Structural concept of ECHO - Hybrid bonding and laminar joints

HLFC Workshop, 07.09.2022 IMA Braunschweig

Martin Schollerer Christian Ückert Christian Hühne

Overview

Introduction

• Horizon 2020 LPA Project: Manufacturing of a Demonstrator for a retrofit HLFC-Leading Edge for A350 HTP

Challange of hybrid structural bonding

What are the structural challenges and how do we handle them?

- Understanding of hybrid structures 1.
- 2. Understanding of HLFC structures
- Identification of critical points 3.
- Risk mitigation by Surface Toughening 4.

Understanding of HLFC-Structures

Challenge: Strong deformation in structure after cooldown

- Effect is reversible and can be calculated
- · Deformations induces stress to the bondline

F_(∆T)

Understanding of HLFC-Structures

- Selective curing of bonded areas Reduction of deformations
 Stress investigation of bondline
- Stress investigation of bondline
 Identification of critical points

Identification of critical points

Deformation in mm

Ductile material e.g. PVDF **absorbs stress concentration** and transfer them homogeneous to the stiffer area in the middle of the joint

Motivation for laminar Joint

- Why is the Interface so important?
- The laminar boundary layer must extend beyond the interface to provide the benefit of drag reduction.
- What are the difficulties?

Example for airfoil distortions

Laminar airflow in dark blue

Requirements

- Strict requirements from Aerodynamic Department
- Forward facing step max. 0.5mm*

• Backward facing step of max. 0.12mm*

- Result:
 - difficult for manufacturing!
 - difficult for MRO!

*only for our cruise flight case on A350 HTP

Paint line erosion of a Vertical Tail-Plane (A320)

Distortion of airfoil by steps and gaps of Horizontal Tail Plane Leading Edge to box Joint (A320)

Laminar Interface Concept

- Removable cover concept
- From Outside accessible Joint for Horizontal Tail Plane (HTP)

Compensation of manufacturing tolerances

- The coversheet compensates the manufacturing tolerances
- Coversheet = pre bent steelfoil

Compensation of thermal deformation

• Strong "Bi metallic effect" of CFRP structure and bonded titanium skin

Demonstration with an Interface Small Scale Demonstrator (ISSD)

- Simple milled 500mm AL molds
- 8552 IM7 prepreg
- Curing in autoclave at 180°C
- Secondary bonding at 120°C

Both halves of HTP Box upper cover before joining

Manufacturing Approach - Joining CFRP

Manufacturing Approach – Adhesive Bonding

• Tested bonding process with an easy to manufacture Al Skin

Manufacturing Approach – Applying the Cover sheet

Manufacturing Approach – Step measuring

BFS of 0.097 mm • Requirements achieved (Sheet thickness nominal 0.1mm) 75,81 [1] 97,129µm 150,000 100,000 50.000 0.000 0,000 200,000 400,000 600,000 800,000 1000,000 1213,874 Measured with Laser Scanning Microscope 11 43,521 Thickness of a human hair 0.04mm BFS of 0.03 mm

Interface Small Scale Demonstrator

- ISSD without Cover Sheet
- not finished right now

Interface Small Scale Demonstrator 3D measurment

3D Measurment of steps - Trial 1

3D Measurment of steps - Trial 2

Improvement of Concept

- Increase the high of upper cover step to reach a more robust FFS
- The Cover Sheet does not need a high prebending
- Decrease in Waviness

Importance of thermal deformation compensation

• Compensation in molds was calculated for titanium!

Conclusion and Outlook

- Challenges of the ECHO HLFC design was shown
- Risk mitigation concept via Surface Tougehning was demonstrated
- A removable interface concept was presented for a HLFC LE
- A successful manufacturing approach was shown for all concepts
- · Compensation of "Bi-metallic effect" was successful
- All steps agree with the requirements

<u>To Do's:</u>

- · Identify the stiffness of coversheet to avoid aeroelastic problems
- Reduce manufacturing effort of pre bended Cover Sheet by design adaption
- Identify usability for NLF Joints

Thank You!

Martin J. Schollerer

Research Engineer

DLR Institute for Composite Structures and Adaptive Systems

Lilienthalplatz 7 38108 Braunschweig Germany

Phone: +49 531 295 - 2224

E-Mail: Martin.Schollerer@dlr.de

Acknowledgement

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement CS2-LPA-GAM-2020-2023-01. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.

Disclaimer

The results, opinions, conclusions, etc. presented in this work are those of the author(s) only and do not necessarily represent the position of the JU; the JU is not responsible for any use made of the information contained herein.

