
Using GitLab Issues for Iterative, Asynchronous
Software Design
A whitepaper for the 2023 Collegeville Workshop on Scientific Software, focussing
on Software Design.

Jason M. Gates; Sandia National Laboratories

When much of the world transitioned to working from home in early 2020,
the software development world was, in a sense, largely primed for the switch.
For many of us, all we need is a laptop and an internet connection to do our
development work. We can clone our repositories and access our issue tracking
systems from wherever we like. This assumes, however, that we already know
the work that needs to be done and how we intend to go about doing it, but
what about when designing software? When everyone was together in the office,
we would gather in a conference room and use whiteboards, post-it notes, and
a good deal of discussion to determine the design. This was an aspect of our
process that didn’t directly translate to a virtual work environment. A few years
into the all-remote setting, many teams still struggle with it.

Your team might have tried to mimic the conference room design session virtu-
ally using video conferencing and perhaps even some sort of digital whiteboard
application. Chances are the experience was sub-optimal. When transitioning to
hybrid- or all-remote, studies show it is best to not replicate the in-office experi-
ence remotely. Instead, the recommendation would be to adopt a handbook-first
documentation paradigm, where the focus is on written, asynchronous commu-
nication. What exactly does that mean in practice? There’s not necessarily a
one-size-fits-all solution, but we hope to inspire you with how one team of eight
developers spread across four cities and two time zones used GitLab issues as
the medium to enable iterative, asynchronous software design on a fast-paced
project.

GitLab to the Rescue
Many modern-day repository hosting services come with built-in features to
enable issue tracking and code review that can be leveraged for design needs.
We chose to use GitLab, but many of the recommendations that follow may
apply to your tool of choice as well. The remainder of this section includes
detailed recommendations for using GitLab as a tool to enable asynchronous
design discussion. To start a new design discussion, simply create a new issue,
as you would for a bug report, a feature request, etc.

Draft the Description

When filling out the issue description, don’t start designing the piece of software
yet—instead, establish a starting point for the discussion. Consider including
information such as:

1

https://collegeville.github.io/CW23/
mailto:jmgate@sandia.gov
www.sandia.gov
https://about.gitlab.com/company/culture/all-remote/what-not-to-do/
https://about.gitlab.com/company/culture/all-remote/what-not-to-do/
https://about.gitlab.com/company/culture/all-remote/handbook-first-documentation/
https://about.gitlab.com/company/culture/all-remote/handbook-first-documentation/
https://about.gitlab.com/company/culture/all-remote/asynchronous/
https://about.gitlab.com/company/culture/all-remote/asynchronous/
https://docs.gitlab.com/ee/user/project/issues/
https://about.gitlab.com/
https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#create-an-issue


• The overall objective of the piece of software under design—i.e., what does
it need to do?

• Necessary inputs or outputs, or pre- or postconditions.
• Constraints imposed on the design (timeline, manpower, cost, etc.).
• Customer requests that may impact the design. (Consider using the “As

a role, I want desire, because motivation” user story form, though other
options abound.)

For ease of use, we recommend creating an issue template to help you include
all the relevant details when you start each new design discussion. You can also
create a label to make it easy to find any such issues in the future, and use a
quick action in the issue template to automatically apply it to all design issues.

Propose the Initial Design

Once the description is complete, draft an initial design. Start typing it up
in the first comment on the issue. Keep in mind that it doesn’t need to be
perfect—this is just a first pass. If you’re unsure of any areas of the design,
call them out so others know where more refinement is needed. Be sure to refer
back to the specifications given in the issue description to ensure the design is
meeting the needs and to highlight what holes need to be filled in later. This
first comment on the issue can simply be text-based, but using GitLab-flavored
Markdown can give you a richer communication experience (explained in more
detail below).

Invite Collaboration

Once the initial design is in place, direct the rest of your team to the issue
and invite them to participate. If they have questions or comments on the
specifications given in the issue description, have them comment at the bottom
of the issue page. However, if they want to contribute to someone else’s comment
(including your initial design proposal), make sure they reply to the comment
to start a thread. In this way you keep the asynchronous discussion organized
and easy to follow on the issue page.

Iterate on the Design

As the discussion continues, you’ll eventually get to a point where the team
realizes the initial design proposal is insufficient to meet your needs. If you were
to edit that first comment, you would confuse the story that all the comments
on the issue are telling through time, so instead simply comment again at the
bottom of the issue page to start a new thread. Rather than typing everything
up again from scratch, you can copy, paste, and then modify the initial design
write-up. You may find it worthwhile to use headers to distinguish these design
proposal comments, making them easier to notice when scrolling through the
issue conversation.

2

https://blog.crisp.se/2014/09/25/david-evans/as-a-i-want-so-that-considered-harmful
https://blog.crisp.se/2014/09/25/david-evans/as-a-i-want-so-that-considered-harmful
https://docs.gitlab.com/ee/user/project/description_templates.html
https://docs.gitlab.com/ee/user/project/labels.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/discussions/
https://docs.gitlab.com/ee/user/discussions/#create-a-thread-by-replying-to-a-standard-comment
https://docs.gitlab.com/ee/user/discussions/#create-a-thread-by-replying-to-a-standard-comment
https://docs.gitlab.com/ee/user/discussions/#edit-a-comment
https://docs.gitlab.com/ee/user/markdown.html#headers


Finalize the Design

Once your design discussion has come to a close, either through consensus, or
through the decision of the directly responsible individual, be sure you capture
the final version of the design in one last comment at the bottom of the issue.
In this way, as you scroll through the issue, you can see the initial requirements,
followed by the different iterations the team went through, and concluding with
the final version that should meet all the requirements. Just like git can pre-
serve the history of your software development efforts, so can GitLab preserve
the history of your design discussions.

GitLab-Flavored Markdown for Richer Communication
As mentioned previously, it’s possible to do all the above with plain text, but
your communications can be enhanced with GitLab-flavored Markdown. Mark-
down is a plain text markup language that is intended to be easily human-
readable, while at the same time allowing for translation to richer communica-
tion media such as HTML, PDF, etc. GitLab will render Markdown to HTML
in issue and merge request descriptions and comments, as well as wiki pages
and any *.md files in your repository.

Basic Functionality

The standard Markdown functionality we have found most useful is the follow-
ing:

• Headers allow you to logically organize what you’re writing into sections,
subsections, etc.

• Lists and tables help you to present the information on the page in an
easy-to-digest manner.

• Links are important to direct people to more information. If at any time
you’re referring to details that are captured elsewhere, link to them so
there’s no confusion.

• Blockquotes give you the ability to denote text as being quoted from
another source.

• Code blocks, which include syntax highlighting for a variety of languages,
allow you to include snippets of code, or perhaps pseudo-code, in the
design discussion for the times when you need to make the details concrete.

• You can also embed images, video, and audio to show your collaborators
exact representations of concepts or ideas.

• If you need additional flexibility, you can include a subset of raw html.
For example, you can use this to hide extra details in a collapsible section.

GitLab Goodies

To add to the basic functionality, GitLab extends Markdown with a number of
helpful features:

3

https://about.gitlab.com/handbook/people-group/directly-responsible-individuals/
https://docs.gitlab.com/ee/user/markdown.html
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Markdown
https://docs.gitlab.com/ee/user/markdown.html#headers
https://docs.gitlab.com/ee/user/markdown.html#lists
https://docs.gitlab.com/ee/user/markdown.html#tables
https://docs.gitlab.com/ee/user/markdown.html#links
https://docs.gitlab.com/ee/user/markdown.html#blockquotes
https://docs.gitlab.com/ee/user/markdown.html#code-spans-and-blocks
https://docs.gitlab.com/ee/user/markdown.html#images
https://docs.gitlab.com/ee/user/markdown.html#inline-html
https://docs.gitlab.com/ee/user/markdown.html#collapsible-section


• In addition to standard lists, task lists allow you to check items off as you
go, and GitLab will show you at the top of the issue how many of the total
tasks have been completed.

• In addition to standard links, there are also a number of GitLab-specific
references you can use that will automatically cross-link to other GitLab
entities (e.g., issues, merge requests, teams, etc.).

• If your team culture is amenable to it, the use of emojis can both lighten
the mood and help to convey intent when body language isn’t available.
See The Turing Way as an example of a project that does this well.

• If the work you’re doing is scientific in nature, you’ll likely find it helpful
to include math written in LaTeX syntax.

Mermaid Diagrams

In addition to all the rich text formatting, you also have the ability to embed
diagrams into comments using a Mermaid code block. Mermaid is a tool that
translates plain text into rich diagrams using a Markdown-like format. The next
time you need to create a flowchart, class diagram, pie or Gantt chart, etc., you
can do so right in GitLab rather than relying on a separate application. That
said, if you find that Mermaid doesn’t provide all the capability you require,
you can also use GitLab’s design management feature to keep track of uploaded
design artifacts in a variety of formats.

Why Should I Make the Switch?
Given all that you’ve read so far, you may be thinking that this seems like a
good deal of change to implement. Will all the effort be worthwhile? After all,
won’t things be going back to normal soon, such that we can meet back up in
our conference rooms again? Early indicators say “no”, with some predicting
that 90% of those who aren’t comfortable with remote work will retire in the
next decade. The landscape of the working world is shifting, whether we like
it or not, and this particular transition is arguably a good one. The principle
of transparent, asynchronous communication makes it such that everyone can
contribute, which increases inclusivity, and promotes innovation.

As far as design discussions go, the benefits include the following:

• Goals are explicitly defined. The ability to easily refer back to them can
help keep your team on task.

• You’re encouraged to thoroughly explore your ideas before adding them
to the conversation. This tends to generate clearer communication and
higher quality contributions.

• The complete history of the design discussion is captured. No more, “Does
anyone remember that one idea we erased?”

• The justification for various decisions can be referenced when making fu-
ture decisions. No more, “Why on earth did we pick this? Let’s just
change it.”

4

https://docs.gitlab.com/ee/user/markdown.html#task-lists
https://docs.gitlab.com/ee/user/markdown.html#gitlab-specific-references
https://docs.gitlab.com/ee/user/markdown.html#gitlab-specific-references
https://docs.gitlab.com/ee/user/markdown.html#emojis
https://github.com/alan-turing-institute/the-turing-way
https://docs.gitlab.com/ee/user/markdown.html#math
https://www.latex-project.org/
https://docs.gitlab.com/ee/user/markdown.html#mermaid
https://mermaidjs.github.io/
https://mermaid-js.github.io/mermaid/#/flowchart
https://mermaid-js.github.io/mermaid/#/classDiagram
https://mermaid-js.github.io/mermaid/#/pie
https://mermaid-js.github.io/mermaid/#/gantt
https://docs.gitlab.com/ee/user/project/issues/design_management.html
https://twitter.com/chris_herd/status/1542498186002055168
https://twitter.com/chris_herd/status/1542498186002055168
https://about.gitlab.com/company/culture/all-remote/benefits/
https://about.gitlab.com/handbook/mecc/
https://about.gitlab.com/handbook/mecc/
https://about.gitlab.com/company/culture/all-remote/collaboration-and-whiteboarding/#collaborative-whiteboarding-supports-diversity-inclusion-and-belonging
https://www.fastcompany.com/3033567/brainstorming-doesnt-work-try-this-technique-instead


On top of this, you’ll also find that discussing the design in detail ahead of time
eases and accelerates the development of the software. You’ll be tempted to
think that all the time you spend in the design phase isn’t “real work” because
you haven’t coded anything yet. However, when the design is thought out well
in advance, the implementation flows naturally from it. You may be pressured
to minimize design time in favor of getting into the code and starting to deliver
minimum viable increments of value, but if you do so, you’re likely to build
far more technical debt than if you hadn’t. You may face criticism that such
a process isn’t “agile” enough, but keep in mind that the process described
above is highly iterative and collaborative. Once you begin iterating on the
implementation, you always have the ability to go back and rethink things as
new information arises.

The benefits are clear enough, but how much time is this actually going to take?
After all, it’s relatively easy to share ideas in person and prototype them on
a whiteboard. How much longer will I spend trying to do all the same things
asynchronously? Unfortunately there’s no one answer to this question, as it
depends on a number of factors:

• How familiar is your team with the tools involved? If you’re starting from
scratch, there will be some time spent getting used to them, but if you’re
already proficient, then the time required to, e.g., create a diagram, is
largely inconsequential.

• How familiar is your team with open source development practices? If
you’re used to the majority of your communication happening through
issues and merge requests, then adopting the same for design discussions
will come naturally. If not, there’s a significant cultural barrier to be
overcome, which will necessarily slow down communication at first.

• How comfortable is your team with the all-remote work environment? If
you’re used to only synchronous communication, the shift to asynchronous
can add a good deal of angst and confusion to the process. However, if
you’re already used to asynchronous communication, then these sugges-
tions will naturally fit into how you already do your work.

For the small, all-remote, open source team, these suggestions will be easy
to implement, and you’ll quickly see a return on investment. For the large
team used to collocated work and unfamiliar with the open source paradigm,
it will take much longer to work these recommendations into the culture. The
investment will be well-worth the effort in the long run, but be patient and have
grace for one another as you all adjust to the new norm.

Discussion
Does this mean we’ll never have meetings ever again? While some developers
may relish the thought, the answer there is “no” as well. However, when you
do need to sync up, following guidelines for remote meetings can make those
times more productive and enjoyable than they were when they were in person.

5

https://opensource.guide/
https://about.gitlab.com/company/culture/all-remote/meetings/


The goal in transitioning to this new communication paradigm isn’t to hamper
individuals’ unique social styles; rather, the goal is to improve both your ability
to deliver top-quality software and the quality of life for you and your team,
regardless of social style. In the end, our geographically distributed team was
able to design and build a modular ecosystem of packages that replaced an
existing infrastructure with a three-fold reduction in complexity, and we did
it faster than anticipated. GitLab was instrumental to making our efforts a
success—both the tool, and the recommendations from the company that makes
it. We hope it can be similarly transformational for you.

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. SAND2022-12393
C

6

https://about.gitlab.com/company/culture/all-remote/guide/
https://about.gitlab.com/company/culture/all-remote/guide/

	Using GitLab Issues for Iterative, Asynchronous Software Design
	GitLab to the Rescue
	Draft the Description
	Propose the Initial Design
	Invite Collaboration
	Iterate on the Design
	Finalize the Design

	GitLab-Flavored Markdown for Richer Communication
	Basic Functionality
	GitLab Goodies
	Mermaid Diagrams

	Why Should I Make the Switch?
	Discussion


