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Abstract  
OBO library ontologies include a wealth of inter-ontology semantic links, which require OWL 
reasoning to utilize fully. Merging and reasoning over a large suite of ontologies is resource 
intensive, and challenging for many users. Here we present Ubergraph, an RDF triplestore and 
public SPARQL query endpoint, which includes a novel approach to precomputing OWL 
inferences, stored in a readily traversable knowledge graph. Ubergraph’s “relation graphs” 
allow users to perform SPARQL queries which make use of the semantics of the included 
ontologies. Ubergraph currently includes 39 OBO library ontologies. We describe several use 
cases enabled by Ubergraph such as ontology browsing and entailment validation.  
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1. Introduction 

The mission of the Open Biological and 
Biomedical Ontology (OBO) Foundry is to 
“develop a family of interoperable ontologies that 
are both logically well-formed and scientifically 
accurate” [1–3]. Ideally, each ontology in the 
Foundry covers a specific scope (e.g., animal 
anatomy, chemistry, cellular processes) and 
serves as the reference classification for that 
domain. This allows developers of each ontology 
to focus on the domain of their expertise, while 
reusing the work of other experts within their 
respective domains. Beyond simply dividing up 
responsibilities for ontology development and 
reducing overlapping effort, OBO ontologies are 
encouraged to directly reference concepts from 
other OBO ontologies within their own logical 

 
International Conference on Biomedical Ontology, Sep. 25–28, 
2022, Ann Arbor, MI, USA 
EMAIL: balhoff@renci.org (A. 1); ugur@ebi.ac.uk (A. 2); 
anitac@ebi.ac.uk (A. 3); nico@semanticly.ai (A. 4); 
dosumis@ebi.ac.uk (A. 5); cjmungall@lbl.gov (A. 6)  
ORCID: 0000-0002-8688-6599 (A. 1); 0000-0002-6012-3729 (A. 
2); 0000-0002-6523-4866 (A. 3); 0000-0002-7356-1779 (A. 4); 
0000-0002-7073-9172 (A. 5); 0000-0002-6601-2165 (A. 6) 

 
©  2022 Copyright for this paper by its authors. Use permitted under Creative 
Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 

axioms, allowing automatic classification of 
terms that makes use of the semantics of those 
ontologies. 

As one example, the Gene Ontology (GO) [4] 
contains many concepts describing cellular 
processes acting on particular chemicals, such as 
various types of metabolism, catabolism, 
biosynthesis, and transport. As one would expect, 
GO:0006006 'glucose metabolic process' is a 
subclass of GO:0005975 'carbohydrate metabolic 
process'. Rather than manually classifying these 
GO terms based on their chemical specification, 
which would need to be done for each kind of GO 
process, the GO logically defines these concepts 
using terms from the ChEBI chemical ontology 
[5], which provides the fact that CHEBI:17234 
‘glucose’ is a type of CHEBI:16646 
‘carbohydrate’. A standard OWL reasoner can 
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automatically compute the consequent 
relationships between the GO concepts [6]. 

OWL axioms making use of external terms 
typically take the form of complex equivalence 
definitions bringing together concepts from 
multiple ontologies. For example, the logical 
definition of HP:0002446 ‘Astrocytosis’ from the 
Human Phenotype Ontology [7] refers to terms 
from four other independently developed OBO 
ontologies: 

 
HP:'Astrocytosis' EquivalentTo 

(RO:'has part' some (PATO:'increased 
rate' and (RO:'characteristic of part 
of' some (GO:'cell growth' and 
(RO:'occurs in' some 
CL:'astrocyte'))) and (RO:'has 
modifier' some PATO:'abnormal'))) 
 
The meaning of this axiom (“a phenotype 

including an abnormally increased rate of cell 
growth in astrocytes”) depends on the contents of 
all five ontologies. As such, for many applications 
it can be advantageous to treat a collection of 
OBO library ontologies as one large, unified 
ontology. One way to accomplish this would be to 
import all the needed ontologies into a Protégé 
ontology editing workspace, and run an OWL 
reasoner. Protégé provides a query interface 
allowing the user to submit Description Logic 
(DL) queries to the reasoner; for example, one 
could find all the cell types (from CL) that are part 
of the liver (from UBERON): subclasses of 
(CL:'cell' and (RO:'part of' some 
UBERON:'liver')). By using OWL reasoning, 
such cell types may match the query indirectly via 
various kinds of inferences, such as the transitive 
characteristic of ‘part of’. 

For a large aggregation of ontologies, that 
approach inconveniently requires downloading 
multiple gigabytes of ontologies, providing tens 
of gigabytes of computer memory, and at least 
10–20 minutes of loading and reasoning time 
using the ELK reasoner. A graph database with a 
web-based query interface allows users to more 
efficiently access an integrated semantic 
knowledge graph. Here we introduce Ubergraph, 
an RDF triplestore which provides a SPARQL 
query endpoint to an integrated suite of OBO 
ontologies, and includes precomputed inferred 
edges allowing logically complete queries over 
those ontologies for a subset of OWL. 

 
 

2. Features 

The Ubergraph triplestore is a Blazegraph 
RDF database which is generated weekly from its 
source ontologies via an open-source workflow. A 
public SPARQL endpoint (for programmatic 
access) is available at 
https://ubergraph.apps.renci.org/sparql. 
Currently, Ubergraph incorporates 39 OBO 
library ontologies (Fig. 1). The triplestore is 
organized into a number of different graphs, 
which enable querying specific ontologies, or 
including or excluding particular inferences. Each 
included ontology is stored within a graph named 
by its ontology IRI. Additional graphs provide 
precomputed triples which enable a range of 
functionality making Ubergraph more than simply 
the sum of the loaded ontologies. 

2.1. Relation graphs 

Two “relation graphs” stored in their own 
named graphs are at the heart of Ubergraph’s 
utility. Here, a relation graph is an RDF dataset 
representing certain OWL axioms as convenient 
graph edges. Many ontology users think of 
ontologies as directed graphs, containing edges 
like “index_finger is_a finger” and “finger part_of 
hand”. However, the OWL representation of these 
statements is somewhat more complex, and 
particularly complex when stored as an RDF 
graph. While the first statement is represented by 
a single straightforward triple: 

 
<index_finger> rdfs:subClassOf <finger> 

 
the second statement is stored as four triples 

representing the OWL axiom <finger> 
SubClassOf (<part_of> some <hand>), using 
a generated blank node, here, _:node1: 

 
<finger> rdfs:subClassOf _:node1 
_:node1 rdf:type owl:Restriction 
_:node1 owl:onProperty <part_of> 
_:node1 owl:someValuesFrom <hand> 
 

A user writing a SPARQL query for the parts 
of the hand will need to be aware of the OWL 
serialization in order to match this complex triple 
pattern. There are further challenges: a user would 
expect that when querying for parts of the hand 
they would receive not only ‘finger’ but any 
concepts stated to be parts (e.g., fingernails) or 
subclasses of ‘finger’. SPARQL property paths 



cannot be employed to retrieve nodes linked by a 
chain of properties over such OWL expressions. 
An edge of interest may be embedded deeply 
within an even more complex OWL equivalence 
axiom (e.g. ‘Astrocyte’, above). A user would 
also expect to find terms such as ‘hand_skeleton’, 
related to ‘hand’ via a different relation such as 
‘skeleton_of’ (an UBERON relation defined as a 
subproperty of ‘part_of’). 

Relation graphs simplify access to this 
knowledge by storing the most commonly 
required OWL patterns as single RDF triples: 
every SubClassOf relation is represented by a 

single triple in the standard way, and axioms of 
the form <A> SubClassOf (<R> some <B>) 
(existential relations) are converted to simple <A> 
<R> <B> triples: 

 
<index_finger> rdfs:subClassOf <finger> 
<finger> <part_of> <hand> 

 
Beyond this syntactic simplification, the 

Ubergraph build pipeline uses an OWL reasoner 
to compute and store every existential relation 
implied by the input ontology. Given the property 
hierarchy <skeleton_of> subPropertyOf 

Figure. 1: Mutually referential ontologies currently included in Ubergraph. Widths of lines are 
proportional to the number of OWL classes from each ontology on the right used within axioms in 
each ontology on the left. Large ontologies on the left side reuse many external terms. Large 
ontologies on the right side are frequently referenced by other ontologies. Additional OBO 
ontologies included in Ubergraph but which lack incoming or outgoing references are: APO, EMAPA, 
MA, MI, MMO, MmusDv. 



<part_of> subPropertyOf <overlaps>, all 
these triples between ‘hand_skeleton’ and ‘hand’ 
would be stored: 

 
<hand_skeleton> <skeleton_of> <hand> 
<hand_skeleton> <part_of> <hand> 
<hand_skeleton> <overlaps> <hand> 
 
The relation graph precomputation allows 

straightforward SPARQL queries to provide fast 
results consistent with the full semantics of the 
input ontologies (according to the OWL EL 
profile). For example, here is a SPARQL query 
for cell types (CL:0000000) specific to organs 
(UBERON:0000062) of the abdomen 
(UBERON:0000916): 

 
PREFIX rdfs: 
<http://www.w3.org/2000/01/rdf-schema#> 
PREFIX cell: 
<http://purl.obolibrary.org/obo/CL_0000
000> 
PREFIX organ: 
<http://purl.obolibrary.org/obo/UBERON_
0000062> 
PREFIX abdomen: 
<http://purl.obolibrary.org/obo/UBERON_
0000916> 
PREFIX part_of: 
<http://purl.obolibrary.org/obo/BFO_000
0050> 
SELECT DISTINCT ?cell ?organ 
WHERE { 
  ?cell rdfs:subClassOf cell: . 
  ?cell part_of: ?organ . 
  ?organ rdfs:subClassOf organ: . 
  ?organ part_of: abdomen: . 
} 

 
The SPARQL query language enables 

additional kinds of queries unsupported by DL 
query interfaces, as they require the use of 
features such as variables or negation as failure, 
such as:  

“Of what is the adrenal gland a part?” 
 

adrenal_gland: part_of: ?x 
 

“Which bone elements are not entailed to be 
part of the skeletal system?” (none, in Uberon) 

 
?bone rdfs:subClassOf bone_element: 
FILTER NOT EXISTS {  
  ?bone part_of: skeletal_system: .  
} 
 

These kinds of queries are useful for checking 
and exploring the inferences entailed by the input 
ontologies. 

The precomputed subclass and existential 
relations are stored in two named graphs. The 
redundant graph contains the complete set of 
entailed relations between terms. The majority of 
these are not directly asserted in the ontology, but 
instead implied by equivalence axioms, 
subproperty axioms, property chains, and other 
OWL axioms. The nonredundant graph contains 
a subset of the redundant graph. This graph 
contains only “direct” edges, removing edges 
such as the following: 

• <A> rdfs:subClassOf <C>, where 
both <A> rdfs:subClassOf <B> and 
<B> rdfs:subClassOf <C> exist 

• <A> <R> <C>, where <A> <R> <B> 
and <B> rdfs:subClassOf <C> exist 

• <A> <R> <C>, where <B> <R> <C> 
and <A> rdfs:subClassOf <B> exist 

• <A> <R> <C>, where <A> <R> <B> 
and <B> <R> <C> exist, and the 
ontology declares <R> to be a 
transitive property 

• <A> <S> <B>, where <A> <R> <B> 
exists, and the ontology declares <R> 
to be a subproperty of <S> 

The nonredundant relation graph is 
particularly useful for SPARQL CONSTRUCT 
queries which output the graph neighborhood 
around a term, such as when powering an 
ontology browsing interface (Fig. 2). 

2.2. Ontology graph 

An additional named graph stores the result of 
classifying the merged axioms of the input 
ontologies using the ELK reasoner [8]. This graph 
includes all the term annotation axioms (such as 
labels and definitions) provided by the source 
ontologies. It also includes a generated triple for 
each term, connecting it to its source ontology 
based on its OBO ID space, e.g., 
obo:UBERON_4100121 rdfs:isDefinedBy 
obo:uberon.owl. These triples allow much more 
efficient filtering of results by ID space as 
compared with string-based SPARQL filters. The 
ontology graph also includes triples linking each 
term to a computed information content score 
(terms with a greater number of subclasses have 
lower information content). These scores can be 
helpful in ranking Ubergraph query result values, 



based on their relative graph placement, within 
downstream applications. 

2.3. Biolink Model graph 

The Biolink Model is a high level data model of 
biological entities [9]. Ubergraph includes a graph 
containing an RDF serialization of the Biolink 
Model, as well as biolink:category links from 
each ontology term to mapped Biolink Model 
classes, propagated across the subclass hierarchy 
of both the Biolink Model and the included 
ontologies. This graph is provided for use by 
applications built on the Biolink Model, to easily 
traverse from OBO ontology concepts to 
corresponding Biolink Model terms. 

3. Implementation 

Ubergraph is constructed using a workflow 
implemented as a GNU Makefile [10]. The source 
code is available on GitHub at 
https://github.com/INCATools/ubergraph. The 
workflow downloads the source ontologies and 
computes additional RDF triples constituting the 

relation graphs and other enrichments using a 
variety of tools included within a Docker image 
defined in the Ubergraph repository. The endpoint 
of the workflow is a Blazegraph [11] database file 
used to drive the SPARQL endpoint. The public 
SPARQL service is a Blazegraph server running 
within an on-premises Kubernetes cluster, 
provided with 32 GB memory and 8 CPUs.  

3.1. Merging and reasoning over an 
integrated set of ontologies 

Ontology manipulation is conducted using 
ROBOT [12] and the Apache Jena [13] ‘arq’ and 
‘riot’ tools. When available, the Ubergraph build 
downloads the “base” release of each ontology 
(e.g., for Uberon, 
http://purl.obolibrary.org/obo/uberon/u
beron-base.owl). Base files are a recently 
adopted convention within the OBO Foundry 
which facilitate merging and reasoning over sets 
of ontologies which refer to one another within 
their axioms. The standard releases of each 
ontology typically contain imported content from 
the ontologies they depend on. Merging these files 
can result in mixtures of axioms and annotations 

A. 

B. 

Figure. 2: (A) Nodes directly connected to UBERON:0000970 ‘eye’, and edges between them, in the 
Ubergraph nonredundant graph. (B) Edges in the redundant graph between those same nodes. A 
depiction of edges between all nodes reachable by one hop from ‘eye’ in the redundant graph would 
be even more tangled, including 10,262 edges. 



from slightly different releases of each ontology, 
possibly resulting in conflicting logical assertions. 
Base files, on the other hand, contain the axioms 
native to a given ontology but exclude any 
imported content. When a base file is not available 
for an ontology, the Ubergraph build uses the 
ROBOT tool to approximate a base file for that 
ontology by removing axioms defining terms 
from external ID spaces. 

3.2. Computing relation graphs 

The redundant relation graph is computed via 
a purpose-built tool, ‘relation-graph’ [14], which 
uses an efficient, parallel algorithm to perform 
millions of DL queries using the Whelk OWL 
reasoner [15]. This process takes approximately 4 
hours, using 20 CPUs and 140 GB RAM. The 
nonredundant relation graph is computed from the 
redundant graph using a Soufflé Datalog [16] 
pruning script which implements the redundancy 
rules described above, taking approximately 70 
minutes to complete. 

The current Ubergraph release contains 
530,834,705 triples, with 48,684,904 triples 
comprising the included ontologies, and the rest 
derived by the build process. The majority of 
these, 318,231,131, constitute the redundant 
relation graph. The pruning step reduces that 
number to 4,532,758 triples in the nonredundant 
relation graph. 

4. Applications 
4.1. Programmatic Access 

As a standard SPARQL endpoint, Ubergraph can 
be accessed using any of the typical 
programmatic means of reaching a REST 
endpoint, as well as dedicated SPARQL query 
interfaces such as Yasgui [17]. In addition to 
generic REST libraries, languages like Python 
include clients for SPARQL endpoints such as 
SPARQLWrapper. 
For higher level access, it is possible to write 
software libraries that act as clients to Ubergraph 
and provide convenient reusable operations. One 
such library is the new OAK (Ontology Access 
Kit) library in Python, which provides 
programmatic access to a variety of endpoints, 
including Ubergraph [18]. OAK provides both a 
Python layer and a command line interface (CLI) 
that allows for various operations over 
Ubergraph including (1) searching for terms; (2) 

performing semantic similarity; and (3) 
accessing and visualization of subgraphs, making 
use of the obographviz package. For example, 
the OAK viz command, e.g., runoak  -i 
ubergraph: viz GO:0001750 -p 
rdfs:subClassOf,BFO:0000050, will show all 
terms traversable via the relation graph from a 
starting set of terms such as ‘photoreceptor outer 
segment’ in GO (Fig. 3). 

One additional way to access Ubergraph is 
through its OpenAPI REST endpoint description 
[19], autogenerated (using grlc [20]) from a suite 
of example SPARQL queries stored in the 
Ubergraph source repository. 
  
 

 
Figure 3: OAK visualization of relation graph 
ancestors of a GO term, traversing inter-ontology 
links. CL terms are gray, GO terms are pink. Is_a 
(SubClassOf between named classes) edges in 
black, part_of (BFO:0000050) in blue. 

4.2. Projects using Ubergraph 
4.2.1. Mondo quality control checks  

The Mondo disease ontology [21] is a complex 
development effort that seeks to integrate 
disparate disease ontologies and terminologies. 
An automated process creates a skeleton for a 
large ontology that integrates axioms and 
annotations from these sources, which is further 
augmented by complex logical axioms using 
design patterns [22]. Such an ontology requires 
extensive quality control checking and reporting 



capabilities that need to be reviewed, refined, and 
shared. Moreover, these reports often span 
multiple ontologies such as Uberon, GO, and CL. 
All Mondo reports and quality control checks [23] 
are implemented using SPARQL. To develop and 
share these reports, the Mondo team uses Yasgui 
in combination with the Ubergraph SPARQL 
endpoint: queries are prototyped, shared between 
developers, and refined until fit for purpose. The 
Mondo team makes extensive use of inferred 
relationships in Ubergraph, which not only 
reduces query time, but also improves recall for 
cases where subclasses are only inferable through 
an entailment regime such as OWL EL. 

4.2.2. HuBMAP validation 

The HuBMAP project is building a human 
reference atlas leveraging expert input [24]. The 
atlas covers adult human anatomy. Uberon has 
many terms that are not useful for this purpose as 
they refer to other species or developmental 
stages. It also has many more relationship types 
than needed. Experts working on this project 
provide their view of human anatomy using 
spreadsheets to relate Uberon and Cell Ontology 
terms. HuBMAP developers use Ubergraph to 
programmatically test the validity of expert-
specified relationships between term pairs against 
subclass and existential relations from a small set 
of high level object properties. Reports of non-
validating pairs are used to inform corrections to 
the expert-curated tables, or to improve Uberon 
and Cell Ontology as applicable. As an example, 
HuBMAP biologists have mapped ‘OFF-bipolar 
cell’ (CL:0000750) to ‘inner nuclear layer of 
retina’ (UBERON:0001791), a relation that is 
currently not present in the Cell Ontology. The 
validation tool searches for relationships among 
the terms in the HuBMAP domain and finds that 
‘OFF-bipolar cell’ currently does have a ‘part_of’ 
relationship with ‘retina’ (UBERON:0000966). 
Having these suggestions and relationships 
visualized via the validation tool allows editors to 
consider remodeling the Cell Ontology to have 
more specific mappings. In this case, an editor 
may choose to add the following axiom to ‘OFF-
bipolar cell’: 'part of' some 'inner nuclear 
layer of retina'. 

4.2.3. Biomedical Data Translator 

The NCATS Biomedical Data Translator 
program is creating a federated knowledge system 

capable of integrating existing biomedical data 
sets, and which will allow users to derive “insights 
that can accelerate translational research, support 
clinical care, and leverage clinical expertise to 
drive research innovations” [25]. Many of the 
Data Translator knowledge sources express their 
data with reference to standard identifiers for 
terms from OBO library ontologies, such as cell 
types, anatomical locations, and diseases. The 
ontologies themselves provide the background 
knowledge giving meaning to the use of those 
terms. Ubergraph provides the basis for the 
Ontology Knowledge Provider, a Translator 
knowledge source which implements the Data 
Translator knowledge graph API via queries to the 
Ubergraph SPARQL endpoint [26]. As described 
above, nodes within Ubergraph are pre-
categorized using groupings from the Biolink 
standard, which is used as a top-level data model 
by Translator. 

5. Challenges 

Reasoning over a merged collection of 
mutually referential, but independently 
developed, ontologies can uncover hidden logical 
incompatibilities. Some of these incompatibilities 
are simply the result of stale imported content; 
while these ontologies are all developed as part of 
the OBO collaborative community, they move at 
varying paces and release schedules. In our 
experience, the use of “base files” (discussed 
above) helps to avoid many such issues that were 
frequently encountered in previous attempts to 
reason across combinations of OBO ontologies, 
e.g., [27]. Further, combining ontologies together 
in applications like Ubergraph highlights the need 
to ensure that quality control checks in ontology 
release pipelines consider a comprehensive set of 
external axioms; otherwise they may miss 
undesired entailments from the use of particular 
terms. The Ubergraph build pipeline applies 
additional preprocessing, such as removing 
disjointness axioms, to minimize the effect of any 
remaining logical incoherency. 

Another issue encountered in a reasoning 
application like Ubergraph is that the inferences 
computed from the merged set of ontologies may 
result in additional intra-ontology subsumptions 
that individual ontology providers have not 
vetted. In a real-life example, a new release of 
ChEBI classified some chemicals as lipids which 
were not previously so. Combining this release of 
ChEBI with the logical definitions for metabolic 



processes provided by the Gene Ontology resulted 
in certain GO processes being classified under 
‘lipid metabolism’ which were not grouped as 
such in the official GO release. To better avoid 
such discrepancies, but still provide all the 
inferred relations which make Ubergraph so 
useful, we are developing protocols for axiom 
inclusion in the Ubergraph reasoning process, 
such as transformations of equivalent class 
axioms into less powerful subclass axioms, and 
ensuring that the class hierarchy published by 
each provider is precomputed in the ontology file 
incorporated into Ubergraph. 

6. Related work 

Online ontology repositories such as Ontobee 
[28], the EBI Ontology Lookup Service [29], and 
BioPortal [30] all provide SPARQL endpoints 
which allow querying over the OBO ontologies 
they include. However, within these services, 
users have access to only the complicated RDF 
serialization of the OWL axioms. Ubergraph’s 
precomputed relation graphs both greatly 
simplify, and also significantly increase the 
semantic power of, SPARQL queries over the 
combined suite of ontologies. 

7. Conclusions 

OBO library ontologies contain a wealth of 
cross-domain knowledge within their logical 
axioms. Ubergraph provides a powerful means to 
access and make use of these connections in a way 
that preserves and utilizes the full semantics of its 
constituent ontologies, without requiring users to 
download multiple gigabytes of ontologies and 
load these into an OWL reasoner. 
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