
Ubergraph: integrating OBO ontologies into a unified semantic
graph

James P. Balhoff1, Ugur Bayindir2, Anita R. Caron2, Nicolas Matentzoglu3, David Osumi-
Sutherland2 and Christopher J. Mungall 4

1 Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC USA
2 European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
3 Semanticly, Athens, Greece
4 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley CA,
94720

Abstract
OBO library ontologies include a wealth of inter-ontology semantic links, which require OWL
reasoning to utilize fully. Merging and reasoning over a large suite of ontologies is resource
intensive, and challenging for many users. Here we present Ubergraph, an RDF triplestore and
public SPARQL query endpoint, which includes a novel approach to precomputing OWL
inferences, stored in a readily traversable knowledge graph. Ubergraph’s “relation graphs”
allow users to perform SPARQL queries which make use of the semantics of the included
ontologies. Ubergraph currently includes 39 OBO library ontologies. We describe several use
cases enabled by Ubergraph such as ontology browsing and entailment validation.

Keywords 1
ontology, knowledge graph, reasoning, OWL, RDF, SPARQL, semantic web

1. Introduction

The mission of the Open Biological and
Biomedical Ontology (OBO) Foundry is to
“develop a family of interoperable ontologies that
are both logically well-formed and scientifically
accurate” [1–3]. Ideally, each ontology in the
Foundry covers a specific scope (e.g., animal
anatomy, chemistry, cellular processes) and
serves as the reference classification for that
domain. This allows developers of each ontology
to focus on the domain of their expertise, while
reusing the work of other experts within their
respective domains. Beyond simply dividing up
responsibilities for ontology development and
reducing overlapping effort, OBO ontologies are
encouraged to directly reference concepts from
other OBO ontologies within their own logical

International Conference on Biomedical Ontology, Sep. 25–28,
2022, Ann Arbor, MI, USA
EMAIL: balhoff@renci.org (A. 1); ugur@ebi.ac.uk (A. 2);
anitac@ebi.ac.uk (A. 3); nico@semanticly.ai (A. 4);
dosumis@ebi.ac.uk (A. 5); cjmungall@lbl.gov (A. 6)
ORCID: 0000-0002-8688-6599 (A. 1); 0000-0002-6012-3729 (A.
2); 0000-0002-6523-4866 (A. 3); 0000-0002-7356-1779 (A. 4);
0000-0002-7073-9172 (A. 5); 0000-0002-6601-2165 (A. 6)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

axioms, allowing automatic classification of
terms that makes use of the semantics of those
ontologies.

As one example, the Gene Ontology (GO) [4]
contains many concepts describing cellular
processes acting on particular chemicals, such as
various types of metabolism, catabolism,
biosynthesis, and transport. As one would expect,
GO:0006006 'glucose metabolic process' is a
subclass of GO:0005975 'carbohydrate metabolic
process'. Rather than manually classifying these
GO terms based on their chemical specification,
which would need to be done for each kind of GO
process, the GO logically defines these concepts
using terms from the ChEBI chemical ontology
[5], which provides the fact that CHEBI:17234
‘glucose’ is a type of CHEBI:16646
‘carbohydrate’. A standard OWL reasoner can

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

automatically compute the consequent
relationships between the GO concepts [6].

OWL axioms making use of external terms
typically take the form of complex equivalence
definitions bringing together concepts from
multiple ontologies. For example, the logical
definition of HP:0002446 ‘Astrocytosis’ from the
Human Phenotype Ontology [7] refers to terms
from four other independently developed OBO
ontologies:

HP:'Astrocytosis' EquivalentTo

(RO:'has part' some (PATO:'increased
rate' and (RO:'characteristic of part
of' some (GO:'cell growth' and
(RO:'occurs in' some
CL:'astrocyte'))) and (RO:'has
modifier' some PATO:'abnormal')))

The meaning of this axiom (“a phenotype

including an abnormally increased rate of cell
growth in astrocytes”) depends on the contents of
all five ontologies. As such, for many applications
it can be advantageous to treat a collection of
OBO library ontologies as one large, unified
ontology. One way to accomplish this would be to
import all the needed ontologies into a Protégé
ontology editing workspace, and run an OWL
reasoner. Protégé provides a query interface
allowing the user to submit Description Logic
(DL) queries to the reasoner; for example, one
could find all the cell types (from CL) that are part
of the liver (from UBERON): subclasses of
(CL:'cell' and (RO:'part of' some
UBERON:'liver')). By using OWL reasoning,
such cell types may match the query indirectly via
various kinds of inferences, such as the transitive
characteristic of ‘part of’.

For a large aggregation of ontologies, that
approach inconveniently requires downloading
multiple gigabytes of ontologies, providing tens
of gigabytes of computer memory, and at least
10–20 minutes of loading and reasoning time
using the ELK reasoner. A graph database with a
web-based query interface allows users to more
efficiently access an integrated semantic
knowledge graph. Here we introduce Ubergraph,
an RDF triplestore which provides a SPARQL
query endpoint to an integrated suite of OBO
ontologies, and includes precomputed inferred
edges allowing logically complete queries over
those ontologies for a subset of OWL.

2. Features

The Ubergraph triplestore is a Blazegraph
RDF database which is generated weekly from its
source ontologies via an open-source workflow. A
public SPARQL endpoint (for programmatic
access) is available at
https://ubergraph.apps.renci.org/sparql.
Currently, Ubergraph incorporates 39 OBO
library ontologies (Fig. 1). The triplestore is
organized into a number of different graphs,
which enable querying specific ontologies, or
including or excluding particular inferences. Each
included ontology is stored within a graph named
by its ontology IRI. Additional graphs provide
precomputed triples which enable a range of
functionality making Ubergraph more than simply
the sum of the loaded ontologies.

2.1. Relation graphs

Two “relation graphs” stored in their own
named graphs are at the heart of Ubergraph’s
utility. Here, a relation graph is an RDF dataset
representing certain OWL axioms as convenient
graph edges. Many ontology users think of
ontologies as directed graphs, containing edges
like “index_finger is_a finger” and “finger part_of
hand”. However, the OWL representation of these
statements is somewhat more complex, and
particularly complex when stored as an RDF
graph. While the first statement is represented by
a single straightforward triple:

<index_finger> rdfs:subClassOf <finger>

the second statement is stored as four triples

representing the OWL axiom <finger>
SubClassOf (<part_of> some <hand>), using
a generated blank node, here, _:node1:

<finger> rdfs:subClassOf _:node1
_:node1 rdf:type owl:Restriction
_:node1 owl:onProperty <part_of>
_:node1 owl:someValuesFrom <hand>

A user writing a SPARQL query for the parts
of the hand will need to be aware of the OWL
serialization in order to match this complex triple
pattern. There are further challenges: a user would
expect that when querying for parts of the hand
they would receive not only ‘finger’ but any
concepts stated to be parts (e.g., fingernails) or
subclasses of ‘finger’. SPARQL property paths

cannot be employed to retrieve nodes linked by a
chain of properties over such OWL expressions.
An edge of interest may be embedded deeply
within an even more complex OWL equivalence
axiom (e.g. ‘Astrocyte’, above). A user would
also expect to find terms such as ‘hand_skeleton’,
related to ‘hand’ via a different relation such as
‘skeleton_of’ (an UBERON relation defined as a
subproperty of ‘part_of’).

Relation graphs simplify access to this
knowledge by storing the most commonly
required OWL patterns as single RDF triples:
every SubClassOf relation is represented by a

single triple in the standard way, and axioms of
the form <A> SubClassOf (<R> some)
(existential relations) are converted to simple <A>
<R> triples:

<index_finger> rdfs:subClassOf <finger>
<finger> <part_of> <hand>

Beyond this syntactic simplification, the

Ubergraph build pipeline uses an OWL reasoner
to compute and store every existential relation
implied by the input ontology. Given the property
hierarchy <skeleton_of> subPropertyOf

Figure. 1: Mutually referential ontologies currently included in Ubergraph. Widths of lines are
proportional to the number of OWL classes from each ontology on the right used within axioms in
each ontology on the left. Large ontologies on the left side reuse many external terms. Large
ontologies on the right side are frequently referenced by other ontologies. Additional OBO
ontologies included in Ubergraph but which lack incoming or outgoing references are: APO, EMAPA,
MA, MI, MMO, MmusDv.

<part_of> subPropertyOf <overlaps>, all
these triples between ‘hand_skeleton’ and ‘hand’
would be stored:

<hand_skeleton> <skeleton_of> <hand>
<hand_skeleton> <part_of> <hand>
<hand_skeleton> <overlaps> <hand>

The relation graph precomputation allows

straightforward SPARQL queries to provide fast
results consistent with the full semantics of the
input ontologies (according to the OWL EL
profile). For example, here is a SPARQL query
for cell types (CL:0000000) specific to organs
(UBERON:0000062) of the abdomen
(UBERON:0000916):

PREFIX rdfs:
<http://www.w3.org/2000/01/rdf-schema#>
PREFIX cell:
<http://purl.obolibrary.org/obo/CL_0000
000>
PREFIX organ:
<http://purl.obolibrary.org/obo/UBERON_
0000062>
PREFIX abdomen:
<http://purl.obolibrary.org/obo/UBERON_
0000916>
PREFIX part_of:
<http://purl.obolibrary.org/obo/BFO_000
0050>
SELECT DISTINCT ?cell ?organ
WHERE {
 ?cell rdfs:subClassOf cell: .
 ?cell part_of: ?organ .
 ?organ rdfs:subClassOf organ: .
 ?organ part_of: abdomen: .
}

The SPARQL query language enables

additional kinds of queries unsupported by DL
query interfaces, as they require the use of
features such as variables or negation as failure,
such as:

“Of what is the adrenal gland a part?”

adrenal_gland: part_of: ?x

“Which bone elements are not entailed to be
part of the skeletal system?” (none, in Uberon)

?bone rdfs:subClassOf bone_element:
FILTER NOT EXISTS {
 ?bone part_of: skeletal_system: .
}

These kinds of queries are useful for checking
and exploring the inferences entailed by the input
ontologies.

The precomputed subclass and existential
relations are stored in two named graphs. The
redundant graph contains the complete set of
entailed relations between terms. The majority of
these are not directly asserted in the ontology, but
instead implied by equivalence axioms,
subproperty axioms, property chains, and other
OWL axioms. The nonredundant graph contains
a subset of the redundant graph. This graph
contains only “direct” edges, removing edges
such as the following:

• <A> rdfs:subClassOf <C>, where
both <A> rdfs:subClassOf and
 rdfs:subClassOf <C> exist

• <A> <R> <C>, where <A> <R>
and rdfs:subClassOf <C> exist

• <A> <R> <C>, where <R> <C>
and <A> rdfs:subClassOf exist

• <A> <R> <C>, where <A> <R>
and <R> <C> exist, and the
ontology declares <R> to be a
transitive property

• <A> <S> , where <A> <R>
exists, and the ontology declares <R>
to be a subproperty of <S>

The nonredundant relation graph is
particularly useful for SPARQL CONSTRUCT
queries which output the graph neighborhood
around a term, such as when powering an
ontology browsing interface (Fig. 2).

2.2. Ontology graph

An additional named graph stores the result of
classifying the merged axioms of the input
ontologies using the ELK reasoner [8]. This graph
includes all the term annotation axioms (such as
labels and definitions) provided by the source
ontologies. It also includes a generated triple for
each term, connecting it to its source ontology
based on its OBO ID space, e.g.,
obo:UBERON_4100121 rdfs:isDefinedBy
obo:uberon.owl. These triples allow much more
efficient filtering of results by ID space as
compared with string-based SPARQL filters. The
ontology graph also includes triples linking each
term to a computed information content score
(terms with a greater number of subclasses have
lower information content). These scores can be
helpful in ranking Ubergraph query result values,

based on their relative graph placement, within
downstream applications.

2.3. Biolink Model graph

The Biolink Model is a high level data model of
biological entities [9]. Ubergraph includes a graph
containing an RDF serialization of the Biolink
Model, as well as biolink:category links from
each ontology term to mapped Biolink Model
classes, propagated across the subclass hierarchy
of both the Biolink Model and the included
ontologies. This graph is provided for use by
applications built on the Biolink Model, to easily
traverse from OBO ontology concepts to
corresponding Biolink Model terms.

3. Implementation

Ubergraph is constructed using a workflow
implemented as a GNU Makefile [10]. The source
code is available on GitHub at
https://github.com/INCATools/ubergraph. The
workflow downloads the source ontologies and
computes additional RDF triples constituting the

relation graphs and other enrichments using a
variety of tools included within a Docker image
defined in the Ubergraph repository. The endpoint
of the workflow is a Blazegraph [11] database file
used to drive the SPARQL endpoint. The public
SPARQL service is a Blazegraph server running
within an on-premises Kubernetes cluster,
provided with 32 GB memory and 8 CPUs.

3.1. Merging and reasoning over an
integrated set of ontologies

Ontology manipulation is conducted using
ROBOT [12] and the Apache Jena [13] ‘arq’ and
‘riot’ tools. When available, the Ubergraph build
downloads the “base” release of each ontology
(e.g., for Uberon,
http://purl.obolibrary.org/obo/uberon/u
beron-base.owl). Base files are a recently
adopted convention within the OBO Foundry
which facilitate merging and reasoning over sets
of ontologies which refer to one another within
their axioms. The standard releases of each
ontology typically contain imported content from
the ontologies they depend on. Merging these files
can result in mixtures of axioms and annotations

A.

B.

Figure. 2: (A) Nodes directly connected to UBERON:0000970 ‘eye’, and edges between them, in the
Ubergraph nonredundant graph. (B) Edges in the redundant graph between those same nodes. A
depiction of edges between all nodes reachable by one hop from ‘eye’ in the redundant graph would
be even more tangled, including 10,262 edges.

from slightly different releases of each ontology,
possibly resulting in conflicting logical assertions.
Base files, on the other hand, contain the axioms
native to a given ontology but exclude any
imported content. When a base file is not available
for an ontology, the Ubergraph build uses the
ROBOT tool to approximate a base file for that
ontology by removing axioms defining terms
from external ID spaces.

3.2. Computing relation graphs

The redundant relation graph is computed via
a purpose-built tool, ‘relation-graph’ [14], which
uses an efficient, parallel algorithm to perform
millions of DL queries using the Whelk OWL
reasoner [15]. This process takes approximately 4
hours, using 20 CPUs and 140 GB RAM. The
nonredundant relation graph is computed from the
redundant graph using a Soufflé Datalog [16]
pruning script which implements the redundancy
rules described above, taking approximately 70
minutes to complete.

The current Ubergraph release contains
530,834,705 triples, with 48,684,904 triples
comprising the included ontologies, and the rest
derived by the build process. The majority of
these, 318,231,131, constitute the redundant
relation graph. The pruning step reduces that
number to 4,532,758 triples in the nonredundant
relation graph.

4. Applications
4.1. Programmatic Access

As a standard SPARQL endpoint, Ubergraph can
be accessed using any of the typical
programmatic means of reaching a REST
endpoint, as well as dedicated SPARQL query
interfaces such as Yasgui [17]. In addition to
generic REST libraries, languages like Python
include clients for SPARQL endpoints such as
SPARQLWrapper.
For higher level access, it is possible to write
software libraries that act as clients to Ubergraph
and provide convenient reusable operations. One
such library is the new OAK (Ontology Access
Kit) library in Python, which provides
programmatic access to a variety of endpoints,
including Ubergraph [18]. OAK provides both a
Python layer and a command line interface (CLI)
that allows for various operations over
Ubergraph including (1) searching for terms; (2)

performing semantic similarity; and (3)
accessing and visualization of subgraphs, making
use of the obographviz package. For example,
the OAK viz command, e.g., runoak -i
ubergraph: viz GO:0001750 -p
rdfs:subClassOf,BFO:0000050, will show all
terms traversable via the relation graph from a
starting set of terms such as ‘photoreceptor outer
segment’ in GO (Fig. 3).

One additional way to access Ubergraph is
through its OpenAPI REST endpoint description
[19], autogenerated (using grlc [20]) from a suite
of example SPARQL queries stored in the
Ubergraph source repository.

Figure 3: OAK visualization of relation graph
ancestors of a GO term, traversing inter-ontology
links. CL terms are gray, GO terms are pink. Is_a
(SubClassOf between named classes) edges in
black, part_of (BFO:0000050) in blue.

4.2. Projects using Ubergraph
4.2.1. Mondo quality control checks

The Mondo disease ontology [21] is a complex
development effort that seeks to integrate
disparate disease ontologies and terminologies.
An automated process creates a skeleton for a
large ontology that integrates axioms and
annotations from these sources, which is further
augmented by complex logical axioms using
design patterns [22]. Such an ontology requires
extensive quality control checking and reporting

capabilities that need to be reviewed, refined, and
shared. Moreover, these reports often span
multiple ontologies such as Uberon, GO, and CL.
All Mondo reports and quality control checks [23]
are implemented using SPARQL. To develop and
share these reports, the Mondo team uses Yasgui
in combination with the Ubergraph SPARQL
endpoint: queries are prototyped, shared between
developers, and refined until fit for purpose. The
Mondo team makes extensive use of inferred
relationships in Ubergraph, which not only
reduces query time, but also improves recall for
cases where subclasses are only inferable through
an entailment regime such as OWL EL.

4.2.2. HuBMAP validation

The HuBMAP project is building a human
reference atlas leveraging expert input [24]. The
atlas covers adult human anatomy. Uberon has
many terms that are not useful for this purpose as
they refer to other species or developmental
stages. It also has many more relationship types
than needed. Experts working on this project
provide their view of human anatomy using
spreadsheets to relate Uberon and Cell Ontology
terms. HuBMAP developers use Ubergraph to
programmatically test the validity of expert-
specified relationships between term pairs against
subclass and existential relations from a small set
of high level object properties. Reports of non-
validating pairs are used to inform corrections to
the expert-curated tables, or to improve Uberon
and Cell Ontology as applicable. As an example,
HuBMAP biologists have mapped ‘OFF-bipolar
cell’ (CL:0000750) to ‘inner nuclear layer of
retina’ (UBERON:0001791), a relation that is
currently not present in the Cell Ontology. The
validation tool searches for relationships among
the terms in the HuBMAP domain and finds that
‘OFF-bipolar cell’ currently does have a ‘part_of’
relationship with ‘retina’ (UBERON:0000966).
Having these suggestions and relationships
visualized via the validation tool allows editors to
consider remodeling the Cell Ontology to have
more specific mappings. In this case, an editor
may choose to add the following axiom to ‘OFF-
bipolar cell’: 'part of' some 'inner nuclear
layer of retina'.

4.2.3. Biomedical Data Translator

The NCATS Biomedical Data Translator
program is creating a federated knowledge system

capable of integrating existing biomedical data
sets, and which will allow users to derive “insights
that can accelerate translational research, support
clinical care, and leverage clinical expertise to
drive research innovations” [25]. Many of the
Data Translator knowledge sources express their
data with reference to standard identifiers for
terms from OBO library ontologies, such as cell
types, anatomical locations, and diseases. The
ontologies themselves provide the background
knowledge giving meaning to the use of those
terms. Ubergraph provides the basis for the
Ontology Knowledge Provider, a Translator
knowledge source which implements the Data
Translator knowledge graph API via queries to the
Ubergraph SPARQL endpoint [26]. As described
above, nodes within Ubergraph are pre-
categorized using groupings from the Biolink
standard, which is used as a top-level data model
by Translator.

5. Challenges

Reasoning over a merged collection of
mutually referential, but independently
developed, ontologies can uncover hidden logical
incompatibilities. Some of these incompatibilities
are simply the result of stale imported content;
while these ontologies are all developed as part of
the OBO collaborative community, they move at
varying paces and release schedules. In our
experience, the use of “base files” (discussed
above) helps to avoid many such issues that were
frequently encountered in previous attempts to
reason across combinations of OBO ontologies,
e.g., [27]. Further, combining ontologies together
in applications like Ubergraph highlights the need
to ensure that quality control checks in ontology
release pipelines consider a comprehensive set of
external axioms; otherwise they may miss
undesired entailments from the use of particular
terms. The Ubergraph build pipeline applies
additional preprocessing, such as removing
disjointness axioms, to minimize the effect of any
remaining logical incoherency.

Another issue encountered in a reasoning
application like Ubergraph is that the inferences
computed from the merged set of ontologies may
result in additional intra-ontology subsumptions
that individual ontology providers have not
vetted. In a real-life example, a new release of
ChEBI classified some chemicals as lipids which
were not previously so. Combining this release of
ChEBI with the logical definitions for metabolic

processes provided by the Gene Ontology resulted
in certain GO processes being classified under
‘lipid metabolism’ which were not grouped as
such in the official GO release. To better avoid
such discrepancies, but still provide all the
inferred relations which make Ubergraph so
useful, we are developing protocols for axiom
inclusion in the Ubergraph reasoning process,
such as transformations of equivalent class
axioms into less powerful subclass axioms, and
ensuring that the class hierarchy published by
each provider is precomputed in the ontology file
incorporated into Ubergraph.

6. Related work

Online ontology repositories such as Ontobee
[28], the EBI Ontology Lookup Service [29], and
BioPortal [30] all provide SPARQL endpoints
which allow querying over the OBO ontologies
they include. However, within these services,
users have access to only the complicated RDF
serialization of the OWL axioms. Ubergraph’s
precomputed relation graphs both greatly
simplify, and also significantly increase the
semantic power of, SPARQL queries over the
combined suite of ontologies.

7. Conclusions

OBO library ontologies contain a wealth of
cross-domain knowledge within their logical
axioms. Ubergraph provides a powerful means to
access and make use of these connections in a way
that preserves and utilizes the full semantics of its
constituent ontologies, without requiring users to
download multiple gigabytes of ontologies and
load these into an OWL reasoner.

8. Acknowledgments

This work was supported in part by the U.S.
NIH project numbers 5U01HG009453-03 and
3OT2TR003449-01S1.

9. References

[1] The Open Biological and Biomedical
Ontology (OBO) Foundry. In: The Open
Biological and Biomedical Ontology (OBO)
Foundry [Internet]. [cited 25 May 2022].
Available: https://obofoundry.org/

[2] Smith B, Ashburner M, Rosse C, Bard J, Bug
W, Ceusters W, et al. The OBO Foundry:
coordinated evolution of ontologies to
support biomedical data integration. Nat
Biotechnol. 2007;25: 1251–1255.
doi:10.1038/nbt1346

[3] Jackson R, Matentzoglu N, Overton JA, Vita
R, Balhoff JP, Buttigieg PL, et al. OBO
Foundry in 2021: operationalizing open data
principles to evaluate ontologies. Database .
2021;2021. doi:10.1093/database/baab069

[4] Gene Ontology Consortium. The Gene
Ontology resource: enriching a GOld mine.
Nucleic Acids Res. 2021;49: D325–D334.
doi:10.1093/nar/gkaa1113

[5] Hastings J, Owen G, Dekker A, Ennis M,
Kale N, Muthukrishnan V, et al. ChEBI in
2016: Improved services and an expanding
collection of metabolites. Nucleic Acids Res.
2016;44: D1214–9.
doi:10.1093/nar/gkv1031

[6] Hill DP, Adams N, Bada M, Batchelor C,
Berardini TZ, Dietze H, et al. Dovetailing
biology and chemistry: integrating the Gene
Ontology with the ChEBI chemical
ontology. BMC Genomics. 2013;14: 513.
doi:10.1186/1471-2164-14-513

[7] Köhler S, Gargano M, Matentzoglu N,
Carmody LC, Lewis-Smith D, Vasilevsky
NA, et al. The Human Phenotype Ontology
in 2021. Nucleic Acids Res. 2021;49:
D1207–D1217. doi:10.1093/nar/gkaa1043

[8] Kazakov Y, Krötzsch M, Simančík F. The
Incredible ELK. J Automat Reason. 2013;53:
1–61. doi:10.1007/s10817-013-9296-3

[9] Unni DR, Moxon SAT, Bada M, Brush M,
Bruskiewich R, Clemons P, et al. Biolink
Model: A Universal Schema for Knowledge
Graphs in Clinical, Biomedical, and
Translational Science. arXiv [cs.DB]. 2022.
doi:10.48550/arXiv.2203.13906

[10] Make - GNU Project - Free Software
Foundation. [cited 27 May 2022]. Available:
https://www.gnu.org/software/make/

[11] Blazegraph. In: Blazegraph [Internet]. 2015
[cited 29 May 2016]. Available:
https://github.com/blazegraph/database

[12] Jackson RC, Balhoff JP, Douglass E, Harris
NL, Mungall CJ, Overton JA. ROBOT: A
Tool for Automating Ontology Workflows.
BMC Bioinformatics. 2019;20: 407.
doi:10.1186/s12859-019-3002-3

[13] Apache Jena. [cited 27 May 2022].
Available: https://jena.apache.org/

[14] Balhoff JP. relation-graph. Github;
Available:
https://github.com/balhoff/relation-graph

[15] Balhoff JP. Whelk. Github; Available:
https://github.com/balhoff/whelk

[16] Soufflé. [cited 27 May 2022]. Available:
https://souffle-lang.github.io/index.html

[17] Yasgui. In: Triply [Internet]. 25 Jun 2019
[cited 27 May 2022]. Available:
https://triply.cc/docs/yasgui

[18] Mungall C, Harshad, Kalita P, Patil S,
Joachimiak M p., Caufield H.
INCATools/ontology-access-kit: v0.1.18.
2022. doi:10.5281/zenodo.6574927

[19] OpenAPI Specification v3.1.0. [cited 29 May
2022]. Available:
https://spec.openapis.org/oas/latest.html

[20] Peñuela AM. grlc. [cited 29 May 2022].
Available: https://grlc.io/

[21] Vasilevsky NA, Matentzoglu NA, Toro S,
Flack JE IV, Hegde H, Unni DR, et al.
Mondo: Unifying diseases for the world, by
the world. medRxiv. 2022.
doi:10.1101/2022.04.13.22273750

[22] Osumi-Sutherland D, Courtot M, Balhoff JP,
Mungall C. Dead simple OWL design
patterns. J Biomed Semantics. 2017;8: 18.
doi:10.1186/s13326-017-0126-0

[23] Quality control tests - Mondo
Documentation. [cited 26 May 2022].
Available:
https://mondo.readthedocs.io/en/latest/editor
s-guide/quality-control-tests/

[24] Börner K, Teichmann SA, Quardokus EM,
Gee JC, Browne K, Osumi-Sutherland D, et
al. Anatomical structures, cell types and
biomarkers of the Human Reference Atlas.
Nat Cell Biol. 2021;23: 1117–1128.
doi:10.1038/s41556-021-00788-6

[25] Biomedical Data Translator Consortium.
Toward A Universal Biomedical Data
Translator. Clin Transl Sci. 2019;12: 86–90.
doi:10.1111/cts.12591

[26] ontology-kp. [cited 27 May 2022].
Available:
https://github.com/TranslatorSRI/ontology-
kp

[27] Slater LT, Gkoutos GV, Hoehndorf R.
Towards semantic interoperability: finding
and repairing hidden contradictions in
biomedical ontologies. BMC Med Inform
Decis Mak. 2020;20: 311.
doi:10.1186/s12911-020-01336-2

[28] Xiang, Mungall, Ruttenberg, He. Ontobee: A
linked data server and browser for ontology

terms. ICBO. 2011. Available: http://ceur-
ws.org/Vol-833/paper48.pdf

[29] Jupp, Burdett, Leroy, Parkinson. A new
Ontology Lookup Service at EMBL-EBI.
SWAT4LS. 2015. Available: http://ceur-
ws.org/Vol-1546/paper_29.pdf

[30] Salvadores M, Alexander PR, Musen MA,
Noy NF. BioPortal as a Dataset of Linked
Biomedical Ontologies and Terminologies in
RDF. Semantic Web. 2013;4: 277–284.
Available:
https://www.ncbi.nlm.nih.gov/pubmed/2521
4827

