GT system are
an extension of the European Telecommunications Standards
Institute (ETSI) NFV NSDs [7].

The advantages of the 5GT-VS are the VSBs and VSDs
abstractions over the underlying complexities, the initial sup-
port of network slicing with extended NSDs, the multi-domain
support, and the SLA management. As for disadvantages, the
network slicing support is not according to current standards,
the multi-domain support is very limited, and the architecture
is monolithic.

D. Vertical Slicer - 5Growth

5Growth (5GR) is another 5G-PPP project trying to push
the 5G vision of 5G empowered vertical industries closer to
deployment. Its objective is the validation of 5G technologies
from the verticals point of view, both technical and business-
wise. For that reason, the project decided to take advantage
of the achievements and developments in network slicing,
virtualization, and multi-domain solutions of the 5G-PPP
phase 2 projects, such as 5G-Transformer and 5G-Monarch 3.
Furthermore, the project chose two ICT-17-2018 4 5G E2E
platforms to test their developments, namely 5G-EVE and
5G-VINNI [8]. 5Growth set out to support industry verticals
processes by providing four main features: a vertical portal

3https://5g-monarch.eu/
4https://cordis.europa.eu/programme/id/H2020 ICT-17-2018



for bridging the gap between verticals and the 5G facilities;
closed-loop automation; SLA control for the services lifecycle;
and finally, an Artificial Intelligence (AI)-driven E2E network
solution to optimize Access, Transport, Core and Cloud, Edge
and Fog resources, across multiple technologies and domains
[8].

The 5GR project used the 5G-Transformer platform as
the starting point where extensions/enhancements over its
composing blocks were added (5GT-VS, 5GT-SO and 5GT-
Mobile Transport and Computing Platform (MTP)). The im-
provements follow both functional and service requirements
of the use cases devised for this project. The platform work
plan consists of different innovations, each selected to fill a
given gap found in the base platform, resulting in twelve im-
provements. Being an extension of the 5GT project, it inherits
many of its advantages and disadvantages. In addition to VSBs
and VSDs abstractions over the underlying complexities and
the SLA management, the 5GR project adds network slicing
according to standards and better multi-domain support (both
in the Service Orchestrator and the Vertical Slicer). On the
other hand, the architecture remains monolithic, and since the
implemented innovations were add-ons, the final platform’s
quality may not be optimal.

E. Comparison of the Vertical Service Orchestrators

Having briefly presented several Vertical Service Orchestra-
tors, we can now present their summary in Table I, making it
easier for the reader to compare them.

III. NETWORK ORCHESTRATOR(NETOR)

Considering the SoA vertical service orchestration solutions,
the main problems this article’s PoC platform should solve
are: (i) monolithic architectures, (ii) non-standardized network
slicing, and (iii) inadequate multi-domain support. Hoping
to advance the SoA, we developed Network Orchestrator
(NetOr), a system that consists of an OSS/BSS system that op-
erates over the operator’s 5G infrastructures and services. We
do not define NetOr as novel platform for network slicing, but
rather a platform that provides an improvement of the modern
Vertical Service Orchestrators, aiming to mend some of their
drawbacks. Briefly explaining why these aspects raise several
problems: concerning the architecture, although modular, all
SoA solutions are a unified monolithic system composed of
several Java Springboot5 applications. Monolithic applications
are not the best solution for the maintainability, flexibility,
and scalability needed for this kind of orchestration system.
Regarding the non-standardized network slicing support, only
the 5GR project (through an add-on) and ONAP support net-
work slicing according to current standards, which demanded
workarounds and may have impacted the final system’s quality.
This issue is quite relevant since by not supporting the current
standards, the interoperability and integrability decrease signif-
icantly. Finally, the inadequate multi-domain support problem
is similar to the last one, where only the 5GR project has

5https://spring.io/projects/spring-boot

a more mature and complete solution, but is achieved again
with an add-on. Once again, this issue is relevant, since by not
correctly supporting inter-domain scenarios, vertical use cases
with higher complexity that demand such functionality cannot
be supported.

A. System Architecture

NetOr follows a micro-service and event-driven architecture,
developed with a strong focus on low-coupling, flexibility,
modularity, and scalability. Platforms of this style allow ab-
stracting both the intricate actions needed to deploy a network
service, and the infrastructure and network complexities. With
those abstractions in place, the end-user (vertical industry) can
concentrate its efforts in developing and analyzing the services
and functions needed for the organization’s objectives.

By default, a micro-service oriented system favors asyn-
chronous communications. In comparison with a sequential
approach, asynchronous communications allow parallel pro-
cessing, which may in some cases improve the performance
and efficiency of a given process. Given its high scalability,
NetOr may be able to improve the performance over an exten-
sive execution of services management operations compared
to other existing similar orchestration systems. On the other
hand, this type of architecture has its own drawbacks, being
one of them the need to exchange considerably more messages
through the network compared to monolithic systems since it
constantly exchanges information between the micro-services.
One can say that, although NetOr may not provide increased
performance when dealing with low system loads, when faced
with a higher system load, it will outperform the Vertical
Service Orchestrators presented in Section II , mainly due to
its fully distributed service oriented architecture.

Finally, another requisite for the NetOr system was to
facilitate its interaction with verticals. For that reason, a web
portal was developed to help the vertical user to interact with
the NetOr system. Through a minimal graphical interface, the
portal presents the available actions in the most intuitive way
possible and abstracts as much as possible the underlying
complexities.

The final NetOr architecture and its main components are
presented in Fig. 1.

B. APIs and Data Models

There are two distinct areas where the NetOr system should
consider and support standards and norms, which are the in-
terfaces interconnecting the NetOr with external components,
namely its Northbound Interface (NBI) and Southbound In-
terface (SBI). The NBI should follow well-known community
accepted standards to enable the system to be easily adoption
by third-party platforms, to allow the seamless substitution
with equivalent platforms, and to guarantee that all required
parameters for the underlying systems are present in the data
models. Similarly, it is also crucial that the NetOr’s SBI,
the interface interacting with underlying orchestrators, such
as Network Function Virtualization Orchestrators (NFVOs),



TABLE I: Comparison of the presented Vertical Service Orchestrators

Vertical
Service

Orchestrator

VSBs and
VSDs

Abstraction

CFS and
RFS

Separation

Web Portal Uses the
Defined
Slicing

Standards

Multi-
Domain

Support for
Network

Slices

Service
Oriented

Architecture

SLA
Management

Run-time
Operations
on Vertical

Services

Openslice ✓ ✓ ✓

ONAP ✓ ✓ ✓ ✓ ✓ ✓
[9] [9] [9]

Vertical
Slicer - 5G

Transformer

✓ ✓ ✓ ✓

Vertical
Slicer -

5GROWTH

✓ ✓ ✓ ✓ ✓

Fig. 1: NetOr’s architecture

follows well-defined and accepted standards for various rea-
sons, such as allowing the support of different orchestrator
technologies, such as distinct NFVOs. Another reason for
supporting such norms is that the parameters needed for
the resources and features of those NFVOs are, by default,
correctly detailed in the data models.

In terms of the NBI, after analyzing the most relevant
standards of the area, those more related to the data model
exchanged in Create, Read, Update and Delete (CRUD) oper-
ations related to Vertical Service Instances (VSIs) and auxil-
iary resources were selected. Those standards are TS 28.541
[10], SOL005 [11], and SOL006 [12], all mainly focused on
information models. In addition, the data structures adopted
in NetOr were also based on the models adopted by the most
mature SoA vertical service orchestration system, which is
the 5GR-VS. The VSB needed to be extended to contemplate
the actions and parameters supported by a given VSI. The VSI
instantiation data model was also extended to support dynamic
instantiation configurations and domain deployment selection.

Concerning the SBI, it was also necessary to analyze the
most relevant standards of the area and select the best-suited

ones, focusing on data models and operations. The chosen
standards are TS 28.530 [13], TS 28.531 [14], TS 28.541 [10],
TR 28.801 [4], SOL005 [11], and SOL006 [12]. Although the
standards are quite detailed and complete, they needed to be
extended to support all NetOr operations. In particular, it was
necessary to add management functions to allow the execution
of runtime operations over instantiated network services and
network slices. Additionally, the models and actions adopted
for the SBI of the most mature SoA vertical service orches-
tration system, which is the 5GR-VS, also influenced NetOr’s
operations and data structures.

IV. MULTIDOMAIN AUTOMATIC MECHANISM

Concerning mobile service and network coverage, different
operators manage distinct geographic zones, limiting the areas
where each operator can provide their services directly. If a
client of a given operator enters a region covered by another
operator, there are mechanisms to enable the redirection of its
traffic to the correct operator. Currently, the approach when
instantiating Vertical Services, Network Services, and Network
Slices assumes that a unique domain will provide them,
redirecting to it the data and requests of end-users if they enter
areas covered by other operators. It is easy to imagine many
scenarios where these redirecting mechanisms could impact
the final E2E service, such as automotive or medical scenarios
that rely on very low latency. In those scenarios, the ideal
solution is to have the service in question instantiated across
the various domains with which the end-user may interact.
With this in mind, the inter-domain mechanism appears to
enable the on-demand connection of independent regions. This
mechanism is a recent innovation in the NFV and service
orchestration world. It is a powerful functionality that disrupts
the current modus operandi of network and service providers.
Currently, those providers follow guidelines and restrictions
that force their clients to be only served by them, meaning
that all the service and network functions are hosted and
instantiated in their unique domain.

Several standards and scientific works are starting to study
and propose best practices and architecture options when
dealing with this inter-domain scenario. An example is the



standard TR 28.801 [4], which suggested three different so-
lutions for multiple operator coordination management. The
first approach suggests the customer owning the CSMF and
communicating with the various operators, which provide the
NSMFs. A second option suggests the customer communi-
cating with a main operator hosting the CSMF, which will
interact with its and others operator’s NSMFs. Finally, the
third option suggests the customer communicating with a
main operator hosting the CSMF, delegating the actions to
its NSMF, which leverage the multiple operators NSSMFs.

Similarly, [15] is a scientific article proposing a 5G vertical
service orchestration framework focused on network slicing on
an inter-domain scenario. It contextualizes the inter-domain
environment, presenting Verticals/Digital Service Consumers
(DSCs) that use the services provided by the Digital Ser-
vice Providers (DSPs), which in turn are dependent on the
capabilities and resources provided by the Network Service
Providers (NSPs). The DSP manages service lifecycles and
exposes them to Verticals. The DSC only consumes the
services exposed by the DSP. Finally it presents the proposed
inter-domain orchestration framework, composed by a three
levels of orchestration logic, the Service Orchestrator, the Slice
Orchestrator, and the Resource Orchestrator.

The chosen architecture for NetOr follows the one proposed
in the first multi-operator coordination solution presented
in TR 28.801 [4] and the architecture proposed in [15].
Both architectures propose a centralized service orchestration
agent(CSMF/Service Orchestrators) that communicates with
lower-level orchestrators (NSMFs/Slice Orchestrator). Addi-
tionally, this PoC implements an improvement over said archi-
tectures, since none of them studied the solution to connect the
independent domains. The proposal is to create and configure a
Virtual Private Network (VPN) tunnel, creating a secure com-
munication channel. For this PoC and use cases, Wireguard6

was the technology used for the tunnel, a straightforward
and minimalist framework that allows the rapid instantiation
and configuration of VPNs. Additionally, the PoC itself is an
improvement over the mentioned works, since none of them
validated their architectures.

Concerning this mechanism, the main objective in this PoC
is to instantiate an E2E Service across multiple domains with-
out prior negotiations. That is technically possible by using an
E2E Network Slice, ideally with its subnets composed of Net-
work Slices, as depicted in Figure 2. To successfully achieve
the inter-domain, ideally a centralized service orchestrating
agent should exist independent from all domains, allowing
the connection of the tunnel peers. That agent will receive
and process the dynamic tunnel endpoints’ information and
exchange it with the remaining peers, effectively completing
the tunnel configuration. NetOr, in addition to all the other
features and functionalities, also serves as that centralized
orchestrator.

6https://www.wireguard.com/

Fig. 2: NSI composed E2E NSI architecture

V. RESULTS

As mentioned earlier, the main goal of NetOr is to fix
some of the known flaws of the current Vertical Service
Orchestrators. Section III already elucidated to the reader
the architecture of our solution and the standards it follows.
Based on what was previously described, the reader already
knows that (i) NetOr was built according to a service oriented
architecture, (ii) NetOr follows all relevant standards in regard
to Network Slicing, (iii) NetOr fully supports inter-domain
scenarios, and (iv) that NetOr can perform runtime operations
over the Vertical Services.

Although, it is still missing to evaluate the performance of
our solution when compared to other SoA Vertical Service
Orchestrators. Despite fixing several known issues, if NetOr’s
performance is considerably lower than the one of the other
Vertical Service Orchestrators, there will be resistance to using
our solution. To validate this, in this Section, we compare
NetOr’s and 5GR-VS’s performance, currently the most ma-
ture vertical service orchestration solution.

A. Testing Environment

Since the inter-domain environment needs at least two
domains, two independent Open Source MANOs (OSMs) were
deployed, one for each domain, and each one deployed in
a Virtual Machine (VM), running Ubuntu 18.04, with 12
Gb of RAM, 4 VCPUs, 150 Gb of storage. The first OSM
integrates with a fully-fledged OpenStack instance managed
by IT-Aveiro, where the project defined had the limitations of
30 VM instances, 60 VCPUs, 70 Gb of RAM, 1 Tb of storage,
and 10 networks. The second OSM integrates with a DevStack,
a version of OpenStack focused on allowing the quick creation
of development infrastructures, managed by colleagues in IT-
Aveiro. The project assigned had the limitations of 10 VM
instances, 20 VCPUs, 50 Gb of RAM, 1 Tb of storage, and
100 networks. Additionally, I used a dedicated VM running
Ubuntu 18.04 with 8 Gb of RAM, 4 VCPUs, and 32 Gb of
storage to deploy the NetOr system.

B. Instantiation and Termination Performance Values

In terms of performance tests, we tested the delays in-
troduced by each Vertical Service Orchestrator during the
orchestration phase and also conducted E2E tests to evaluate
the overall delays introduced by each solution. Regarding the
first tests, each was repeated 30 times, and we present the
average, maximum and minimum values obtained and also
the standard deviation. Concerning the E2E tests, the same



methodology was used to gather NetOr’s performance metrics,
and the results from [16] were used to evaluate 5GR-VS’s
performance.

System Max Min Avg StDev
5GR-VS 234 ms 81 ms 113,86 ms 29,20 ms
NetOr 345 ms 135 ms 190.93 ms 24.82 ms

TABLE II: 5GR-VS and NetOr System’s service instantiation
delay

1) Orchestrator System Delays: The first comparison test
focused on the delay added by the NetOr and 5GR-VS systems
to the vertical service instantiation process. This delay was
obtained by calculating the time delta between the exact mo-
ment before making the instantiation request and the precise
moment before each system forwarding it to the respective
underlying NFVO.

By analyzing Table II, it is clear that the NetOr system
generates higher delays than the 5GR-VS, but the difference
between them is not that significant, being on average lower
than 80 milliseconds. Nevertheless, both systems’ delays are
in the same order of magnitude.

System Max Min Avg StDev
5GR-VS 108 ms 19 ms 45,90 ms 17,20 ms
NetOr 187 ms 59 ms 101,24 ms 20,90 ms

TABLE III: 5GR-VS and NetOr System’s service termination
delay

The second comparison test was very similar to the first one,
but it compared the delay of the system when terminating a
vertical service. The time delays were obtained in the same
manner as in the first test. The NetOr system generates higher
delays than the 5GR-VS, differing on average less than 40
milliseconds, following the same behavior shown in the first
comparison test.

Note that the delay values obtained from this termination
operation are considerably lower than those obtained from
the instantiation operation. This behavior was expected since
the instantiation process is much more complex than the
termination of a vertical service.

2) E2E Management Delays: Concerning the E2E tests
performed with the NetOr system, they focused on validating
and gathering the time needed to instantiate and terminate
a fully-fledged inter-domain service. The final service was
composed of an NSI composed by two distinct Network Slice
Subnet Instances (NSSIs), one for each domain. Each of those
NSSIs contained an NSI with the same basic architecture.

When analyzing Table IV, as expected, the instantiation
intervals are considerably higher than the termination intervals.
Another relevant conclusion is that the time intervals obtained
for these E2E operations are dependent on the infrastructure
used to support the creation of those services and their VMs.
As presented in Subsection V-B1, it is safe to assume that
the delay added by the NetOr system to the instantiation
process is approximately 200 milliseconds. With that in mind,
most of the time spent instantiating the network service is the

NFVO and the Virtual Infrastructure Manager (VIM) creating
the necessary resources. For that reason, the time delays of
approximately 5,8 minutes for the instantiation and around
1,2 minutes for the termination operations can be lower if the
infrastructure allows.

System Max Min Avg StDev
Inst. 409346 ms 279582 ms 348858,9 ms 29334,1 ms
Term. 109319 ms 38687 ms 74971,9 ms 16588,7 ms

TABLE IV: E2E interdomain service instantiation and termi-
nation time

Taking in consideration the work done in [16], which
conducted the same tests in the same infrastructure as those
conducted in this article, it was possible to compare the E2E
management delays obtained in the NetOr and the 5GR-
VS orchestrators. According to [16], the simple inter-domain
connectivity service when orchestrated by 5GR-VS took on
average 9 minutes to instantiate and 46 seconds to terminate.

C. Results Analysis

To facilitate the comparison between the performance of
NetOr and 5GR-VS, Table V is presented.

NetOr 5GR-VS
Avg. System’s Introduced Instan-
tiation Delay

∼ 191ms ∼ 114ms

Avg. System’s Introduced Termi-
nation Delay

∼ 101ms ∼ 46ms

Avg. E2E Interdomain Instantia-
tion Time

∼ 5.8min ∼ 9min

Avg. E2E Interdomain Termina-
tion Time

∼ 74 sec ∼ 46 sec

TABLE V: Comparison of the delays introduced by each
Vertical Service Orchestration solution and the time needed
to instantiate and terminate a Vertical Service

When compared to the NetOr values, the instantiation time
in the 5GR-VS is considerably higher, differing in more than
3 minutes. The termination time resulting from the 5GR-VS is
lower than the NetOr ones, differing close to 30 seconds. The
difference between the instantiation time can be easily justified
by the systems’ implementation approaches. The 5GR-VS is
a monolithic platform that sequentially manages its services,
meaning that at any given time, the system can only process
one operation of a given service component. On the other
hand, the NetOr system, aided by its micro-service-oriented
architecture, can manage various service components and
various services at the same time. This parallelization enables
the NetOr platform to save precious minutes by processing
the independent service subnets at the same time. The reason
for the 5GR-VS generating lower E2E termination times may
be related to the fact that the overall process is quite simpler,
so performance variations in the underlying infrastructure can
affect the E2E times of this phase.

As a final analysis, when comparing the NetOr’s perfor-
mance values to those obtained from 5GR-VS, there are posi-
tive and negative aspects. Although NetOr generates higher



delays in small and quick operations, on the other hand,
comparing the performance of more complex processes that
can take a substantial time, NetOr performs better than the
5GR-VS.

VI. CONCLUSION

As seen in the results, NetOr’s performance is very similar
to the 5GR-VS’s one (currently, the most mature Vertical
Service Orchestrator). In truth, if we consider only the in-
stantiation time, NetOr significantly decreases the time needed
to deploy a Vertical Service, by taking advantage of its
parallelization capabilities.

Additionally, the NetOr platform already provides options
and mechanisms that most Vertical Service Orchestrators lack,
which was the primary motivation behind the work presented
in this paper. We must stress that, while having similar perfor-
mance to the 5GR-VS, (i) NetOr follows all relevant standards
regarding Network Slicing, (ii) it was built according to an
SoA, (iii) it fully supports multi-domain scenarios, and (iv)
that NetOr can perform runtime operations over the Vertical
Services. Besides this, similarly to the 5G-Transformer and
5Growth VSs, NetOr also provides a layer of abstraction
through VSBs and VSDs.

Regarding future work, we intend to enhance NetOr by pro-
viding SLA management, propelling our solution’s adoption in
Vertical Services Orchestration use cases.

ACKNOWLEDGEMENTS

This work was supported by the European Horizon 2020
Programme for research, technological development and
demonstration under Grant 101016448 (5GASP).

REFERENCES

[1] 5G PPP, “View on 5G Architecture,” Version 3.0,
February 2020, no. February, pp. 21–470, 2020.
[Online]. Available: https://5g-ppp.eu/wp-content/uploads/2019/07/
5G-PPP-5G-Architecture-White-Paper v3.0 PublicConsultation.pdf

[2] “Introduction - Openslice.” [Online]. Available: https://openslice.
readthedocs.io/en/stable/

[3] “ONAP - E2E Nework Slicing Use Case.” [On-
line]. Available: https://docs.onap.org/projects/onap-integration/en/
latest/docs E2E network slicing.html

[4] 3GPP, “TR 28.801-v15.1.0-Study on management and orchestration
of network slicing for next generation network,” Tech. Rep.,
2018. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3091

[5] V. Q. Rodriguez, F. Guillemin, and A. Boubendir, “5g e2e network
slicing management with onap,” in 2020 23rd Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), 2020, pp. 87–
94.

[6] “5G-Transformer - 5G-PPP.” [Online]. Available: https://5g-ppp.eu/
5g-Transformer/

[7] X. Li et al., “5G-TRANSFORMER: Initial System Design,” Tech. Rep.
[Online]. Available: http://5g-transformer.eu/wp-content/uploads/2019/
11/D1.2 5G-TRANSFORMER Initial System Design.pdf

[8] “5Growth - 5G-PPP.” [Online]. Available: https://5g-ppp.eu/5growth/
[9] “ONAP - Project’s Documentation.” [Online]. Available: https:

//docs.onap.org/
[10] 3GPP, “Management and orchestration; 5G Network Resource Model

(NRM); Stage 2 and stage 3 (3GPP TS 28.541 version 15.0.1 Release
15),” Tech. Rep., 2018. [Online]. Available: https://www.etsi.org/deliver/
etsi TS/128500 128599/128541/15.00.01 60/ts 128541v150001p.pdf

[11] ETSI, “GS NFV-SOL 005 - V2.6.1 - Network Functions Virtualisation
(NFV) Release 2; Protocols and Data Models; RESTful protocols
specification for the Os-Ma-nfvo Reference Point,” Tech. Rep., 2019.
[Online]. Available: https://www.etsi.org/deliver/etsi gs/NFV-SOL/001
099/005/02.06.01 60/gs nfv-sol005v020601p.pdf

[12] ——, “GS NFV-SOL 006 - V3.3.1 - Network Functions Virtualisation
(NFV) Release 3; Protocols and Data Models; NFV descriptors
based on YANG Specification,” Tech. Rep., 2020. [Online].
Available: https://www.etsi.org/deliver/etsi gs/NFV-SOL/001 099/006/
03.03.01 60/gs NFV-SOL006v030301p.pdf

[13] 3GPP, “Management and orchestration; Concepts, use cases and
requirements (3GPP TS 28.530 version 15.0.0 Release 15),” Tech. Rep.,
2018. [Online]. Available: https://www.etsi.org/deliver/etsi ts/128500
128599/128530/15.00.00 60/ts 128530v150000p.pdf

[14] ——, “Management and orchestration; Provisioning (3GPP TS
28.531 version 15.0.0 Release 15),” Tech. Rep., 2018. [Online].
Available: https://www.etsi.org/deliver/etsi ts/128500 128599/128531/
15.00.00 60/ts 128531v150000p.pdf

[15] G. Bernini, P. G. Giardina et al., “Multi-domain orchestration of 5G
vertical services and network slices,” in IEEE ICC Workshops 2020 -
Proceedings. IEEE Inc., jun 2020.

[16] J. Fonseca, J. Alegria et al., “Dynamic Inter-domain Network Slicing
for Verticals in the 5Growth Project,” 2021 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks, SDN-NFV
20201, 2021.

https://5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_v3.0_PublicConsultation.pdf
https://5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_v3.0_PublicConsultation.pdf
https://openslice.readthedocs.io/en/stable/
https://openslice.readthedocs.io/en/stable/
https://docs.onap.org/projects/onap-integration/en/latest/docs_E2E_network_slicing.html
https://docs.onap.org/projects/onap-integration/en/latest/docs_E2E_network_slicing.html
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://5g-ppp.eu/5g-Transformer/
https://5g-ppp.eu/5g-Transformer/
http://5g-transformer.eu/wp-content/uploads/2019/11/D1.2_5G-TRANSFORMER_Initial_System_Design.pdf
http://5g-transformer.eu/wp-content/uploads/2019/11/D1.2_5G-TRANSFORMER_Initial_System_Design.pdf
https://5g-ppp.eu/5growth/
https://docs.onap.org/
https://docs.onap.org/
https://www.etsi.org/deliver/etsi_TS/128500_128599/128541/15.00.01_60/ts_128541v150001p.pdf
https://www.etsi.org/deliver/etsi_TS/128500_128599/128541/15.00.01_60/ts_128541v150001p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_nfv-sol005v020601p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_nfv-sol005v020601p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/006/03.03.01_60/gs_NFV-SOL006v030301p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/006/03.03.01_60/gs_NFV-SOL006v030301p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128530/15.00.00_60/ts_128530v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128530/15.00.00_60/ts_128530v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128531/15.00.00_60/ts_128531v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128531/15.00.00_60/ts_128531v150000p.pdf

	Introduction
	Vertical Service Orchestrators
	Openslice
	ONAP
	Vertical Slicer - 5G-Transformer
	Vertical Slicer - 5Growth
	Comparison of the Vertical Service Orchestrators

	Network Orchestrator(NetOr)
	System Architecture
	APIs and Data Models

	Multidomain Automatic Mechanism
	Results
	Testing Environment
	Instantiation and Termination Performance Values
	Orchestrator System Delays
	E2E Management Delays

	Results Analysis

	Conclusion
	References

