
FADI - A Deployment Framework for Big Data
Management and Analytics

Rami Sellami, Faiez Zalila, Alexandre Nuttinck, Sbastien Dupont, Jean-Christophe Deprez, Stphane Mouton
CETIC - Centre d’Excellence en Technologies de l’Information et de la Communication

Charleroi, Belgium
first.lastname@cetic.be

Abstract—The production of huge amount of data and the
emergence of new technologies in the industry sector have
introduced new requirements for big data management. Many
applications need to interact with several heterogeneous data
sources to ingest, harmonise (normalise), persist, analyse and
synthesize results to enable informed decisions and draw benefits
from data. These operations are ensured by different tools and
these tools are heterogeneous and not connected with each other.
Besides, the whole tool-chain lacks automation in terms of its
deployment, its operational workflow and its orchestration for
satisfying the elastic and resilient properties needed by Industry.
In this paper, we present FADI, a framework for deploying and
orchestrating a Big Data management and analysis platform fully
composed of open source tools. FADI has been developed through
several research projects, namely, BigData@MA, Grinding 4.0,
Quality 4.0 and ARTEMTEC where Industry use cases are used
for validation purposes.

Index Terms—Big Data, Deployment, DevOps, Kubernetes
(K8s), Helm, Open Source

I. INTRODUCTION

From the exponential growth in the volume of data collected
by IT systems arises new challenges in terms of data analytic
and exploitation. This situation forces researchers to find new
ways to manage and process data, notably, for discovering new
methods for capturing, searching, sharing, storing, analyzing
and presenting data hence the emergence of ”Big Data”.

According to the NIST Big Data Public Working Group
[1], Big Data is data which exceeds the capacity or capability
of current or conventional methods and systems. In [2], IBM
defines the term Big Data as the information that cannot be
processed or analyzed using traditional processes or tools.
The Big Data problematic is associated to the 3-Vs: volume,
velocity and variety. Volume denotes the processing of large
amounts of data. Velocity signifies the increasing rate at which
data flows and must be processed [2]. Variety refers to the
diversity of data sources (e.g. IoT devices, web applications,
etc.) and data structures (Web sockets, artifacts and media).
With the emergence of new technologies (e.g. Cloud Comput-
ing, sensors, smart devices, social networks, etc.), Data-sets
have grown in complexity since they are a combination of
highly heterogeneous data (e.g. type, structure, format, etc.).

For IT industry, one of the most important challenges is
how to process and exploit the collected data [3]. Efficient data
processing has translated into competitive business advantages.
Stakeholders such as data scientists/engineers, and business

analysts should easily collect data, analyze it and publish re-
sults. To efficiently solve the 3Vs from Big Data problematic,
a well-crafted platform must be put in place. Existing solutions
exhibit limitations in terms of cost (expensive) or flexibility
and extensibility (vendor locking).

In this paper, we present FADI1, a generic framework for
deploying and orchestrating a Big Data platform to collect,
analyze and visualize data. FADI is a containerized cloud-
native platform for Big Data based on mature open source
tools. It is defined on top of Kubernetes container orchestrator.
Therefore, it is a Cloud agnostic and portable solution.

The paper is structured as follows. First, Section II recalls
the main requirements for building a Big Data platform.
Section III presents the Big Data platform and its different
components deployed using FADI . Sections IV and V il-
lustrate different Industry use-cases and validates the different
requirements satisfied by the FADI deployment framework.
Section VI presents the related work. Section VII concludes
and presents our future works.

II. MOTIVATION & REQUIREMENTS

According to the ISO/IEC 25010 System and software qual-
ity models [4], we have identified three levels of requirements
that should be considered when designing a Big Data platform,
how to deploy it and how orchestrate its operations.

First of all, the setup level concerns the requirements
related to the ease of the platform deployment (R1-Ease of
Deployment). IT administrators expect a flexible and simple
means for deploying a Big Data platform anywhere (i.e. on-
premises, hybrid, public cloud infrastructures). It should also
be extensible, interoperable and portable. Swapping or adding
new software tools or services to fulfill new requirements
shall be possible, simple and quickly done (R1.1 Flexible
Deployment). It shall be possible to migrate Cloud providers
and to avoid Cloud vendor lock-in (R1.2 portable). The
deployment procedure must also integrate the resulting Big
Data platform in an overall existing architecture and infras-
tructure with its specific environment such as tools, internally
developed frameworks, IoT devices and local databases (R1.3
Interoperability). Second, at the operations level a first major
requirement relates to the handling of workload variation
notably through an appropriate elastic behavior, which is the

1https://www.cetic.be/FADI?lang=en



ability to grow or shrink infrastructure resources dynami-
cally to adapt automatically to the workload changes (R2-
Automatic Elastic Orchestration: R2.1 Scaling up, R2.2
Scaling Down). Finally, on the usability level, it is important
to fulfill the user experience requirements also for other users
than IT infrastructure administrators. In fact, Big Data plat-
form end users (e.g. data engineers, data scientists, business
analysts) must be able to adapt and tune a Big Data platform
on their own without constantly requiring support from IT
infrastructure administrators (R3-Usability). Data engineers
must be able to create the necessary ingestion and bridges
between various data sources and types (R3.1 Usability for
Data Engineers). Data scientists must be provided with means
to develop and package their data analytic and machine
learning algorithms (R3.1 Usability for Data Scientists).
Business Analysts shall have the means to define dashboards
to easily and quickly interpret the information resulting from
data analysis (R3.2 Usability for Business Analysts).

III. FADI: A CUSTOMIZABLE END-TO-END BIG DATA
PLATFORM

FADI is a customizable end-to-end big data platform en-
abling the deployment and the integration of open source
tools in a portable and scalable way. It is a multi-tenant and
multi-actors (i.e. business analyst, data scientist/engineer, IT
admin, etc.) platform. The main features of FADI are five-fold
(see Figure 1): (1) collecting batch and stream data coming
from various data sources, (2) storing data in different types
of data stores, (3) processing data using ML and Artificial
Intelligence (AI) techniques, (4) visualizing and analyzing
data in a user Web interface, and (5) generate and publishing
reports. In the rest of this section, we present an overview of
the software architecture of FADI (see Section III-A), a sample
implementation of it (see Section III-B) and the DevOps
features and its Continuous Integration/Continuous Delivery
(CI/CD) pipeline (see Section III-C).

Fig. 1. An overview of FADI’s features

A. Overview of the software architecture of FADI

In Figure 2, we showcase an overview about FADI. The
figure is divided in five main layers that are:

• The internal administration services layer enables to
manage and maintain FADI. It includes the following
components: The logs management component allows
logs collecting, storing and making them available to
FADI administrators. The backup management compo-
nent enables to manage the database backups by integrat-
ing a data recovery mechanism in case of hardware or
software failures. The monitoring component is used to
control the status of the other components and to provide
information on the state of the system (e.g. memory,
CPU, error logs, etc.). The user management component
allows to control users identity and access to the different
components of FADI and to the data.

• The data integration layer is responsible for collecting,
ingesting, transforming and routing data. Data may be
collected via stream or batch. This layer includes three
main components. First, the data transport component is
a message queue system enabling to control and manage
the data collection. Second, the data source integration
component enables to collect data coming from hetero-
geneous data stores and to store it in a single one. Third,
the data flow management component collects, validates
and formats the raw payload objects.

• The data analysis layer is responsible for analyzing
stream and batch data. It includes three main components.
The broker component enables to collect and distribute
data in a scalable and fault tolerant way. It supports
raw data coming from the data ingestion tool and the
validated (pre-processed) data dedicated to the stream
processes. Then, the pre-processing component manages
the operations related to the Extract Transform and Load
(ETL) processes in order to prepare data to be analyzed
and processed by the Stream Processing component.
This latter processes data using ML and AI libraries, or
custom processing algorithms to give meaning to it.

• The data storage layer supports the storage of various
and heterogeneous kinds of data. It includes three types of
data stores. The Data Lake is used to store raw ingested
data in order to gather all the data into one system to
easily establish links between the different kinds of data.
The Data Warehouse is dedicated to store processed data
and is linked to the data analysis components. The Model
Repository contains models like ML models, etc.

• The serving layer has two main tasks. First, it allows
to present data to the users via a reporting user interface
(e.g. notebooks, dashboards, etc.) in order to (1) define
and build data analysis models, (2) exploit data, and
(3) visualize data via dashboards and reports. Second, it
enables the FADI administrators to maintain and manage
the FADI components and infrastructure.



Fig. 2. An overview of the software architecture of FADI

B. A sample implementation of FADI

One of the innovative aspect of FADI is to provide a
software architecture enabling to integrate together various
open source tools dedicated to the management of Big Data.
Indeed, we present a sample implementation of FADI that
allows to set-up an end-to-end example enabling to collect
data, ingest it, analyze it, and visualize it. For more details
about this sample implementation, interested readers may refer
to the FADI GitHub project2. It is noteworthy that FADI is
customizable and the user may replace any tool by another
one. In the following, we introduce the adopted tools:

• For the internal administration services, we propose to
use the following tools: The ELK3 tools suite is used to
manage the logs. ELK stands for the three open source
tools: Elasticsarch to search information in the collected
logs, Logstash to transport and process logs by collabo-
rating with the Elasticsearch tool, and Kibana to visualize
the logs and the results of its analysis. Then, Zabbix4 is
used to set-up the monitoring in the FADI infrastructure.
Finally, OpenLDAP5 is an open source implementation of
the Lightweight Directory Access Protocol (LDAP) used
to provide Identity and Access Management.

• We propose to use the Apache Nifi6 tool to set up the data
integration layer. It automates the data flow between
systems: both with external systems (e.g. sensors data
sources) and between internal systems (e.g. the various
analysis and storage components). It allows to manage
the data transport, ingestion, pre-processing, and storage.

• For the data analysis layer, we propose to use Apache
Spark7 in order to conduct analysis for large-scale data
processing. Added to that, it supports various program-
ming languages. It also includes libraries for diverse tasks
ranging from SQL querying to streaming and machine
learning, and it runs anywhere (e.g. laptop, clusters, etc.).

2https://github.com/cetic/fadi
3https://www.elastic.co/what-is/elk-stack
4https://www.zabbix.com/
5https://www.openldap.org
6https://nifi.apache.org/
7https://spark.apache.org/

• For the data storage layer, the following database sys-
tems are selected. The data warehouse is implemented by
the PostgreSQL8 which is an object-relational database
management system. It has been chosen because it
contains advanced database features (e.g. aggregation,
parallel queries, replication system, etc. Then, the data
lake is represented by Cassandra9 which is a (NoSQL)
column database. It is known for its high-speed and online
transactional data processing in data lakes.

• For the serving layer, we propose to use three tools.
The Jupyter10 notebook is a web application that allows
to define ML models and to be coupled to Spark in order
to set up a user interface. To explore and visualize data,
Superset11 and Grafana12 are integrated in FADI. Finally,
Adminer 13 is used to manage the PostgreSQL database
in a web interface.

C. The CI/CD pipeline of FADI

FADI provides a streamlined way to set-up and deploy the
open-source Big Data tools to various infrastructures. It is
noteworthy that the only technological choices in our solution
are the tools and the techniques that are dedicated to the set-up
of the DevOps features (the justification of the technological
choices is available in Section VI. Indeed, we propose to
use the Container Orchestration Engines (COE) Kubernetes
in order to be able to package each component of FADI in a
Docker container. Hence, we ensure the portability, modularity
and the ease of maintenance of our solution. In addition, we
propose to use Helm14 in order to automate the configuration
and the deployment of Kubernetes services by defining a single
Helm chart for each one and to integrate them in the main
Helm chart of FADI. In Figure 3, we showcase an overview
of the CI/CD pipeline of FADI. In the following, we introduce
the different stages of the CI/CD pipeline:

• Source code and Helm charts development: In this
stage, the developer implements the services, defines
their configuration and edit the Helm chart of FADI.
We propose two open source tools. First, Minikube15 is
used to set-up a local Kubernetes-based environment (i.e.
the development and test environments) since FADI will
be deployed on a Kubernetes cluster in the production
environment. Second, Docker is used to containerize the
different FADI services. By choosing these tools, devel-
opers may work directly from their host OS in headless
virtual machines (VM) or containers using folders shared
with the host system. Furthermore, the provisioning
scripts (and/or the Dockerfiles) can be versioned and be
partially reused when deploying the application in other

8https://www.postgresql.org/
9https://cassandra.apache.org/
10https://jupyter.org/
11https://superset.incubator.apache.org/
12https://grafana.com/
13https://www.adminer.org/
14https://helm.sh/
15https://github.com/kubernetes/minikube



environments. Finally, when possible, the integrated ser-
vices should run in separate VM/containers to maximize
flexibility, isolation and portability.

• Source code and Helm charts committing and push-
ing: Once the developers finish editing the source code
and the Helm charts, they commit and push these re-
sources to two types of Source Code Management (SCM)
tools. The first one is GitLab and it is used to privately
customize and manage FADI. The second one is GitHub
and it is used to share the different Helm charts defined
by the open source community working around FADI.

• Artifacts and Helm charts building and publishing:
The used SCMs publish the last versions of the source
code and the Helm charts to the CI/CD process. We pro-
pose to use GitLabCI in order to manage the continuous
integration of the source code versions. In order to find
the appropriate artifacts and the right Helm dependencies,
GitLabCI is connected to an artifact repository (i.e.
Nexus) and a Helm chart repository respectively. This
latter is connected to CircleCI16 in order to automate
the test and the publication of the Helm charts that we
use in FADI. For the interested readers, you can find
all the defined Helm charts with relation of FADI here:
https://github.com/cetic/helm-charts/tree/gh-pages.

• Provisioning and deployment: At this stage, we propose
to use Terraform17 in order to provision the infrastructure
in the dedicated environment (i.e. test or production). In
addition, we use Helm to deploy the kubernetes services
based on the pushed Helm charts in the previous stages.

• Functional and load testing: We propose to conduct two
types of testing. First, the functional testing enables to
verify whether the installed services in FADI are working
normally. In this context, we provide on the FADI GitHub
project a user-guide to help users to define and run test
scripts using Puppeteer and Jest to test the web interfaces
of each service. Second, we propose to conduct load tests
in order to check whether the environment is enough
capable to support a sudden increase in load or not. The
load testing is a work in progress and is not public yet.

• Monitoring: Based on the results of the testing stage, we
collect information and we send it to the development
team in order to consider the detected improvements or
new features to be integrated. We propose to use Zabbix
and ELK to monitor all the stages of the CI/CD pipeline.

IV. INDUSTRIAL USE CASES

In this section, we only introduce four research projects (i.e.
BigData@MA, Grindings 4.0, ARTEMTEC, and Quality 4.0)
where FADI has been developed and improved to meet project
goals. The details about the use of FADI in these projects will
be introduced in the next section.

The BigData@MA18 aims at developing a specific Big Data

16https://circleci.com/
17https://www.terraform.io/
18https://www.bigdata-ma.eu/ and ref. MNET17/ICT1140

Fig. 3. An overview of CI/CD pipeline of FADI

application framework to provide an online support for deci-
sions tasks in pharmaceutical and mechanical manufacturing
sectors. Specific data ingestion connectors, streaming analytics
tools and predictive maintenance models are implemented to
detect anomalies and deviations. One of the use cases in
BigData@MA comes from the industrial partner I-care19. It
consists in using FADI to collect, store, analyze and monitor
data coming from the API of I-care called I-see20. This data
is produced by machine analysis systems in order to store it
in a single database.

Grinding 4.0 is a Eurostar research project identified by
the convention number 1710101. It aims at creating a smart
grinding operation unit for the tooling industry, fully connected
to the automotive industry end users. Grinding machines unit
and auxiliary equipment are connected between each others.

The ARTEMTEC project is a SKYWIN project identified
by the convention number 7904. It aims to create a new
platform to integrate algorithms for predictive maintenance 4.0
applicable to similar geographically distributed sites. Added to
that, it focus to implement a smart help system facilitating
the management of maintenance operations by an on-site
technician with support of a remote expert. This help system
may also suggest actions based on the results of the predictive
maintenance algorithm.

The Quality 4.0 is a RFCS research project identified by the
convention number 788552. Its aim is to realize the horizontal
integration of quality information over the complete supply
chain via the adaptive Quality4.0 platform. This latter allows
online analytics of large data streams to realize decisions
on product quality and provides tailored information of high
reliability that can be individually exchanged with customers.

V. EVALUATION

In this section, we aim to validate the various features of
FADI according to the different requirements identified and
listed in section II.

19https://www.icareweb.com/en-gb
20https://www.icareweb.com/en-gb/i-see/the-fastest-and-easiest-way-to-

maintenance-40/



A. Ease-of-access to FADI

FADI is intended to simplify the users tasks in order to
easily integrate open source big data tools and set-up a CI/CD
pipeline. In the context of the different research projects, we
organize a hands-on workshop for the different partners in
which we present the FADI user guide, available publicly in
the Github repository, and considered as ”hello world” use
case. This first impression is crucial because it allows users to
decide to use FADI or not. Indeed, during the ARTEMTEC
project, our industrial partner, Safran Aero Boosters, has
deployed FADI in its own infrastructure and starts to use it.
This fact validates the R1-Easy of deployment requirement.

B. The portability

In the context of the research projects where we used FADI,
we have validated the portability capabilities of Kubernetes
by deploying FADI using different deployment methods. For
BigData@MA and Grinding 4.0 projects, the associated test
beds are deployed to Google Kubernetes Engine (GKE),
which is a managed Kubernetes service in the Google public
cloud. For Quality 4.0, the associated testbed are deployed as
Kubernetes clusters in our local infrastructure using Minikube
and Proxmox, an open-source server virtualization platform.
Finally, the testbed associated to the ARTEMTEC project is
deployed on the infrastructure of our Safran Aero Boosters
partner. These different ways to deploy FADI fulfill the
requirements R1.1 Flexible Deployment and R1.2 portable.

C. The interoperability

Interoperability is the ability of different systems, devices,
applications or products to connect and communicate in a
coordinated way. By integrating FADI in various research
projects, we have validated this property. For example, in
Grinding 4.0, we have connected FADI to an Azure Event
Hubs21, the fully managed, real-time data ingestion service
proposed by Microsoft, to ingest industrial data. In Big-
Data@MA project, we have connected FADI to the I-see
API. Finally, during Grinding 4.0 project, we have integrated
Tsimulus22, a toolkit for generating random time series devel-
oped by the CETIC, in order to simulate vibration machines
data . All these scenarios approve that FADI satisfies the R1.3
Interoperable requirement.

D. The scalability

Thanks to the choice of Kubernetes as a target infrastructure
to deploy, FADI is a scalable platform. Indeed, it enables
(1) horizontal scalability by automatically creating Kubernetes
nodes and pods, and (2) vertical scalability by increasing the
configuration of the CPU and RAM of the Kubernetes pods. In
the context of the Grinding 4.0 project, we aim to support data
bursts sent by industrial machines, via the Azure Event Hub,
in order to ingest and process it in a scalable and efficient
way. The first results show a reactive FADI face to a huge

21https://azure.microsoft.com/en-us/services/event-hubs/
22https://tsimulus.readthedocs.io/en/latest/

quantity of data. This behavior validates the R2-Automatic
Elastic Orchestration requirement. In the future, we aim to
add a load testing mechanism associated to a monitoring tool
to observe how FADI behaves.

E. The modularity and extensibility

The use of Helm in FADI enables to ensure its modularity
and extensibility. Indeed, it allows to deploy multiple compo-
nents integrated in FADI based on Helm charts as a single
application. Adding a new component or release is simple
and requires only the integration of the appropriate Helm
chart either by defining it or by uploading it from the Helm
Hub23. This feature is very important especially for industrial
partners who have proprietary components that they would
like to integrate in FADI. For instance, in the Quality 4.0
project, we are working on integrating internal components
of our industrial partner in FADI. To do so, we are defining
a Helm chart for each one separately. Then, we will add
these dependencies in the FADI Helm Chart. Such a task may
require between one and four days in general. To support the
user during this task, we provide the user with an automatic
test and publication process of the Helm chart here24. Thus,
we validate the R3-Usability requirement.

F. Supporting heterogeneous data

FADI supports the integration and the use of the heteroge-
neous data. Indeed, it has been used in at least four research
projects in which we were faced on different types of data
in each one. For instance, in the Grindings 4.0 project, FADI
collects and ingests JSON data. In the BigData@MA project,
the I-see API sends web sockets data. During ARTEMTEC
project, FADI ingests MS Excel spreadsheets. Added to that, it
is possible to handle heterogeneous data in the same use case.
For instance, in Quality 4.0 project, we process temperature
measurements captured by cameras, values sent from sensors,
and data coming from databases. All these use-case match
with the R3-Usability requirement.

VI. RELATED WORKS

Over the past decade, a new paradigm has emerged which
is referred to as the DevOps methodology. One of the most
important pillars of the DevOps is the automation of the con-
figuration management of a given software solution by putting
in place innovative techniques like continuous integration, test
driven development, build/deployment automation, etc. [5].
Indeed, it consists in configuring the infrastructure where the
solution will be launched and deploying its different compo-
nents by controlling their dependencies and interconnections.
Against this background, applications tend to be specified and
realized in a modular and generic fashion using containers
in order to ease their portability and scalability. In order to
manage these containers, COEs enable to deploy, monitor,
and dynamically control the configuration and the lifecycle
of multi container packaged applications in various hosts [6].

23https://hub.helm.sh/
24https://github.com/cetic/helm-charts



Today, it exists various COE-based solutions that we cite
the most common and efficient Docker Swarm25, Kubernetes,
etc. Although these solutions are relevant and seem similar,
Kubernetes represents some highlights and is the most suitable
for the FADI requirements. Indeed, Arundel et al [7] present
Kubernetes as the de facto standard COE and as the most
widely used solution in production environments nowadays.
Since it has a large and cooperative community behind it.
Then, Jawarneh et al [8] conduct a functional and performance
comparison between the most known and used COEs. They
conclude that Kubernetes presents the most capabilities to
manage and deploy production-level services even if it requires
very high provisioning time compared to other solutions due
to its complex and complete architecture. Afterward, coupling
the Helm package manager to Kubernetes enables to automate
the configuration and the deployment of its services [9].

Added to the DevOps aspect, we are interested to analyze
the solutions dedicated to the Big Data management. In the
one hand, it exists the category of the SaaS-based solutions
offered by the cloud providers (e.g. Google Cloud, Microsoft
Azure and Amazon AWS). They offer a set of services grouped
under the term “Big Data and Analytics”. These services are
provided “off-the-shelf” (i.e. technological bricks that are easy
to acquire and take in hand). Despite the maturity of this
kind of solutions, their main drawback is the problem of the
vendor lock-in. In the other hand, we have the proprietary
solutions. The Statistical Analysis Systems (SAS)26 is a suite
of products created by SAS Institute which performs advanced
analysis, data management, business intelligence and various
different tasks. It has been used for a while by several
major organizations. Due to its advanced features, SAS is an
extremely popular solution. However its license is extremely
expensive and it is not open source. The Hortonworks Data
Platform (HDP) [10] is an open source Apache Hadoop-based
framework enabling the management of large amount and
heterogeneous data using ML and deep learning techniques.
It enables to set-up and deploy data-intensive applications in
a scalable and flexible way based on the package manager
YARN to enable the use of Docker containers. Nevertheless,
its installation is highly complex and the resource requirements
base line is rather high which means that if used on premise,
you need to think of about at least 10 machines for a minimal
reasonable deployment. The Digazu27 is an end-to-end solu-
tion to manage and process real time data. Indeed, it enables
to collect data and to store it in a data lake. Then, it enables
to define data management workflows and pipelines. Although
this solution is interesting, it is not open source. WiDE28 is
a tool to collect measurements coming from sensors and to
analyze it using self-defined libraries in Python. It enables
to monitor the status of sensors during a given production
process and to detect device failures/anomalies. The Wide
tool provide the possibility to define dashboards in order to

25https://docs.docker.com/engine/swarm/
26https://www.sas.com/fr fr/home.html
27https://www.digazu.com/
28http://www.widetech.com/software/wide/

visualize the analytics results. This solution lacks of portability
and modularity. Hopsworks [11] is an open-source platform
dedicated to ML pipelines design and operation. It supports
open source solutions to conduct data engineering/science.
To the best of our knowledge, it does not provide a CI/CD
mechanism in order to ease its deployment.

VII. CONCLUSION

In this paper, we proposed FADI which is a customizable
end-to-end big data platform enabling the deployment and the
integration of open source tools in a portable and scalable way.
Indeed, we presented an overview of the different components
of FADI and its CI/CD pipeline using Kubernetes and Helm.
Then, we introduced the four research projects in which FADI
has been integrated.

Currently, we are working on applying FADI to other real
use cases in order to identify possible discrepancies and make
our work more reliable. In the medium term, we focus on
finishing the automated load testing process in order to publish
it in the GitHub project. Afterward, we aim to integrate in
FADI a Single-Sign-On (SSO) feature. In long term, we focus
on using FADI in Edge/multi-cloud computing environments.
Added to that, we target to add security activities in the
DevOps pipeline (i.e. DevSecOps) in order to ensure a secure
integration and to automatically prevent, detect, correct and
trace vulnerabilities and security issues.

ACKNOWLEDGMENT

This work has been funded by the MANUNET research
project BigData@MA identified by the project reference
MNET17/ICT1140. We would like to thank the rest of our
team composed by M. Badri, F. Steels, T. Selleslagh, and A.
Ayadi for their contributions in the realization of FADI.

REFERENCES

[1] “NIST big data interoperability framework:,” Tech. Rep., Oct. 2019.
[Online]. Available: https://doi.org/10.6028/nist.sp.1500-1r2

[2] P. Zikopoulos and C. Eaton, Understanding Big Data: Analytics for En-
terprise Class Hadoop and Streaming Data. McGraw Hill Professional.

[3] M. Khan, X. Wu, X. Xu, and W. Dou, “Big data challenges and oppor-
tunities in the hype of industry 4.0,” in IEEE International Conference
on Communications, ICC 2017, Paris. IEEE, 2017, pp. 1–6.

[4] ISO/IEC, “Iso/iec 25010 system and software quality models,” Tech.
Rep., 2010.

[5] M. Hüttermann, DevOps for Developers. Berkeley, CA: Apress, 2012.
[6] E. Casalicchio, “Container orchestration: A survey,” in Systems Model-

ing: Methodologies and Tools, ser. EAI/Springer Innovations in Com-
munication and Computing, A. Puliafito and K. S. Trivedi, Eds. Cham:
Springer International Publishing, 2019, vol. 14, pp. 221–235.

[7] J. Arundel and J. Domingus, Cloud Native DevOps with Kubernetes:
Building, Deploying, and Scaling Modern Applications in the Cloud.

[8] I. M. A. Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli,
R. Montanari, and A. Palopoli, “Container orchestration engines: A
thorough functional and performance comparison,” in ICC - IEEE
International Conference on Communications (ICC). IEEE, May 2019.

[9] S. Buchanan, J. Rangama, and N. Bellavance, Introducing Azure Kuber-
netes Service. Berkeley, CA: Apress, 2020.

[10] Cloudera, Hortonworks Data Platform (HDP) 3.0 — Faster, Smarter,
Hybrid Data.

[11] Hopsworks - Data Intensive AI: Design and Operate ML Applications
at Scale (White paper), logical clocks.


