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a b s t r a c t

The electric grid is undertaking a change of paradigm. New requirements such as the high power loads
of Electric Vehicles’ charging are putting pressure on grids, and the popularisation of the figure of the
prosumers, are creating new needs on the management of the system. Although the investment on
infrastructure is one of the ways of alleviating the arrival of this new loads, the existence of smart
controls, actuators and smart appliances opens also the door for demand modification. The so called
Demand Response Events are strategies to reallocate the loads of the consumers, so the power demand
is shifted towards times less critical for the grid. Some smart appliances can be considered as shiftable.
The operation of them can be rescheduled to other times and still provide their services. On this paper
we suggest an optimisation methodology consisting on a parallelisation method together with a generic
algorithm that would allow an overlooking controller (such as aggregator or DSO) reduce the power
peaks even with a large number of devices to control. The research here presented has looked for the
smallest group size at which the optimisation is more effectible done in parallel groups rather than
on a single large set. With this, we eliminated the exponential growth of the computational effort that
the optimisation algorithm would need to do organising all devices in one go. The method achieves a
computational time reduction of 80%, and it is only worsening the reduction of peak by 2.8% compared
to an optimisation with a complete set.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The actual energy system is facing the challenge of the contin-
ous growth of electricity consumption. This comes with higher
nergy needs and a rise in power peaks, that could make the
urrent grids non-adequate to maintain grid stability [1]. Hence, it
s crucial to find a solution to maintain the supply quality and the
ecurity of the power system. Although investment on electrical
rid improvements will continue, the reduction of peaks could
e a way to alleviate grid stress. An option to do so, is to involve
he final consumer, making them modify their demands, so the
ynchronous use of appliances is avoid, resulting on a reduction
f peaks.
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In this context, Demand Response (DR) programs are strate-
gies to achieve peak shaving. To avoid power peaks, end-users
are asked to shift loads to off-peak time periods or to reduce
consumption on a given time. In exchange, the consumers receive
either better tariffs or other incentives [2]. One of the most
common classifications of the DR programs are: price-based DR
programs, which are based on using a variable price of electricity
to change the demand; and incentive-based programs, which are
more focused on promoting specific direct actions. On incentive-
based programs, a third party, namely the electric utility or the
load-serving entity, can call an event, i.e. take control of the cus-
omer’s appliances, and change its operation (including heating,
entilation, and air conditioning (HVAC) systems) on what is
alled a Demand Response Event (DRE). For what appliances is
oncerned with respect to DREs, they are classified in the litera-
ure into: deferrable, flexible deferrable, curtailable, and critical,
ut this can be reduced from the point of view of operation
nto shiftable, non-shiftable and controllable [3]. The flexibility of
the appliances is evaluated and, depending on that, a DR event
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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can imply the reduction of the consumption if the load was
controllable (as on HVAC) or the reallocation of the time of use
to another period if it was shiftable. This one is studied on this
paper, as it is the most common shiftable loads in dwellings.

Several DR programs have already been designed and applied
n the world, but up to now they could not overcome two main
ssues. The first one lies in the fact that if all the users shift their
onsumptions together, a new peak will shape [4–6], which is
sually called as rebound-peak problem. This is crucial, and an
mportant problem that is solved with the methodology here
resented. An overarching entity will need to design the shifting
f the loads to make sure that the peaks do not appear again
omewhere else. Precisely because the re-scheduling has to be
one at a rather large scale (dozens of end-user) the decision
pace of an optimisation would become unfeasibly large, even
ith the use of heuristics the optimisation would become pro-
ibitive, as the number of variables to be optimised make the
ecision space grow on an exponential manner. This paper shows
way of eliminating that exponential growth of the decision

pace.
The other issue goes with people’s acceptance: users’ com-

ort is often affected by demand response events. Classical DR
rograms are mainly based on direct load control programs and
nterruptible/curtailable load programs [7]. With regard to such
nterruptible events, some studies demonstrated that users were
ore willing to subscribe to a DR program if the events were

nterruptible [8,9]. Data about participants’ overriding behaviour
s investigated in the literature and the rate of interrupted events
eached 39% [10–12] on direct load control of controllable de-
ices. Hence, the design of DR strategies needs to be improved
nd optimised, to find a balance between energy saving and
eople’s comfort. It is thus necessary to evaluate the impact that
he shifting of loads may have on the consumer comfort. Indeed,
he authors found a few contributions focused on optimising the
hifting of the loads while the impact over the consumer comfort
as minimised, mainly because it was not found an optimisation
hat includes potential consumer comfort degradation under DR
trategies. On this paper, real behaviours are used to measure this
omfort degradation realistically.
This work is a comprehensive study from a multi-agent per-

pective on how the optimisation of shiftable loads can be per-
ormed, and what the implications are on different objectives that
re relevant for the user and for the aggregator/utility. Also, the
mplications of scalability of the optimisation have been studied
nd a new way of performing the design of the events, which is
calable is proposed. This paper is in line with recent contribu-
ions, focused on developing bi-directional energy trading models
o minimise electricity costs and estimate optimal day-ahead
ids under certain customer inconveniences, such as thermal
iscomfort due to interruptible/curtailable load programs [13].
he paper is structured as follow: in Section 2 the state of the art
s presented. Section 3 shows the methodology and the algorithm
ested, in Section 4 main results are presented. The paper closes
ith Conclusion, and References. State of the art
When talking about the design of DR programs, the approaches

resented in the literature are distinct depending on the work as
he topic is faced from various points of view. Also, the approach
hanges depending on the kind of DR program considered. About
R programs-potential and technologies, an extensive survey is
resented in Siano [2]. To contextualise the DR programs’ design,
n Patnam and Pindoriya [14] an overview of modelling and
ptimisation of DR algorithms is presented. Besides, differences
n the approach to the problem, depending on the context are
ighlighted (home level, network level, market level) on the
ork of Patnam and Pindoriya. With respect to the economic

mplications, Martinez and Rudnick [15] analysed how DR pro-
rams’ design developed according to territorial market needs.
2

Through lessons learnt from US and European experiences, they
highlighted the potentialities that such programs would have in
emerging countries. But the design of overarching algorithms that
could mandate when to operate certain shiftable loads remains
underdeveloped.

Analysing the algorithms used in the literature to design the
DR programs, it is possible to distinguish two main objective
functions: one cost-based and one power/energy-based. The cost-
based are related to the search of minimum cost and/or maximum
profit normally on the side of the end user. As an example,
Murakami et al. [16] proposed an incentive design method tested
with reinforced learning. The optimisation problem is an inverse
optimisation, and it is based on the optimised incentive payments
to engage consumers, but the users is the one supposed to do
the action at the right time considering those incentives. On the
other hand, the power/energy-based algorithms are commonly
expressed in the form of minimum energy or minimum peak,
and often also the objective function related to the maximum
comfort. For instance, Islam et al. [17] designed a model to mit-
igate over electricity generation, a side effect of the diffusion of
renewable sources in the electricity grid. The model optimised an
electricity demand response program in order to balance demand
and supply, but again it assumes that the incentives will take
the users to make the actions. Babar et al. [18] proposed an
algorithm for load curtailment based on dynamic programming in
aggregated demand response program, but the optimisation was
done considering the whole cohort to be optimised, what can lead
to long computational times when extended to a large number
of households. Herath and Venayagamoorthy [19] proposed a
scalable framework for DR optimisation, that can be used by the
utility to consider how many participants is convenient to include
in a same DR program.

With respect to optimisation methods for energy manage-
ment, the versatility of Genetic Algorithms (GA) made them a
good solution for the optimisation of building-related design [20].
An example of application on energy management in buildings
is given by Hansen et al. [21] who used GA with Markov chain
process to design a sequential decision technique that optimises
energy usage. They analysed the response of users to dynamic
pricing of electricity, modelling flexible and non-interruptible
smart appliances that users are ready to use. They concluded
that the energy management system that they designed allowed
them to save 30 US dollar on a one month’s bill. Pombeiro et al.
[22] used GA to search for the best balance between the user
comfort and the cost of electricity, demonstrating that GA are
capable of optimisating the use of the HVAC also in presence
of PV panels and battery systems. Veras et al. [23], applied the
GA to the Demand Response optimisation process. They aimed
to reduce the energy consumption costs considering as variables
the price of the electric energy, the home appliances preferred
and the location. In this way they obtained an optimisation model
of how to shift the consumptions, avoiding to overload the grid
during peak periods. About load shifting in a demand response
context, also Pavithra and Priya [24] used GA to optimise savings
in cost and peak load reduction. The simulation involved the
hourly power demand for different area types (rural, urban and
villas area) and the input data was taken from the devices used
by the occupants. Regarding self-scheduling in demand response
programs, optimisation problems were formulated by Javadi et al.
[25,26] in the form of a Mixed-Integer Linear Problem (MILP).
They managed to obtain an efficient shifting of consumption that
took into account both different energy tariffs and the occu-
pants’ comfort, by introducing the discomfort index as a variable
of the model. The same authors also considered the cases of
the presence of inverter-based HVAC systems [25], the presence

of electric vehicles parking lot management systems [27] and
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the presence of a self-generation asset [25], reformulating the
problem for homes that are equipped with photovoltaic panel
and battery. This configuration allows to make the most of the
shifting potential, and the proposed model calculated the optimal
schedules for several case studies. About energy management in
microgrids, Mansouri et al. [28] implemented a model to reduce
operation cost and emissions in an 83-bus distribution system
with 11 microgrids. Several methods were compared, and the
best outcomes were obtained with a tri-objective optimisation
framework.

Recently, Home Energy Management Systems (HEMS) emerged
s a consequence of the demand side smart energy usage. HEMS
ims to provide a mutual satisfaction between the utility and
ustomers, considering their comfort preferences as well [29].
owever, Tostado-Véliz et al. [30] recently affirmed that some
hermal premises (among them thermal comfort), should be re-
axed by the HEMS with the aim to achieve other complementary
oals. In this way, Kadavil et al. [31] concluded that customers
ould sacrifice on comfort to attain savings in cost or carbon
missions. To determine a trade-off between energy cost and the
ser comfort, Rocha et al. [32] proposed a methodology based on
he k-means technique to determine a comfort matrix through
ata obtained from real smart homes. In addition, the term
esidential Energy Management Information Systems (REMIS)
an be also found in the specific literature, as a class of informa-
ion system focused on monitoring, analysing or benchmarking
esidential consumption and energy use [33].

. Novelty and contributions

The previous section shows the developments on the field.
ccording to them, the authors have seen a research gap in
erms of methods to coordinating optimisations at a federated
evel. There is a large body of literature that shows that the
ptimisation of operation at the home level, via Home Energy
anagement System has been investigated in the past. In this
aper, we have investigated how to perform optimisation of
evices operation at a district level, considering each home a
et of decision variables on the optimisation problem. With this
esearch, we identify the number of dwellings that could be
ptimised independently to convert the exponential growth of
he optimisation problem, into a geometrical growth, avoiding
ith this the curse of dimensionality.
With this work, we contribute to the body of knowledge

roviding a methodology to optimise the load shifting actions
n a district with the aim of reducing the PAR, and with that
lleviating the workload of the grid.
On this work, we take into consideration the distorsion that

he occupants may suffer due to the modification of the operation
f their devices. Although this has been done in the past, the work
ere presented used validated behavioural models to mimic the
tochastic behaviour of a real population. With this, not only we
epresent real power profiles, we also are capable of quantifying
or the first time the impact that the change on operation of cer-
ain devices may have over a realistic population with stochastic
ehaviour (as it happens in the real world).

. Methodology

There is evidence that Demand Response events will need to
e more common in the near future, mainly due to the integra-
ion of renewable energy sources into the power grid [34]. The
ransformation of the energy system towards a fully electric one,
nd the absorption of part of the transport system are requiring
rethinking on how the grid is used.
3

With respect to DR programs, one must separate the programs
in which pricing is used to produce modifications on the demand,
and has a non-trivial market response intermediate step [35],
and those in which direct load control is used to modify the
operation of certain devices, that are called ‘‘shiftable-loads’’ [3].
This direct control can be carried out thanks to the new devices
that exist on buildings and act as gateways [2]. As in [36], our
work considered the shiftable loads to be the wet appliances
namely dishwasher and washing machine, and Plug in Hybrid
Electric Vehicles (PHEVs) as these are the most common to be in
dwellings in the following decade. For this work, full knowledge
about their consumption has been considered. There are three
factors that may affect the decision of re-scheduling of shiftable
loads in dwellings. These three factors are:

– Change on cost of electricity after the re-scheduling (to be
minimised)

– Distortion on operation, as the amount of time that the
appliances operation is delayed or anticipated. (to be minimised)

– Resulting power peak of the district or community (to be
minimised)

On this work we try to evaluate the distortion of operation
with realistic methods of occupant’s behaviour based giving it a
more realistic approach for the generation of the loads in terms
of power, but also in terms of evaluating the impact to occupants.
Fig. 2 shows the framework including the modelling of occupants
and their energy use. One may think that it is likely that some
of these objectives are conflicting, resulting to the necessity of
a trade-off from one another. The optimisations found on the
literature to re-schedule the operation of the shiftable devices
have in many cases taken the side of the consumer, and the
optimisation has been done within the dwelling to minimise cost
normally defining it as a knapsack problem. When all consumers
receive the same tariffs, this could lead to a movement of the
same peak to a different location, resulting on a pernicious effect
for the grid, yet losing the revenues due to all consumptions
moving to cheaper time slots as said by Dusparic et al. [37].
Dusparic takes into consideration this issue, but no analysis of the
conflictivity of the objectives have been found in their or other
works of the literature.

Optimising the operation for the grid functioning and for the
households to benefit from the re-scheduling would be ideal,
but researchers have already identified that these optimisations
require large computational times [38,39]. This has been evalu-
ated on our framework and the result of the computational time
growth can be seen on Fig. 1. It was seen that the problem really
exists. Also, as the decision space increase three dimensions each
time we add a new home (corresponding to the three appliances),
the number of points that one may need to explore the decision
space if we took for example four points for dimension, will have
the following formula:

S(n) = 43n (1)

With S(n) the number of points to explore the decision space
ith at least 4 points per dimension, and n the number of homes.
he time that will require the algorithm to explore the decision
pace will grow on the same others as the decision space, as it
as been shown on Fig. 1.
With respect to the other objectives of the optimisation of de-

and response events, Barbar et al. (2013) made an approach to
inimise the computational cost of the optimisation of operation,
nd introduced the concept of consumer inconvenience. The work
e present here also considers the consumer inconvenience, and
lso suggest a way of reducing the computational time of a full
ptimisation with all agents of the energy community. How-
ver, the method described here used a realistic scenario based
n agent based modelling with real probability distributions of
peration of the shiftable loads what allows to have a detailed
easurement of the users distorsion due to the DRE taken from

he scientific literature.
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Fig. 1. Fast growing computational times of the optimisation of large scale DRE planning as the number of dwellings increase.
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.1. Realistic synthetic environment

Testing new algorithms to design demand response events on
he real world is rather complicated and no option was found to
o so by the authors. For our work, and to test a potential method
o optimise demand response events, a comprehensive simulator
as created that used agent based modelling. To create a realistic
emand, each household was modelled with state of the art
ehavioural models, and with real data from electric equipment.
his made the simulating framework as close as a real community
s possible. The simulator includes a series of geographic points
ocated in realistic positions to simulate the grid of a neighbour-
ood. This was considered relevant as it could be necessary for
he study of over loading of electric lines on parts of the grid. The
rrangements of the nodes of the consumers are mimicking a real
eighbourhood. Each one of the consumers have been equipped
ith a parameter that represents the number of occupants living

n the building. With this, and using the algorithms of [40], the
imulator can have a realistic profile of occupation. Considering
he time series of occupation, the operation of the rest of the
ppliances was modelled using real probability distributions. A
ey element of the synthetic testing framework to be valid was
o have household electric appliances and giving them realistic
onsumption profiles. For that, the framework includes realistic
rofiles of appliances as a time series that depends on the given
evice. This was taken from real-world data published in the
ork of Issi and Kaplan 2018. These data provided the power
rofiles of the appliances included on the simulator.
For the detailed modelling of realistic behavioural profiles, we

ave created the framework what is represented in Fig. 2. To have
ealistic profiles the matrices representing the Markov Chains cre-
ted by Richardson et al. [40] have been implemented as the first
ection of the framework. After considering a realistic occupation,
he probability distributions of wet appliances used by Vellei et al.
41] were used, and a profile of electrical vehicle charging has
een added to the framework. The probability distributions of the
ppliances can be found on Fig. 3.

.2. Load modelling

For this problem, a simulated load that contains consumption
f electrical appliances in several households (depending on the
4

test) has been created in the simulator. In the work at hand,
the operation of the washing machine, the dish washer and the
EV charger have been considered as the shiftable loads that the
optimisation engine could move to modify the demand. These
three appliances are located in each one of the homes considered,
and therefore, the decision space will have a dimension of n x 3
with n the number of homes.

The problem has been simplified to three ‘‘movable’’ devices,
s they have been the appliances considered in most of the
iterature of this field, but the methodology could work with more
ppliances in the same way. Each of these appliances has a power
rofile which represents the power consumed by each of them
n the operating time, that is, there is a time series of the power
onsumed by the appliance over a period of time. In this work, for
he first time according to the authors’ knowledge those profiles
re from real devices and have a sampling period of 5 min [42].
Once this is considered, the objective is to obtain the total sum

f all the power profiles of all the users of the system, in other
ords, when all the power profiles of all the electrical appliances
f all the users are added, a time series of the power is calculated.
his time series will have a granularity of 15 min and will have
duration of one day. This interval has been chosen as it relates
o the ISP slots of the USEF flexibility framework, that is likely to
e adopted as a standard of communication for demand response
vents in Europe [43]. This implies that it will be a time series that
as a length of 96 periods of 15 min.

.3. Problem definition

On the context of the problem at hand, the objective is to
inimise the maximum peak, changing the times that users have
hosen but without disturbing their comfort too much or offering
mprovements in the prices of the electricity tariff. In other words,
here is a multi-objective optimisation problem: on the one hand,
educing the maximum peaks of the system, and on the other,
isturbing the user as little as possible and, finally, minimising
he cost of each user.

In order to finish defining the problem, it is only necessary to
efine the objective functions:

• Peak: the maximum aggregated of the instant power de-
mand for a given solution.
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Fig. 2. Flow diagram of the behavioural generation and its connection with the optimisation algorithm.
Fig. 3. Probability distribution of the Electric vehicle charging (E), washing
achine (W) and dishwasher (L) for a given day.

• Cost: the cost is the overall cost of the electricity for each
user.

• Distortion: gives information on how much the use of the
electrical appliances of each user is disturbed.

oing further into the price metric, it is necessary to clarify the
rice per hour. In our case, a real time series that shows the price
hroughout a day was used. These data have been extracted from
5

omie.es, which provides information about the energy market in
Spain. The objective functions are calculated using the solution
vectors in the following way:

Peak(T ′, t) = max(Power(T ′, t))/n (2)

Cost(T ′, t) = sum(Power(T ′, t).C(t) (3)

Distortion(T ′) = sum(|T − T ′
|)/n (4)

where T and T ′ are the appliance power-on timestamps before
and after optimisation. Power is the power time series, n is the
number of households to optimise and c is the price of power
throughout a day.

With respect to the decision variables, they have been defined
in the following way. Considering the natural operation of devices
given by the realistic models (see Fig. 3), one decision variable is
created as the movement in time of the instant of that operation.
These variables, will move the start of the appliance to an earlier
time or to a later time during the optimisation process.

Once the multi-objective optimisation problem has been de-
fined, there are several ways to solve the problem. Due to the
fact that our functions need to be tested for conflictivity, it is
necessary to use a resolution method that finds the solutions for
all objectives at the same time. A solution to this problem is to
use the multi-objective optimisation given by the NSGA II [44].
Although the NSGA-III has already been developed, we decided
to use the NSGA- II algorithm is more includes the crowding
distance to have a dispersed set of solutions.
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Table 1
Description of the algorithm used for the multi-objective optimisation.
Library of the algorithm pymoo.algorithms.moo.nsga2
Crossover mechanism Integer simulated binary crossover
Mutation mechanism Integer probability mutation
Crossover parameter 0.9
Mutation parameter 0.01
Population size 300
Termination criteria Tolerance
Termination criteria parameter 0.05

A genetic algorithm is a search algorithm based on the me-
hanics of natural selection. These algorithms make a population
f individuals evolve through random actions similar to those that
ct according to the theory of biological evolution such as genetic
utations and recombination. In addition, they make a selection
ccording to some fitness function that decides which are the
ittest individuals who survive and which are the least fit who
re discarded.
The objective of this algorithm is to obtain the so-called Pareto

ront, which is a collection of points obtained by calculating the
bjective functions for the input vectors in such a way that one of
he objective functions is minimised without being disturbed the
thers. For example, because distortion and peak value are likely
o be negatively correlated, reaching the minimum peaks as pos-
ible will only be possible by greatly modifying the timestamps
f appliances which will result in a distortion metric. The same
ill happen with the price.
The algorithm works as it follows:

• Appliance data is loaded and the appliance time stamp vec-
tor is constructed based on realistic user profiles (agents).

• The decision space is created as the variation of the starting
point of operation time of the loads, being multiplied by the
number of households with a range that goes within the
interval [from - 96 to 96].

• Finally, the parameters of the algorithm are established.

or the implementation of the optimisation a well proven li-
rary implemented for Python has been used. The library was
mplemented with the parameters shown in Table 1.

Once this is established, the algorithm begins to randomly
est modifications to the timestamps chosen by the users and
alculates, with this new vector, the value of the three functions
nd makes small modifications that improve the results, in such a
ay that those that approach the minimum value of the functions
ill be chosen. At the end of the execution, the Pareto front of the
ossible solutions that households can take is obtained to either
btain the minimum distortion or the minimum cost, making the
lectricity company obtain a manageable power profile. Pareto is
herefore a set of 3-dimensional vectors (one for each objective
unction) and its values are values of the objective functions for
he vectors that optimise these functions.

On the one hand, the user will be able to choose values of
curve in which their will obtain lower prices in their bill at

he cost of increasing the distortion of the timestamps of their
lectrical appliances, while the electric company will be able
o decide how much they want to reduce the power peaks of
he electrical network depending on the distortion that this will
uppose to the user.

. Results and discussion

.1. Relationships between objectives for Demand Response Events
esign

After a great deal of investigation to find the optimal way
f running the NSGA-II so it would work well for the problem
6

at hand, we were able to see that an integer encoding of the
algorithm with discretisation of the decision space on intervals
of 15 min gave a good convergence on a Pareto front solution
for 128 households on a time of 6 h using a i7-10870H with
8 cores and 5.0 GHz and 16Gb of RAM. It was seen that the
high redundancy of the decision space, given by the definition
of the objective function of the maximal power, gave many of
the solutions the same value on this objective function with very
different solution vector that gave a very different value on the
other objective (the users distortion). This gives a certain proof to
the authors on the algorithm selection which is purely heuristic,
a gradient-based or other solution-proximity analysis algorithms
would have not been able to add value to the search due to the
irregularity and non-smoothness of the objective function of the
power. The progression of the three objective functions as the
algorithms evolves can be seen on Fig. 4 for the multi-objective
optimisation of one household using NSGA-II developed by Deb in
[44]. It can be seen how the algorithms has a highly exploratory
nature, and it ensures that a good dispersion of the solutions is
found.

As mentioned before, DREs may lead to peaks occurring on
a different time leading to the non-elimination of the peak yet
losing the revenue for the utility. It is important to know what
happens when the behaviour of the users is realistic and the dis-
torsion effect of the DREs on the shiftable loads is evaluated. The
framework used for this work has realistic stochastic behaviours,
so it allowed us to have a realistic metric of this user distorsion
(named ‘‘consumer inconvenience’’ by Barbar). To evaluate this
relationship, the multi-objective optimisation algorithm was used
that looks for the Pareto optimal points of the optimisation taking
into consideration the three objective functions. This is one of
the novelties of this paper, is the consideration of the challenge
as a multi-objectives optimisation. In the one hand the peak of
the network can be reduced via re-scheduling of certain devices,
but on the other hand, it is important that the distortion to the
occupants is minimal. It is for this reason that the problem on
this research was considered and tackled as a multi-objective
optimisation. In multi-objective optimisation, the two objectives
are optimised (minimised in this case) simultaneously, giving as
the results a set of solutions in which none of them is worst on
both objectives to any of the rest. Once the algorithm has selected
the optimal compromise, higher level information can be used to
decide which solution of the Pareto should be chosen, with the
certainty that the solution chosen is going to be optimal for that
specific weight between objective one and objective two.

In the case at hand, we run the optimisation of the three
objective functions namely the cost, maximum power peak and
the average distortion of the user’s devices use schedules. This
provided a Pareto Front that can be seen on Fig. 5 and that shows
how the power peak can be reduced considerable modifying only
by an average of around an hour the schedules of the users when
the new schedules are defined as the algorithm is suggesting.

The fact that the solution comes on a Pareto Front gives a
clear advantage to aggregators and utilities. The Pareto front
can be used as the line of action of these stakeholders, and
move along the front depending on the users at hand and the
program needed. For communities wanting less distortion, the
aggregator can send demand response events that are more on
the minimisation of the distortion to users yet making substantial
reduction on the power peak, whereas for other users that are
more keen on reducing their peaks (maybe because they give
priority to incentives from utility) the utility/aggregator can move
towards solution that reduce the peak more, yet knowing that the
distortion for users will be minimal.

The result on Fig. 5 shows the Pareto front as obtained by
the optimisation algorithm, but with 2D views to facilitate the
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Fig. 4. Evaluations of the objective functions along the optimisation.

understanding. The representation has been chosen as is because
it generates graphs that are relevant on their own as well as
seen all together. Starting by graph (g), one can see on the Pareto
relating the price seen by the household and the distorsion (time
that the operation has been displaced from the natural one).
This sub-plot is therefore the more relevant for the customer.
As one may expect, it was seen that the objective of reducing
7

price and the objective of suffering less disruption are conflicting
objectives. It is seen that the more the user wants to reduce their
bill via moving the appliances, larger the distorsion is going to
be. This graph is interesting on its own, as it may help utilities
to identify the relationship that should be established between
windows of operation for the devices and monetary incentives.
This has value because it has been carried out with real load
profiles and with real behavioural patterns.

On the (h) sub-plot one can find the Price-Peak graph. This
sub-plot is highly relevant for the aggregator or utility. The graph
shows that Peak Reduction and Price Reduction are not purely
conflicting objectives. This means that there are solutions of
operation for the community in that reducing the price reduce
the peak. This graph serves as a check that the tariffs are designed
correctly. If a graph as this one, results on conflicting objectives,
it would indicate that the tariffs for reducing peak loads are not
properly designed. This is not the case with the peak when the
distorsion is minimised. As one may expect, if no distorsion, or
little distorsion occurring, the peak could never be at its lowest
(as seen on the (d) sub-plot).

4.2. Parallelising the design of optimal DREs to make feasible large
scale campaigns

As mentioned before, the design of demand response events
needs to take into consideration the benefits of the users (or
at least minimum distorsion) and the reduction of the peaks
for the utility/aggregator. The previous section shows that with
the adequate tariffs one should expect that the peak is reduced
when the cost of the users is reduced. However, the relationship
between the reduction of peak/cost and the distorsion originated
to the users is more complex and a program that reduces one has
to worsen the other.

Although this comes with no surprise, it is still necessary to
investigate ways to make possible this optimisation, as it is not
ideal to design solutions that minimising one of the objectives,
are not the best-allowed solution for the other one (i.e. is not part
of the Pareto Front). For this to occur, the optimisation needs to
be feasible, and for large energy communities, the large number
of loads that have to be coordinated may render the optimisation
not possible. Our work suggested the breaking of the problem
into several similar projects that make the computational time
of the problem divert from the exponential tendency growth as
the number of houses under consideration grows.

This is the reason why, it is necessary to divide the problem
into smaller problems and then join all the results into one,
following the map-reduce methodology, that is, parallelising the
problem. For this, the genetic algorithm is programmed in such a
way that it performs the optimisation in small groups at the same
time and gathers all the solutions below, for example, instead of
optimising 200 households (that is, 600 variables) it is possible to
optimise 10 groups to the time of 20 households (60 variables),
causing the calculation time to be drastically reduced.

Before doing so, it needs to be checked if the problem is
completely separable into smaller problems, since the optimi-
sation will be much more efficient when the algorithm has all
the freedom to make changes in the time series, which is not
possible when the problem is fragmented. Therefore, it will be
necessary to find the appropriate division of the problem and
valuate how much effectiveness one is willing to give up after
a shorter calculation time.

To achieve this, we have considered that the optimisation of
a given case modifies the location of the appliances until the
difference between the maximum peak and the average power
is small (this has been shown as epsilon on Fig. 6). To then
design the strategy that helps reducing computational times, we
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Fig. 5. Result of exploring the relationship of the three different objectives that can be relevant for a demand response event.
ook advantage of the fact that the GA used to optimise the
peration, has a stochastic nature. This, together with the fact
hat the decision space has many near optimal solutions due to
he redundancy of the problem, helped envisioning the method.
ptimising groups of homes and taking them to a given epsilon
alue, could be a good strategy, as each would have its peak
t a different position. This implies that the summation of ‘‘n’’
ptimised demands do not necessarily imply a peak of n x epsilon.
n fact, it would be highly improbable.

ower
(
Ti, tj

)
= Power

(
Ti−1, tj

)
+ WM (Ti + j)

+ DW (Ti + j) + EV (Ti + j) (5)

obtaining the power is an iterative process in which the time
series values of the electrical appliances (DW, WM and EV) are
added for the j values, ranging from 0 to 24, where 24 are the
periods of 15 min that the power-on timestamps. This iteration
is carried out for all the buildings, in such a way that the profile
of the series increases with each building. The maximum value
of this function in the variable tj is what will give rise to the
objective function of the peaks.
8

Fig. 6. Power of the demand. The variable epsilon has been considered as the
difference between the maximum peak and the average power.

The first test that was done for this, was the evaluation of
the minimum epsilon that one could achieve by performing the
optimisation of the operation for several group sizes and this is
shown in Fig. 7.

It is clear, that it is possible to perform optimisation of the
scheduling of the shiftable loads, and so has been seen when
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Fig. 7. The figure shows how the peak power increases when adding homes to the set (curve: original) this is because the probability distributions of the use of
appliances have peaks on specific times, and therefore more appliances do not necessarily add power peaks at random times. The curve: optimised shows how the
power peak can be maintained low even adding more homes if the operation of the shiftable devices is optimised.
Fig. 8. Relative reduction of peak depending on the number of homes grouped. The curve shows a clear minimum for 32 households, indicating a desirable grouping
size for parallelised optimisation. The cross represents this minimum.
optimising the operation with a single objective GA. The following
step on the research was to evaluate if there is a natural grouping
size that benefits the scheduling. The problem is highly redun-
dant, and as said before, one can hypothesise that there can be
a group size for which the optimisation is sufficient, and adding
extra households can be done in parallel. This was evaluated and
the result can be seen on Fig. 8. The figure shows the reduction
of the power thanks to a single objective genetic algorithm, as
a ratio (resulting power/ initial power), for a given number of
households. The figure shows that the peak is reduced with the
optimisation, on a very effective way. As the values have been
normalised, the comparison between the various test is made
possible. From the graph one can see that optimising groups of
32 houses makes the most effective reduction, what indicates that
9

this is an optimal grouping size for the common shiftable loads
in dwellings and for realistic behaviours.

Following with the methodology, the group size of 32 house-
holds was used to break down the optimisation into routines
with groups of 32 households. Each of the optimisations will
give a resulting power series for the group, and also a recom-
mended DRE for each household. The summation of the power
series will indicate the peaks of the resulting 128 summary of
groups. The reason for testing this approach was to avoid the
exponential growth of the computational time seen on traditional
optimisation of DREs that could make the optimisation unfeasible
for communities large enough to be interesting. Our method of
parallelising the optimisation with the optimal group size allows
to make the growth of the computational time of the optimisation
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Fig. 9. Reduction of the computational time of the optimisation of the DRE with respect to the number of final users. The reduction of computational time is
exponential with the number of users. On a DRE of 128 users the parallelisation has reduced the computational time by 78%.
Fig. 10. Reduction of the power peak thanks to the optimisation. The green cross represents the peak after Applying a parallelised DRE optimisation with a reduction
of the computational time of 80%, the worsen of the optimisation due to the parallelising was 2.8%.
linear. This more reasonable times enable the design of optimal
DREs for large communities, making them possible. The transfor-
mation of the computational times with the traditional, and with
our parallelised method can be seen on Fig. 9.

Having seen that the method presented here can represent a
great advantage on the computational time, eventually enabling
large scale DREs planning, the next step was to see if the new
power series is not highly compromised with the parallelisation,
and the peak reduction is similar. This test was done with 128
households as it represents the case with the highest difficulty
for the algorithm yet representing a realistic neighbour size. The
result has been shown on Fig. 10 as a crossing of curves of
the power peak reduction. The evaluation has shown that the
parallelisation, only modifies the reduction of peak by 2.8% what
10
is almost non-perceptible and to the authors opinion, acceptable
considering that the reduction on the computational times was of
80% and particularly the elimination of the exponential growth
on the DREs optimisation with the number of households. (see
Fig. 9).

4.3. Effectiveness of parallelising for the multi-objective optimisation

Although DREs are meant to be design for reducing the peaks
that could make the distribution line either fail or need more
investment, it has been shown in this work, that a multi-objective
optimisation can be beneficial. We have seen that the grouping
of households of the optimisation of DREs could be the enabler
for large scale DRE optimal design, but the authors considered
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Fig. 11. Results of the multi-objective optimisation with two objectives (price and distorsion) with the 128 homes and with four groupings of 32 users.
interesting to evaluate if the grouping will also allow to perform
multi-objective optimisation with a low computational price. For
this, a similar exercise as the one performed on Section 4.1 was
performed.

The method used to obtain a joint pareto consists of calculat-
ing the individual Paretos of each set of households, in such a way
that a matrix of objectives is obtained for each set of households.
One of the Paretos is chosen arbitrarily, and point by point the
points of the other Paretos that minimise the Euclidean distances
are obtained, thus to each vector of the arbitrarily chosen pareto,
a number of vectors equal to the number of Paretos is assigned.
In such a way that the joint pareto is not the union of the Pareto
but more isolated points are eliminated in this pareto. The results
are shown on Fig. 11.

The results of the multi-objective optimisation with the group-
ing of the household on their optimal size showed a clear reduc-
tion on the computational time, even higher than in the single
objective optimisation. However, it was seen that the resulting
Pareto fronts when calculated with the parallel groups were far
apart from the resulting Pareto front of the general optimisa-
tion if the process is considered. This indicates that the method
presented here may not be extrapolated for the case including
the price, and its use is therefore limited. This comes with no
11
surprise, as the method was designed taking into consideration
the reduction of peak, but not price (which is a smoother ob-
jective function). It should be taken into consideration, that the
grouping of homes works rather well when considering only peak
and distorsion. This is an interesting finding as it can be of great
use when the DREs are design on a direct load control fashion, and
the price does not come into play. Considering the findings of the
relationships between the objectives given by Section 4.1, one can
see that the single-objective optimisation, with the parallelisation
should be enough for the optimal design of DREs, allowing large
scale broadcasting of shiftable appliances re-scheduling and with
them changing the way in which the large scale demand operates.

5. Conclusions

The work here presented aims at studying the design and
optimisation of Demand Response Events from three different
points of view: the reduction of the peak power (seen as the most
relevant one on most of the literature), the reduction of the price
for the user (seen as the second most important) and the distor-
sion for the user on their existing habits (seldom investigated).
The use of realistic profiles of behaviour taken from the litera-
ture, have allowed us to create a comprehensive framework for



A.P. Ramallo-González, T. Alcañiz-Cascales, V. Tomat et al. Sustainable Energy, Grids and Networks 32 (2022) 100907

t
b
l
s
h
r
t

o
k
a
a
w
p
f
m
c
t
b

t
a
t
t
h
o
b
e
t

d
i
b
t
o
k
p
r
f
h
T
r
s
r
i
e
i

t
d
o
T
c
c
o
t
m
t
m

e

evaluating the different effects. Within the framework, a realistic
simulator with a variety of consumers have been created, and
agent-based modelling type behavioural models provide with the
realistic profiles of each user.

The framework allowed us to have a realistic scenario to test
he different strategies to optimise the DREs that until now had
een seen as effective tools, but that have been seen to have a
imiting factor on designing them on an optimal manner for large
cale interventions. The tariffs, or the sending of unified DREs
ave been the strategies so far without making the large scale
e-scheduling of the shiftable loads that are shown here, due to
he computational effort being a limiting factor.

In the work here presented, we show how the three relevant
bjectives of a DRE are related to each other. To the authors
nowledge, this has been done for the first time on this paper,
s not using realistic profiles of appliances operation did not
llow to quantify the distorsion on the user’s habits on other
orks. The results show that a well design tariff will make the
rice reduction of the final consumer and the peak reduction
or the grid non-conflicting objective. The results also show that
ulti-objective optimisation is a good tool to check the internal
onsistency of a tariff; and to see, if it is well defined for reducing
he peak. The realistic tariff used in this paper has been seen to
e well designed.
In addition, the multi-objective optimisation has shown how

he distorsion on the user’s habits and the reduction of peak
re clearly conflicting algorithms. This comes with no surprise as
he test was done with real probability distributions that show
hat the households tend to use certain shiftable-loads at specific
ours. However, the fact that the Pareto Front of these two
bjectives was obtained, helps on quantifying the relationship
etween the two. At the same time this allows to design more
ffective and less disruptive DREs that minimise the peak with
he minimum distorsion to the user.

The question of the long computational times for the optimal
esign of DREs and specially its exponential growth was of key
mportance for this work. We hypothesised that a group size can
e found that makes ideal the grouping of the optimisation as if
hey were energy communities, and that the aggregation of these
ptimised groups can then lead to an optimal overall profile, yet
eeping the computational times feasible. The results are highly
ositive. It was seen that the optimal group has 32 households for
eal shiftable loads, and for real household’s behaviour. This is a
inding on its own, as the design of groups to be optimised can
elp on several aspects of the new paradigm of electricity grids.
he parallelisation for the optimisation gave also outstanding
esults. The reduction of time was 80%, and the worsening of the
olution was of 2.8% for the case of 128, but the figure of time
eduction grows exponentially with the number of households
nvolved. This shows that the method here presented clearly
liminates the burden of the exponential growth, and therefore
t allows the optimal design of large scale DREs.

The grouping of the optimisation was a tempting exercise
o be extended to the multi-objective optimisation. This was
one on the same way that was done for the single-objective
ptimisation but running the algorithms with three objectives.
he results show that the method is not convenient for this
ase. As one may expect, the design of the method was planned
onsidering the final power peak reduction, and the minimisation
f several objectives may be slightly different as the evaluation of
he objective functions have other implications. Yet, the grouping
ethod worked well for multi-objective optimisation as soon as

he price is not included Making it also valuable for the design of
ulti-objective demand response programs.
There are relevant devices on households that may be inter-
sting to include on the optimisation. Specifically, refrigerators

12
and freezers have the necessary thermal inertia to be turned
off for some minutes without noticing a substantial rise in the
internal temperature. The consideration of these devices on the
optimisation of demand response events is suggested for further
work.

Summarising, we have seen that with the current shiftable
loads on real households and considering real behavioural pat-
terns for their use, the method here presented can reduce the
large computational times for large scale DREs allowing to do
large scale design of these events and to reduce the peaks of the
grid largely. It is recommended for further work to investigate
other ways of complementing this for multi-objective optimisa-
tion, but according to what we have seen, it is likely that the
large scale broadcasting of DREs with the method here presented
together with overrides of some users will result on optimal op-
eration of the shiftable devices for the monetary and the comfort
of the end users and for the grid.
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