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Abstract: A new forward-flight model for bird-like ornithopters is presented. The flight dynamics
model uses results from potential, unsteady aerodynamics to characterize the forces generated by
the flapping wings, including the effects of the dynamic variables on the aerodynamic formulation.
Numerical results of the model, which are validated with flapping flight experimental data of an
ornithopter prototype, show that state variables such as the pitch angle and the angle of attack oscil-
late with the flapping frequency, while their mean values converge towards steady-state values. The
theoretical analysis of the system shows a clear separation of timescales between flapping oscillations
and transient convergence towards the final forward-flight state, which is used to substantially sim-
plify both the interpretation and the solution of the dynamic equations. Particularly, the asymptotic
separation into three timescales allows for dividing the problem into a much simpler set of linear
equations. The theoretical approximation, which fits the numerical results, provides a direct look into
the influence of the design and control parameters using fewer computational resources. Therefore,
this model provides a useful tool for the design, navigation and trajectory planning and control of
flapping wing UAVs.

Keywords: unsteady aerodynamics; flight dynamics model; bio-inspired UAV; perturbation method;
ornithopter

1. Introduction

Research on flapping wing Unmanned Aerial Vehicles (UAVs) is becoming of in-
creasing interest due to their potential to improve the efficiency and safety of multi-rotors
without the loss of maneuverability of fixed-wing aircrafts [1]. The ability to glide for long
distances gives bird-like ornithopters great energy efficiency, while the flapping wings
provide the needed thrust to gain altitude. Such advantages have led to the development
of several prototypes of flapping wing bio-inspired UAVs. For instance, RoboRaven [2]
was the first demonstration of a bird-inspired platform performing outdoor aerobatics
using independently actuated and controlled wings. Several ornithopter prototypes were
developed in [3], evaluating lift and thrust generation characteristics of different wing
designs. The RoBird project [4] achieved the speed range of predatory birds with similar
weights. Currently, the GRIFFIN project is focused on the research and development of
bio-inspired UAVs, with the E-flap prototype already presenting an ability to carry a high
payload [5].

Predicting and controlling the behavior of a flapping wing UAV constitutes a great
challenge. Fully empirical models may be useful [6], but are restricted to the specific char-
acteristics of a particular ornithopter. General models have to be based on the flight physics
of the ornithopter, integrating aerodynamic forces and moments generated by the wings
into the dynamics of the entire ornithopter. There are already different formulations, most
of them focused on very small or Micro Aerial Flapping Wing Vehicles (MAFWVs) [7–9].
Such models combine estimations of the aerodynamic forces for high angles of attack,
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acting in aerodynamic stalls, with complex flapping kinematics similar to those produced
by an insect. From their wing kinematics, MAFWVs obtain the incoming velocity needed
for the generation of lift and thrust. For larger UAVs, mechanical limitations do not allow
this flight mode, so they need to start from a forward flight motion, e.g., from gliding,
to produce the aerodynamic forces. Unsteady aerodynamics based on inviscid (or potential)
theory is useful to model these forward flapping-flight regimes.

Flapping wing aerodynamics in forward flight has been a research topic since Theodor-
sen [10] and Garrick [11] formulated the lift and thrust for a two-dimensional flapping
airfoil within the linear potential theory framework. Theodorsen’s formulation was used
by DeLaurier [12] to model flapping-wing flight but also considered large amplitude wing
motion to develop the Modified Strip Theory (MST). Kim et al. [13] further improved
this model to include relatively large angles of attack and dynamic stall effects. Recently,
Garrick’s linear inviscid formulation for the thrust force was improved using the vortical
impulse theory [14], which considers the complete unsteady vorticity distribution on the
airfoil. Some recent studies have adapted these theoretical two-dimensional formulations
to real finite wings [15,16].

Different flight models may integrate these aerodynamic forces into the dynamics of
the entire ornithopter. Rigid body approximation was used by Dietl and Garcia [17,18],
using a simplification of the modified strip theory. Paranjape et al. [19] adapted insect-like
models to forward flights with cycle-averaged values of the forces. Similar empirical
models to compute the aerodynamic forces were integrated into the longitudinal flight
dynamics by Taylor and Zhikowski [20] and by Gim et al. [21].

With high amplitude flapping, the rigid body assumption loses validity. Some works
have studied multi-body models, considering the interaction between moving and rigid
parts [22]. Most of the multi-body models in the literature do not use theoretical formula-
tions for the aerodynamic forces but instead use empirical approximations [6,23]. However,
there are also some works that use modified strip theory for flexible wings [24], some
considering the fluid–structure interaction [25] but simplified for computational purposes.

One of the most relevant current challenges is to develop general flight models for
actual ornithopters but simple enough to be used to control the UAV with on-board
computers in real-time. To be general enough, such models must be developed from
physical theories. Within this general goal, previous work by the authors on the GRIFFIN
project has focused on characterizing gliding states and their stability [26,27]. The aim of
the present work is to characterize the ornithopter flight transitions from steady gliding
states to long-time, or permanent, flapping-flight states after a flapping regime of small
amplitude is started. The model may also be applied to the transitions between two
different flapping regimes. The work is limited to forward flight in the longitudinal plane,
as only symmetrical behavior is studied. Lateral stability issues are not addressed here.

This paper presents a rather simple model integrating low-amplitude flapping aerody-
namics in the longitudinal dynamics of a bird-inspired UAV. Formulations of the lift [10]
and thrust [14] from linear potential theory, corrected to account for finite-wing effects,
provide a precise estimation of the aerodynamic force generation by the flapping wings,
which has been validated against experimental data [28–31]. These forces are included
in the Newton–Euler dynamic equations, coupling the vehicle dynamics and the wing
aerodynamics. Since the aerodynamic model used is for low-amplitude flapping, the use of
rigid body equations is justified. Furthermore, the reduced weight of the wings, normally
required by mechanical reasons, minimize the impact of their relative movement in the
dynamics of the vehicle. Aerodynamic formulation allows consideration of the unsteady
damping for both the wing and the tail, an aerodynamic effect that is relevant in the evo-
lution of the system towards its final flapping-flight state. The dynamics equations are
written in the velocity frame to simplify the formulation. These assumptions provide a
model that we believe is quite general for a wide range of ornithopters in longitudinal
forward flight.
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Despite the simplifications, the numerical integration of the resulting dynamic equa-
tions is still computationally expensive. This is due to the quite different timescales; for
flapping, the timescale is much smaller than that for the transient phase between, for in-
stance, an initial gliding state and a final flapping-flight state. Therefore, a huge number of
time steps is required to obtain accurate numerical solutions in both timescales. Hence, on-
board real-time numerical implementation of these equations is not possible. The option of
using time-averaged expressions for the lift and thrust is discarded because of the nonlinear
coupling of the dynamics and aerodynamics of the system, as flapping oscillations affect
the temporal evolution of the time-average quantities and, consequently, the dynamics of
the ornithopter towards its final forward flight state.

The path followed here is to take advantage of the disparate timescales to develop
a multiple scales perturbation method to solve the dynamic equations, as applied, for in-
stance, in [32] for a much simpler fish swimming problem. For that purpose, we use the di-
mensionless flapping amplitude (scaled with the wing’s chord length) as the small parameter.

In summary, the main contribution of this paper is the development of a forward flight
model with linear potential aerodynamic results [10,14] for flapping wing force generation
and its rigorous simplification based on the separation of the different timescales, providing
a useful analytical tool for the design, real-time control and guidance of bird-inspired UAVs.

The paper is structured as follows. Section 2 presents the physics of the ornithopter
flight, with both the Newton–Euler equations used for the dynamics and a summary of
the unsteady aerodynamic forces generated by the flapping wings. The details of the
aerodynamic forces are given in Appendix A. Section 3 shows some numerical results
and the experimental validation of the model. Section 4 explains the approach followed
to obtain the simplified solution of the model and presents the comparison between this
simplified analytical solution and the numerical simulations. Finally, in Section 5, the main
conclusions are summarized.

2. Flight Model

This section presents the dynamic equations and the aerodynamic model used for the
ornithopter in flapping flight. The implementation of Newton–Euler equations for a rigid
flying vehicle in longitudinal flight is based on previous works [26,27,33] and summarized
in non-dimensional form in Section 2.1. Although these past works were focused on gliding
flight, the models can be generalized for the flapping case by adding the appropriate
aerodynamic forces.

We use an aerodynamic model for flapping wings in forward flight based on linearized
potential aerodynamics. The formulation is given in Section 2.2, together with the aerody-
namic model for the fixed but adjustable tail, whose deflection angle δt (see Figure 1) is
used as the main flight control parameter. In particular, we shall assume a heaving motion
of the wings of the form

h̃(t) = <
[

h̃0eiωt̃
]

, (1)

where ω and h̃0 are the flapping frequency and amplitude, respectively, t̃ is the time, and <
means a real part. A tilde ˜ is used on dimensional quantities for which the same symbol
will be used later for their dimensionless counterparts. Although the amplitude of the wing
flapping motion varies from the root to the tip, to adjust the formulation, a characteristic
amplitude of the flapping wing is defined as that of the chord placed at 1/3 of the wing
semi-span from the wing tip, as it has been proved to be adequate in previous works [34].
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Figure 1. Scheme of forces, axis, and control and state variables. All vectors are on the plane (X, Z) of
the longitudinal flight.

2.1. Non-Dimensional Newton–Euler Equations

A sketch of the ornithopter with the different reference frames and the main (dimen-
sional) parameters and state variables are provided in Figure 1. To simplify the problem, we
use non-dimensional magnitudes scaled with the following characteristic velocity, length
and time:

Uc =

√
mg

πρSδt
, Lc =

c
2

, tc =
1
ω

, (2)

where Uc and tc are redefined from [27] to obtain a non-dimensional velocity of order unity
in usual flapping conditions for a given tail deflection δt, and a non-dimensional time in
the order unity for flapping oscillations. Note that this formulation is only valid for the
flapping mode of the ornithopter, as the flapping frequency is involved in the scaling of the
dimensionless time.

During a longitudinal flight, one needs three dynamic equations: two for the lin-
ear momentum on the plane of flight (X-Z, see Figure 1) and one for the angular mo-
mentum around the Y-axis perpendicular to this plane. They are written as [27], with
some modifications

Mk0U̇ = U2(C∗T − C∗D − Li∗ −ΛC∗Dt)− δt sin (γ), (3)

Mk0Uγ̇ = U2(C∗L + ΛC∗Lt)− δt cos (γ), (4)

(Mk0)
2θ̈ = χM2U2{lw[C∗L cos (α)− (C∗T − C∗D) sin (α)] + ltΛ[C∗Lt cos (α) + C∗Dt sin (α)]

−hw[C∗L sin (α) + (C∗T − C∗D) cos (α)]}, (5)

and the wing’s angle of attack is computed as α = θ− γ. Equations (3)–(5) are written in the
trajectory frame, with xT in the direction of the velocity. The non-dimensional parameters
appearing in Equations (3)–(5) that differ from those used in [27] are

M =
2m

πρSc
, χ =

πρS
( c

2
)3

2Iy
, k0 =

ωc
2Uc

, (6)

The (modified) force coefficients C∗L, C∗T , C∗D, modeled in Section 2.2 are defined as

C∗L =
L

πρU2
b c

, C∗T =
T

πρU2
b c

, C∗D =
D

πρU2
b c

, (7)

applied at the wing aerodynamic center. The Lighthill number Li∗ = Sb
S C∗Db

, models the
body drag, applied at the center of gravity. Small flapping amplitude is considered so
that the wing aerodynamic center is assumed to be at a constant position (lw, hw) in the
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body frame. The force coefficients are dubbed modified because they are not defined in the
traditional form but divided by 2π to better adjust the numerical order of magnitude of the
different terms in the equations, as described in Section 4.

2.2. Aerodynamic Characterization

For the aerodynamic formulation, the movement of the wing is characterized by the
non-dimensional flapping amplitude h0 and the reduced (dimensionless) frequency, k = k0

U ,
which is affected by the dynamics through the non-dimensional velocity U in relation to
the constantly reduced frequency k0, defined in (6).

Since we assume small flapping amplitudes, we use the well-known results from two-
dimensional, linear potential theory, recently modified for the thrust coefficient and also
corrected to account for three-dimensional effects. Thus, we use Theodorsen’s lift [10] for
an oscillating, heaving-only two-dimensional airfoil but assume an angle of attack α 6= 0
that may vary with time. In fact, all terms coming from changes in dynamic state variables
are also considered as they have important effects on the stability of fixed-wing flight [27]
and are also expected to affect the flapping flight.

To also account for three-dimensional effects, we follow recent works that separate the
finite wing effects on the added mass terms and the circulatory terms of the lift force [15].
Circulatory terms are affected by the same factor used in fixed wings according to Prandtl’s
lifting-line theory, namelyA/(A+ 2), whereA = b2/S is the aspect ratio of the wing.
On the other hand, Smits [16] proposes a discontinuous factor for the added mass terms,
withA/2 forA < 2 and just unity forA ≥ 2. This last factor is the appropriate one for
the wings considered here. We can write the (modified) lift coefficient as a function of the
state variables:

C∗L = CLα α +
CLh eit + C̄Lh e−it

U
h0 +

CLα̇

U
α̇ +

CLU̇

U2 αU̇ +
CLθ̇

U
θ̇, (8)

where we see the harmonic function related to the heaving motion multiplying h0. The dif-
ferent coefficients CL... in Equation (8) (the dots refer to the different subscripts) are obtained
from Theodorsen’s theory, and they are defined in Appendix A.

The formulation of the thrust for an oscillating airfoil in the linear potential limit was
first obtained by Garrick [11]. The theoretical development has been recently corrected
in [14] using the vortex impulse theory. This formulation for the thrust is used here. Finite
wing effects from [15,16] are considered, resulting in

C∗T =
CTc

U2 h2
0 + CTα α2 +

CThα
eit + C̄Thα

e−it

U
h0α +

CTh e2it + C̄Th e−2it

U2 h2
0 +

CThα̇
eit + C̄Thα̇

e−it

U2 h0α̇

+
CTθ̇α̇

U2 θ̇α̇ +
CTα̇α

U
α̇α +

CThθ̇
eit + C̄Thθ̇

e−it

U2 h0θ̇ +
CTθ̇α

U
θ̇α +

CTθ̇

U2 θ̇2 +
CTU̇α

U2 α2U̇. (9)

Note that the variation of the dynamic variables produces several cross terms. For an
isolated wing in a wind tunnel with a heaving movement, just the first four terms of
Equation (9) would be present. All the coefficients CT... (dots refer to the different subscripts
in Equation (9)) are defined by the development of the formulation in [14], and they are
also defined in Appendix A.

The second lifting surface of the ornithopter, the tail, provides stability and pitch
control. To formulate the forces generated by this second surface, delta-wing theory
is used [35]. Bio-inspired UAVs usually have a triangular tail with a reduced aspect
ratio similar to those of birds, for which this theory has proven to be appropriate [36,37].
Consequently, the tail’s lift is modeled as [27]

C∗Lt = CLtα(α− δt) +
CLtθ̇

U
θ̇ +

CLtα̇

U
α̇ =
At

4
(α− δt)−

At

4
k0lt
U

θ̇ +
3At

8
k0

U
α̇, (10)



Aerospace 2022, 9, 617 6 of 22

Finally, drag from all parts of the vehicle has to be considered. Body drag, represented
by the modified Lighthill number Li∗, is considered constant for the normal range of angles
of attack. Meanwhile, for the wing and tail, drag is computed as the contributions of a
friction drag, which is also considered constant in the range of applicability of the model,
and an induced drag is associated with the corresponding lift coefficients C∗L and C∗Lt, which
is computed from finite wing theory. In summary,

C∗D = C∗D0+C∗Di, C∗Di =
2C∗2L
A

, (11)

C∗Dt = C∗D0t+C∗Dit, C∗Dit =
2C∗2Lt
At

. (12)

3. Numerical Results and Experimental Validation

This section presents, in Section 3.1, some numerical results of the model equations
to describe the structure of the solution, which will guide the timescales analysis of the
perturbation solution developed in Section 4. Before that, in Section 3.2, these numerical
results are validated against experimental data from the flapping flight of an ornithopter
prototype developed within the GFIFFIN project [5].

3.1. Numerical Results

To obtain the dynamic evolution from the gliding condition to the final flapping state,
the equations described in Section 2 are numerically integrated. We use the values of
the parameters from the prototype described in [5], which are shown in Table 1 for three
flapping frequencies f relevant for bird-scale flight (actually, only k0 depends on f ). Note
that they are of order unity, except for the friction drag (Li∗).

Table 1. Non-dimensional flight parameters for three flapping frequencies.

f Mk0 M M2χ Λ lw ltΛ hw Li∗ A

2 Hz 0.79 2.54 2.12 0.25 0.55 −1.16 0.38 0.0048 5.14
5 Hz 1.98 2.54 2.12 0.25 0.55 −1.16 0.38 0.0048 5.14
7 Hz 2.77 2.54 2.12 0.25 0.55 −1.16 0.38 0.0048 5.14

With these parameters, we proceed to numerically integrate the system of differential
Equations (3)–(5). Figure 2 shows the evolution of the non-dimensional flight velocity U
with both non-dimensional time (a) and dimensional time (b) for the three frequencies in
Table 1. The flapping amplitude considered is h0 = 0.1. To better compare the three cases,
velocities have been normalized with their final values U f , which are 0.9136, 1.0444 and
1.0792, respectively, and are all of order unity, as mentioned in Section 2.1. From Figure 2a,
it is observed that the timescale of the transient phase increases with the frequency, while
Figure 2b shows that the transient velocity is just slightly affected by the frequency when
the dimensional time is used. Thus, though the timescale related to flapping oscillations
is constant as a consequence of the non-dimensionalization of time with the flapping
frequency, the timescale related to the transition between states varies with the frequency
for the same reason.
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Figure 2. Transient phase of non-dimensional velocity U for three different frequencies. (a) Normal-
ized velocity vs. non-dimensional time; (b) normalized velocity vs. time in seconds.

Figure 3 shows the evolution of the angular variables θ and α with time for a frequency
of 5 Hz. Notice that the pitch angle amplitudes in the transient oscillations are significantly
higher than those of the angle of attack. However, the oscillations due to the flapping motion
are both quite similar. All the amplitudes, both in the transient oscillation and during each
flapping cycle, are small enough to be in the adequate range for the aerodynamic models
during the simulation [28–31]. Notice also that the aerodynamic models have no limitation
in relation to the frequencies.

0 200 400 600 800 1000 1200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) Evolution of the pitch angle

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

(b) Evolution of the angle of attack

Figure 3. Evolution of θ (a) and α (b) with non−dimensional time. Frequency 5 Hz.

Numerical integration of the dynamic equations provides the most accurate tool
to obtain the evolution of the state variables. However, state variables (velocity, pitch
angle and angle of attack) oscillate with the flapping frequency but also evolve much
more slowly in time during the transient phase. This disparity of timescales forces the
numerical integration to be developed with a very small time step to accurately catch
these oscillations, thus requiring a huge number of time steps to solve the slow evolution.
Therefore, simulations of the entire transient phase have an excessive computational cost,
which makes on-board real-time computations infeasible.

However, this same disadvantage associated with the different timescales can be used
to develop simplifications of the model. Consequently, this paper proposes a perturbation
approach (Section 4), separating scales with the flapping amplitude h0 as the small param-
eter. The goal is to provide a system of equations that can be computed in real time by
on-board computers.

3.2. Experimental Validation

Experiments with the ornithopter prototype (described in [5]; see Figure 4) have been
carried out in a 20 m ×15 m tracking zone inside the GRVC Robotics Laboratory, with five
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markers on the body for the cameras to track the flight. The limited space of the flight area
is inconvenient for achieving a long flight time, but its location inside a building without
wind helps for the repeatability and reliability of the results. The lab is also equipped with
a launcher to fix the initial conditions (also shown in Figure 4).

Figure 4. Ornithopter prototype used in the experiments.

The prototype has a flapping amplitude h0 ' 0.8 (at 1/3 of the semi-span from the
wing tip), somewhat out of the range of the linear aerodynamics models. However, it
has been shown that these models provide a good approximation of the aerodynamic
forces even for these flapping amplitudes [14,28–31] (see also the present comparison with
experimental data reported below in this section). Although the model does not take
into account wing flexibility, the wing used here is more rigid than that reported in [5],
and the effect of flexibility on the forces generated by the flapping wing is small for the
flapping frequencies considered, which are much smaller than the characteristic frequency
of the structure. Tail flexibility has not been considered either. In addition, due to the
characteristics of the prototype’s tail, the coefficient CLtθ̇

is very small and is neglected.
There are three controls on the ornithopter. The vertical tail has a simple control to

follow a straight line in the projection on the horizontal plane. We follow the diagonal of
the flight area to maximize flight time. To consider the flight in open loop, the horizontal
tail remains in a fixed position by sending a constant signal to the servomotor. The third
control of the ornithopter generates the flapping frequency, which also receives a constant
signal. However, this signal generates a constant current, which does not guarantee that
the flapping motion is exactly harmonic, though the error in relation to a harmonic motion
is shown to remain very small. The flapping frequency is not known a priori, but it can be
extracted from the oscillations in the measured variables. We consider the flight from the
moment the flight starts. Due to electronic delays, the ornithopter starts to fly between 0.5
and 1 m forward from the launcher. The initial conditions change slightly from the launch
to that point, so the conditions defined in the launcher are approximate.

Figure 5 shows that the numerical results of the model for the flight velocity U and
the pitch angle θ are very close to the experimental measurements. As we see, the flight
time is only around 2 s due to the reduced space in the tracking zone. However, results for
this short time flight are significant, as at least one transient oscillation is caught, with good
agreement between experimental and theoretical frequencies and amplitudes of both fast
(flapping) and transient scales. More particularly, the amplitude of the small oscillations
with the flapping frequency have the same order for the airspeed, but they are slightly
different for the pitch angle. This difference could be explained by the impact of the inertial
forces, which would move the aerodynamic center of the wing backward, closer to the
center of gravity. On the other hand, the first transient oscillation is very well captured by
the model for both U and θ.
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Figure 5. Comparison between numerical and experimental evolutions. (a) Airspeed; (b) pitch angle.

4. Analytical Perturbation Solution and Its Comparison with the Numerical Solution

In this section, we present a perturbation solution to the model equations. First,
in Section 4.1, the different timescales and orders of magnitude of the different parameters
are analyzed with the help of the above numerical solutions and theoretical considerations.
The solution is fully derived in Section 4.2 and then compared to the numerical results of
the model equations in Section 4.3.

4.1. Scales Analysis

It is clear from the above numerical and experimental results that the problem has
different timescales, so it seems appropriate to use a multiple-scale perturbation method,
whose different temporal scales will be defined here in terms of the small flapping ampli-
tude, ε ≡ h0 � 1. Before that, some assumptions have to be made regarding the order of
magnitude, in terms of ε, of the non-dimensional variables and the remaining parameters
for a typical ornithopter, which are enumerated next.

• Small flight angles: γ ∼ θ ∼ α ∼ δt ∼ ε. Reduced angles of attack are required by
the present aerodynamic formulation, as well as small deflections of the tail. All of
them are assumed to be in the same order of magnitude as the flapping amplitude ε.
Small γ and θ mean that aggressive climbing trajectories are not considered. Moreover,
small flapping amplitude implies a limited thrust, which is proportional to ε2 (see
below), so reaching large flight path angles would be possible only with high reduced
frequencies, which are difficult to obtain in bird-scale ornithopters.

• Lift coefficients: C∗L ∼ C∗Lt ∼ ε. This is a consequence of the formulation of the lift
coefficients, Equations (8) and (10), proportional to the aerodynamic angles and the
flapping amplitude, as all the aerodynamic parameters are of order unity.

• Thrust coefficient: C∗T ∼ ε2. Clearly from the Formulation (9), with products of the
aerodynamic angles and the flapping amplitude.

• Drag coefficients: C∗D ∼ C∗Dt ∼ Li∗ ∼ ε2. This is clear for the induced drag, as it
is proportional to the square of the lift coefficient. On the other hand, friction drag
cannot be larger than thrust to maintain flight.

• Non-dimensional inertia and reduced frequency:M2χ ∼Mk0 ∼ 1. Given in Table 1.
Even though the frequency is a control variable, we can consider both terms of order
unity in the typical range of bird-like ornithopters.

• All the remaining non-dimensional parameters either do not affect the structure of the
solution or are order unity.

With these considerations, we can analyze the timescales. Two of them are clearly
recognized in Figure 2. The first one, corresponding to the flapping oscillations, is of order
unity (due to the definition of the characteristic time tc). The order of magnitude of the
other one, corresponding to the transient phase, can be obtained by analyzing the order
of the different terms in Equations (3) and (4) during the transient phase. The asymptotic
terms are neglected in this analysis as they are compensated by themselves. Thus, writing
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as ∆U/τc1 and ∆γ/τc1, the order of magnitude of the time derivatives, where τc1 is the
transient timescale in non-dimensional time t, one has

Mk0
∆U
τc1
∼ U(∆U)ε2 + ε∆γ, (13)

Mk0U
∆γ

τc1
∼ U(∆U)ε + εγ∆γ, (14)

where it has been taken into account that the leading terms with U2 cancel with the corre-
sponding gravity terms so that the velocity terms going with the aerodynamic coefficients
in this transient phase are of the order of U∆U. Since U ∼ 1 by the choice of Uc and the
characteristic time has to be of the same order in both equations (the numerical solutions
plotted in Figures 2 and 3 show a similar oscillatory convergence for U and for the angular
variables), it necessarily implies that ∆U is of the same order as ∆γ. Thus,

Mk0
1

τc1
∼ ε2 + ε, (15)

Mk0
1

τc1
∼ ε + ε2, (16)

and, comparing the leading terms, τc1 = Mk0/ε. These leading terms are related to
the gravity force and to the effect of the velocity variations on the lift force. However,
the damping terms related to the aerodynamic drag are negligible in this time scale. Thus,
we have to consider yet another (slower) characteristic time to account for the drag term
in (13),

Mk0
∆U
τc2
∼ U(∆U)ε2, (17)

obtaining the third timescale τc2 =Mk0/ε2. Aerodynamic coefficient variations have not
been considered as, even though they can affect the transient phase, they will not change
the corresponding timescales.

Therefore, the complexity of the present problem needs three timescales to obtain a
meaningful perturbation solution: t, τ1 = t/τc1, and τ2 = t/τc2. Non-dimensional time
derivatives are thus defined as the sum of three terms

d
dt

=
∂

∂t
+

ε

Mk0

∂

∂τ1
+

ε2

Mk0

∂

∂τ2
. (18)

The state variables can then be expressed as an asymptotic expansion in powers of ε,

U = U0(t, τ1, τ2) + εU1(t, τ1, τ2) + ε2U2(t, τ1, τ2) + . . . (19)

θ = ε(θ1(t, τ1, τ2) + εθ2(t, τ1, τ2) + . . . ) (20)

α = ε(α1(t, τ1, τ2) + εα2(t, τ1, τ2) + . . . ) (21)

Note that α is considered here as a state variable instead of the flight path angle γ
to simplify the integration of the aerodynamic forces in the dynamic equations. γ can be
expressed as the difference between the pitch angle and the angle of attack:

γ = ε[θ1(t, τ1, τ2)− α1(t, τ1, τ2)] + ε2[θ2(t, τ1, τ2)− α2(t, τ1, τ2)] + . . . (22)

The dependence with each timescale of the different functions in the expansions is
derived in Section 4.2 below. Additionally, since the first timescale t is related to harmonic
oscillations with the flapping frequency, the different functions in Equations (19)–(21) will
be expanded in Fourier series with the necessary number of terms to account for the
aerodynamic forces (8) and (9). The harmonic terms are presented in their exponential
form. To simplify the expressions, their conjugates are omitted for clarity purposes, but ob-
viously they are included when implemented in the equations. In order to not repeat
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terms, the Fourier series coefficients of U, θ, α will be named with the capital letters V, T, A,
with subscripts following the order in the expansion. For instance, the velocity terms will
be expanded as follows,

U0 = V0(τ1, τ2) + V1(τ1, τ2)eit + · · ·+ Vn(τ1, τ2)eint (23)

U1 = Vn+1(τ1, τ2) + Vn+2(τ1, τ2)eit + · · ·+ Vn+k+1(τ1, τ2)eikt (24)

where the number of terms in each order (n, k, . . . ) is given by the expansion of the equations
in the next Section 4.2. These Fourier coefficients are complex, and to also include the phase
of the oscillations, the real value needed for the evolution of the system is obtained by
taking into account the corresponding complex conjugate.

4.2. Perturbation Solution

Once the expansions (19)–(21) and the time derivatives (18) have been defined, we
apply the standard multiple-scales perturbation method to simplify the problem by sep-
arating Equations (3)–(5) into a set of simpler equations by equating similar powers of
ε [38].

In addition to the general perturbation scheme, we must consider the expansion in
a Fourier series. Therefore, each equation obtained for a particular power of ε can be
divided into different equations with the harmonic functions as a common factor, obtaining
equations with different harmonic terms (e0, eit, e2it, . . . ).

This procedure provides a set of simple algebraic equations for each power of ε and
for each specific harmonic term. At the lowest order O(ε0) = O(1), just one term remains,
belonging to Equation (3),

∂U0

∂t
= 0 (25)

meaning that the lowest order of the velocity does not depend on the fast time variable t of
the oscillations. This result agrees with the numerical solution in Figure 2, where we saw
that the oscillations of the velocity with the flapping frequency have very small amplitude.

Following the mathematical development, at the next order O(ε), we obtain the
following equations:

∂U0

∂τ1
+

∂U1

∂t
= 0 (26)

Mk0U0

(
∂θ1

∂t
− ∂α1

∂t

)
= U2

0(CLα α1 + ΛCLtα(α1 − δ∗t ))

+ U0

(
CLh eit +

(
CLθ̇

+ ΛCLtθ̇

)∂θ1

∂t
+ (CLα̇

+ ΛCLtα̇)
∂α1

∂t

)
− δ∗t (27)

(Mk0)
2

M2χ

∂2θ1

∂t2 = U2
0(lwCLα α1 + ΛltCLtα(α1 − δ∗t ))

+ U0

(
lwCLh eit +

(
lwCLθ̇

+ ΛltCLtθ̇

)∂θ1

∂t
+ (lwCLα̇

+ ΛltCLtα̇)
∂α1

∂t

)
(28)

From the first Equation (26), it follows that U1 is also independent of the fast time t.
Note that, according to (25), terms with ∂U0/∂t disappear from Equations (27) and (28).

Now we separate Equations (26)–(28) by harmonic terms. First, non-oscillatory terms
in Equations (26)–(28) generate a system of equations for the coefficients associated with
the non-harmonic terms in the Fourier series. From (26), only ∂U0/∂τ1 = 0 remains, so that
the lowest order velocity does not depend on τ1. With the other two equations, we have a
system for the two variables V0 and A0, without any temporal derivative. Therefore, A0
and V0 are, in fact, constants, independent of any time variable, and are given by
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A0 =
ltΛCLtα δ∗t

lwCLα + ltΛCLtα

(29)

V0 =

√
δ∗t

CLα A0 + CLtα Λ(A0 − δ∗t )
. (30)

CLα depends on the velocity V0 through the reduced frequency in Theodorsen’s func-
tion (see Equation (A1)). Note that only the lowest-order velocity has to be considered in
Theodorsen’s function to be consistent with the present order of the expansion. In any case,
this is a quite simple couple of algebraic equations for A0 and V0. These and all the other
algebraic equations that will appear in the development of the perturbation method are
solved numerically using Matlab’s function fsolve.

The number of terms in the Fourier series of each variable is limited by the equations,
as discussed above. In this order of ε, Equation (26) has no oscillating terms for the
variable U1. Therefore, this variable does not depend on t, and we have that the two lower
orders of the velocity only have the non-harmonic term from the Fourier series. Then,
Equations (27) and (28) have oscillating terms with just the first mode, which leads to θ1
and α1 having only one oscillating term. The corresponding functions are obtained from
the following system,

bluei
(
Mk0 −

(
CLθ̇

+ ΛCLtθ̇

))
T1 − (iMk0 + i(CLα̇

+ ΛCLtα̇) + V0(CLα + ΛCLtα))A1 = CLh (31)

−
(

k2
0

χ
+ iV0

(
lwCLθ̇

+ ΛltCLtθ̇

))
T1 −

(
V2

0 (lwCLα + ΛltCLtα) + iV0(lwCLα̇
+ ΛltCLtα̇)

)
A1 = lwV0CLh (32)

We see that the system of Equations (31) and (32) does not have any derivative with
τ1 and τ2, so all terms are constants and, consequently, so are A1 and T1. Note that this
is a complex algebraic system, as complex unit i appears with derivatives with variable
t. Coefficients A1 and T1 are thus complex, giving information about the amplitudes of
the oscillations |T1| and |A1| and their respective phases φT1 and φA1: T1 = |T1|eiφT1 and
A1 = |A1|eiφA1 .

In addition, there is also a transient mode with time scale t from Equations (26)–(28),
given by

(−Mk0 − (CLα̇
+ ΛCLtα̇))

∂α1

∂t
=
((

CLθ̇
+ ΛCLtθ̇

)
−Mk0

)∂θ1

∂t
+ V0(CLα + ΛCLtα)α1 (33)

k2
0

χ

∂2θ1

∂t2 −V0(lwCLα̇
+ ΛltCLtα̇)

∂α1

∂t
= V0

(
lwCLθ̇

+ ΛltCLtθ̇

)∂θ1

∂t
+ V2

0 (lwCLα + ΛltCLtα)α1 (34)

From these linear equations, a fast mode can be easily obtained. However, these
transients are not of interest. To not alter the dynamics of the ornithopter, we just have to
ensure that these fast solutions are stable.

Summarizing, order ε of the equation provides information about the lowest order
of the three variables. For the velocity, we have the (constant) only term of U0, knowing
also that U1 does not have any harmonic oscillation with t. For the pitch angle, we have the
harmonic oscillations with t of θ0. Finally, all the terms of α0 are already known.

There is not enough information to obtain the evolution of the system yet, so we have
to analyze the order ε2 of the equations. Each Fourier coefficient in this order is expected
to have an asymptotic value and a transient term. To simplify the system further, each
coefficient is decomposed as X(τ1, τ2) = Xs + Xt(τ1, τ2) from this point onwards to divide
it into two separate systems of equations. Firstly, for the constant terms (with subscripts s),
the following analytical expressions are obtained



Aerospace 2022, 9, 617 13 of 22

T0s = A0 +
V2

0
δ∗t

(
(CTα −ΛCDtα)

(
A2

0 + 2A1 Ā1

)
−ΛCDtαδt

δ∗t A0 − C∗D0
− Li∗ −ΛC∗D0t

)
+

V0

δ∗t

(
CThα

Ā1 + C̄Thα
A1 + CTθ̇α

(iT1 Ā1 − iT̄1 A1)
)
+

i
δ∗t

(
C̄Thα̇

A1 − CThα̇
Ā1
)

+
CTθ̇α̇

δ∗t
(A1T̄1 + Ā1T1) +

i
δ∗t

(
C̄Thθ̇

T1 − CThθ̇
T̄1

)
+

2CTθ̇
T1T̄1

δ∗t
+

CTc

δ∗t
(35)

A2s =
hw

lwCLα + ΛltCLtα

(
(CTα + CLα)

(
A2

0 + 2A1 Ā1

)
− C∗D0

+
1

V0

(
(CThα

+ CLh)Ā1 + (C̄Thα
+ C̄Lh)A1 + (CTθ̇α

+ CLθ̇
)(iT1 Ā1 − iT̄1 A1)

)
+

1
V2

0

(
i
(
C̄Thα̇

A1 − CThα̇
Ā1
)
+ CTθ̇α̇

(A1T̄1 + Ā1T1) + i
(

C̄Thθ̇
T1 − CThθ̇

T̄1

)
+ 2CTθ̇

T1T̄1 + CTc

))
(36)

V1s = −A2s
V0

2
CLα + ΛCLtα

CLα A0 + CLtα Λ(A0 − δ∗t )
(37)

which are easily computed using the terms defined or obtained above. These constant
terms provide the asymptotic values to be reached by each state variable after the transient
mode at the corresponding order of the expansion.

For the transient terms, which depend on the time variables τ1 and τ2, we obtain

dV1t(τ1, τ2)

dτ1
= −δ∗t T0t(τ1, τ2) (38)

dT0t(τ1, τ2)

dτ1
=

2V1t(τ1, τ2)(CLα A0 + CLtα Λ(A0 − δ∗t ))

1−
CLθ̇

+ ΛCLtθ

Mk0
+

lwCLθ̇
+ ltΛCLtθ̇

Mk0

CLα + ΛCLtα

lwCLα + ltΛCLtα

(39)

A2t(τ1, τ2) = −
dT0t(τ1, τ2)

dτ1

lwCLθ̇
+ ΛltCLtθ̇

Mk0V0(lwCLα + ΛltCLtα)
(40)

which is a system of two linear differential equations and a third algebraic expression for
the evolution of the angle of attack. The solution to this system of ordinary differential
equations has the form X(τ1, τ2) = eλτ1 X(τ2), where λ turns out to be imaginary, λ = iω1,
representing a purely oscillating transient phase with frequency

ω1 =

√√√√√2δ∗t
CLα A0 + CLtα Λ(A0 − δ∗t )

1−
CLθ̇

+ ΛCLtθ

Mk0
+

lwCLθ̇
+ ltΛCLtθ̇

Mk0

CLα + ΛCLtα

lwCLα + ltΛCLtα

(41)

related to the mean lift of the ornithopter (CLα ) and the aerodynamic coefficient associated
with the pitch angular velocity. It is observed that the frequency of this transient phase
is not affected by the flapping frequency, in agreement with the numerical results shown
in Section 3.1.

Given the form of the solution, the functions of τ2 that remain to be solved are complex,
as they also include the information related to the phase of the oscillations. However, we can
write them as real variables computing their phases separately and by using Equation (38)
and the initial values Ui and Ti to yield

iω1eiφV V1t(τ2) = −eiφT δ∗t T0t(τ2) (42)

φV −
π

2
= φT , V1t(τ2) = δ∗t

T0t(τ2)

ω1
(43)

tan φT =
−ω1Ui

δ∗t Ti
(44)
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Equation (43) gives the relations between phases and amplitudes of the two variables
obtained from Equation (42). The phase is determined by the initial conditions, as in
Equation (44), and the phase shift is always 90 deg. This transient mode is common for
aircraft and is known as phugoid mode. For the evolution with τ2, just another equation is
needed, as the relation between V1t(τ2) and T0t(τ2) is already known.

Regarding the harmonic terms at the order ε2 of Equations (3)–(5), both first and
second-frequency terms, i.e., proportional to eit and e2it, appear in the equations. Hence,
the three variables U2, θ1 and α1 have three terms in the Fourier series expansion. Consid-
ering Equation (3), the two resulting velocity coefficients are

V3 =
−i
Mk0

(
V2

0

(
(CTα −ΛCDtα)2A0 A1 −ΛCDtαδt

δ∗t A1

)
+ V0 A0

(
CThα

+ iCTα̇α
A1 + iCTθ̇α

T1

)
− δ∗t T1 + δ∗t A1

)
(45)

V4 =
−i

2Mk0

(
V2

0 A2
1(CTα −ΛCDtα) + V0 A1

(
CThα

+ iCTα̇α
A1 + iCTθ̇α

T1

)
+ CTh + iCThα̇

A1 − CTθ̇α̇
A1T1 + iCThθ̇

T1

− CTθ̇
T2

1

)
(46)

Note that these lowest-order oscillations do not depend on the transient timescale,
and they are constant during the entire evolution of the system. Furthermore, unlike the
lowest-order oscillations for the pitch angle and the angle of attack considered above, both
first and second-frequency oscillations appear in the velocity.

The oscillatory terms from (4) and (5) lead to the coefficients A3 and T3 for the harmonic
term eit, and A4 and T4 for e2it. However, the analysis is algebraically more involved,
as summarized in Appendix B. As it happens with coefficients V1, T0 and A2, A3 and T3
contain steady and transient terms.

Finally, to obtain T0t(τ2) and V1t(τ2), order ε3 of Equations (3)–(5) has to be considered.
In this case, variables of higher order with the frequency ω1 appear. When combining
the three equations for the transient non-harmonic terms, a single differential equation
is obtained for the evolution of T0t(τ2) (or alternatively V1t(τ2)). The result is written as
T0t(τ2) = Tie(iω2−ξ)τ2 . The expressions for ω2 and ξ are found in Appendix B.

4.3. Comparison between Analytical and Numerical Results

The theoretical approach developed allows a complete characterization of flapping
forward flight. In contrast to other previous works [18,39], it also takes into account
oscillations in state variables due to flapping wing movement, with a simplified model
appropriate for on-board computers. This section presents a comparison between analytical
and numerical results, showing their excellent agreement.

In summary, the analytical results obtained in the previous section are the following:

• For the large-time asymptotic values of the velocity and the pitch angle, we consider
terms up to order ε2, while for the angle of attack, the approximation is even better,
up to order ε3.

• Transient terms are computed up to order ε for the velocity and the pitch angle, and to
order ε2 for the angle of attack.

• Harmonic oscillations with the flapping frequencies are considered up to order ε2 for
the three variables, including asymptotic and transient values.

Mathematically, the analytical solution used in the comparison is (the different con-
stants and functions are obtained in Section 4.2 or Appendix B):

U ∼ V0 + ε(V1s + V1t(τ1, τ2)) + ε2
(

V2s + V3eit + V4e2it
)

, (47)

θ ∼ ε
(

T0s + T0t(τ1, τ2) + εT1eit
)
+ ε2

(
T2s + T3(τ1, τ2)eit + T4(τ1, τ2)e2it

)
, (48)

α ∼ ε
(

A0 + A1eit
)
+ ε2

(
A2s + A2t(τ1, τ2) + A3(τ1, τ2)eit + A4(τ1, τ2)e2it

)
+ ε3 A5s. (49)
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Physically, the large-time permanent state consists of an oscillation of the variables
in the fast timescale t (i.e., with the flapping frequency and some of its higher harmonics)
around a steady value. The perturbation approach gives a low amplitude of the airspeed
oscillations compared to its average value. The transient phase occurs in the slowest
timescale τ2, while the period of the oscillations in the convergence towards the permanent
state is of the order of the intermediate timescale τ1.

We present three different comparisons between the analytical perturbation solution
and the numerical results: for the permanent state, for the transient phase and for the result-
ing trajectories. All the reported computations are for a frequency of 5 Hz, an amplitude
ε = h0 = 0.1, and a tail deflection of 4°. Similar results have been obtained for frequencies
between 2 and 7 Hz, amplitudes between 0.05 and 0.3, and tail deflections between 0.5°
and 10°. Limits are fixed by aerodynamic theory for both amplitude and tail deflection.
The frequency range is based on existing prototypes [5].

Figure 6 shows a good agreement between the numerical results and the analytical
solution (47)–(49) for the large-time permanent state. Differences are of one order higher
than that of the last term considered in (47)–(49), so we can conclude the validity of the
analytical method for the given conditions. Figure 6a also assesses some of the hypotheses
proposed for the simplified method, namely the order unity of the asymptotic airspeed and
the order ε2 of its oscillation amplitude. The minimal error of the perturbation solution for
U does not suppose a significant difference in the trajectory followed by the UAV, and for
long trajectories, it does not cause a larger error than that originated by inaccuracies in
the measurement of the UAV characteristics. On the other hand, Figure 6b corroborates
that the time-averaged value of the pitch angle is of the same order as the amplitude of
its oscillations (their actual values in this case are even smaller than O(ε)), showing an
excellent agreement between the analytical prediction and the numerical solution.

2730 2740 2750 2760 2770
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Numerical Simulation
Analytical Approximation

(a)
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0
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0.04
Numerical Simulation
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(b)

Figure 6. Comparison between theoretical and numerical final state at 5Hz. (a) Airspeed;
(b) pitch angle.

Figure 7 compares the transient phase for both the velocity and the pitch angle. Note
the similarity in the shape of both transient phases, indicating the good adjustment of the
timescales. However, the agreement with the numerical results of the transient phase is not
as good as the one observed for the permanent flapping state in Figure 6. We also see how
the orders considered in Section 3.1 are correct, with the transient velocity one order lower
than its asymptotic value. On the other hand, the transient component of the pitch angle is
of order ε, even though its asymptotic value is smaller in this particular case. Notice also
that the amplitudes of the pitch oscillations remain in the adequate range for the reasonable
application of the aerodynamic models.
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Figure 7. Comparison between theoretical and numerical transient phase at 5Hz. (a) Airspeed evolu-
tion; (b) pitch angle evolution.

Figure 8 shows how the error in the transient approximation is not important for the
trajectories, accumulating just a very small error in the large-time longitudinal path. Note
how the thrust provided by the wing in this particular case is not enough to climb up,
and the ornithopter follows a descending trajectory. To achieve more aggressive trajectories,
an additional pitching movement would have to be included with the flapping motion.
Most prototypes include this movement, either by an active pitching mechanism or by
means of wing flexibility.
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Figure 8. Comparison between the trajectories at 5 Hz.

5. Summary and Conclusions

A new physical model for the forward flight of flapping wing UAVs has been presented.
The model is restricted to low-amplitude flapping, appropriate for UAV cruising, using
results from potential aerodynamic theory. Wholly unsteady aerodynamics models are
employed instead of the quasi-steady approximations normally used [18,25], obtaining a
more precise characterization of the non-stationary forces generated by the flapping wings.
This new model is general for any bird-like ornithopter with a simple flapping (heaving)
motion, and its results are validated with experimental data from the longitudinal flight of
an ornithopter prototype.

The low-amplitude flapping approximation allows simplifications of the dynamic
characteristics of the ornithopter. However, the numerical simulations with the model still
have a high computational cost due to the small time step needed to accurately capture
the flapping oscillations along very long transient periods. The resources needed for real-
time on-board computations would exceed the limited payload of ornithopters. Hence,
this paper proposes a simplification using multiple-scale perturbation methods in terms
of the small flapping amplitude. The solution consists of a transient oscillatory phase,
which converges to an asymptotic oscillatory regime with a much smaller amplitude and
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a much larger flapping frequency. Thus, the perturbation solution is built up with three
timescales, the shortest one associated with the flapping frequency and an intermediate
one corresponding to the transient oscillations towards the long-time behavior, which is
reached in a much slower timescale. The perturbation solution is obtained analytically up
to the second and third order in the small parameter, depending on the state variable.

In addition to its utility for on-board computations in real-time for trajectory planning
and control, the analytical solution presented here is of interest, providing a simple and
straightforward characterization of the final flapping-flight cruising state.

The validity of the approach is assessed by comparing it with numerical results
previously validated against experimental data. It is shown that the large-time asymptotic
values are very well caught by the approximate solution for both the main values and
the amplitude and phase of the oscillations. The approximate solution for the transient
phase proves the validity of the selected timescales, although its agreement with the exact
numerical solution is less accurate. However, the final accumulative error in the trajectory
is very small, as the larger transient errors disappear as the asymptotic values are reached.

The model is limited to bird-scale flapping-wing robots for the assumptions made on
the order of magnitude of the variables to be valid. These assumptions are essential for
the adequate development of the perturbation method. A different scaling would lead to
changes in the perturbation equations. Thus the model may fail for very small robots such
as hummingbirds and insect-like UAVs.

Another limitation is associated with the aerodynamic theory used, valid for small an-
gles of attack and low-amplitude flapping. However, the models for the aerodynamic
forces used here have been previously validated with experimental results, showing
good agreement even for not-so-small flapping amplitudes in the present case of heaving
motion [14,28–31], and the results of the dynamic equations with these aerodynamic mod-
els have been validated in the present work against experimental measurements of the
longitudinal flapping flight of an ornithopter prototype.

Additionally, a rigid wing with just a flapping (heaving) movement is considered.
Pitching, both active and/or passive by flexibility, is usual for bird-like vehicles because,
as also shown here, flapping rigid wings produce limited thrust. With such low thrust,
ornithopters need a very low drag to maintain sustained flight. Therefore, a combination
of pitching and flapping movements is the most interesting path to extend this work.
Considering both active pitching mechanisms and passive flexibility pitching, the model
would be effective for all actual designs of flapping wing bird-like UAVs.

Finally, it is worth mentioning that another interesting path to extend this work would
be the inclusion of lateral dynamics. Ornithopters do not usually turn like fixed-wing air-
crafts, as the inclusion of anti-symmetrical control on the wing causes high mechanical com-
plexity, especially in bird-sized UAVs. Then, most of them rely on tail configurations to con-
trol the lateral trajectory, obtaining different dynamics from those of conventional aircraft.
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Appendix A. Aerodynamic Coefficients in Equations (8) and (9)

CLα =
A

A+ 2
F(k), (A1)

CLh =
k0

2

(
k
2
+
A

A+ 2
(G(k)− F(k)i)

)
, (A2)

CLα̇
= CLU̇

=
k0

2
, (A3)

CLθ̇
= − A

A+ 2
F(k)k0(lw − 1), (A4)

where F(k) and G(k) are the real and imaginary parts of Theodorsen’s function [10].

CTc = −
k2

0
π

G1(k)A
A+ 2

, (A5)

CTα = − 2
π

G1(k)A
A+ 2

− CLα , (A6)

CThα
=

k0

π
(F1(k) + 2iG1(k))

A

A+ 2
− CLh , (A7)

CTh = −
ik2

0
2π

(F1(k) + iG1(k))
A

A+ 2
, (A8)

CThα̇
=

ik2
0

4
−

k2
0A

2A+ 4
(iF2(k) + G2(k)), (A9)

CTθ̇α̇
=

k2
0

2

(
lw −

1
2

)
− k2

0(lw − 1)
F2(k)A
A+ 2

, (A10)

CTα̇α
= − k0

2
+ k0

F2(k)A
A+ 2

− CLα̇
, (A11)

CThθ̇
= −

k2
0

π

iG1(k)A
A+ 2

(lw − 1) +
k2

0
π

(−iG1(k)− F1(k))A
A+ 2

(
lw −

1
2

)
, (A12)

CTθ̇α
=

2k0

π

G1(k)A
A+ 2

(lw − 1) +
2k0

π

G1(k)A
A+ 2

(
lw −

1
2

)
− CLθ̇

, (A13)

CTθ̇
= −

2k2
0

π

G1(k)A
A+ 2

(lw − 1)
(

lw −
1
2

)
(A14)

CTU̇α
= −CLU̇

, (A15)

where F1(k) and G1(k) are the real and imaginary parts of the modified function defined
in [14], while F2(k) and G2(k) are given by

F2(k) = G(k) +
2
π
(kG1(k)− F1(k)), G2(k) = F(k) +

2
π
(kF1(k) + G1(k)). (A16)

Appendix B. Higher Order Perturbation Terms

System of algebraic equations for T3 and A3:

M1

(
T3
A3

)
= b1 (A17)
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being

M1(1, 1) = i
(
Mk0 − CLθ̇

−ΛCLtθ̇

)
(A18)

M1(1, 2) = (−i(Mk0 + CLα̇
+ ΛCLtα̇)−V0(CLα + ΛCLtα)) (A19)

M1(2, 1) = −
(

k2
0

χ
+ iV0

(
lwCLθ̇

+ ltΛCLtθ̇

))
(A20)

M1(2, 2) = −
(

V2
0 (lwCLα + ltΛCLtα) + iV0(lwCLα̇

+ ltΛCLtα̇)
)

, (A21)

and

b1(1) = 2V1(CLα + ΛCLtα)A1 +
V1

V0

(
CLh − iT1

(
Mk0 − CLθ̇

−ΛCLtθ̇

)
+ A1(Mk0 + CLα̇

+ ΛCLtα̇)
)

(A22)

b1(2) = 2V0V1 A1(lwCLα + ltΛCLtα) + V1

(
iT1

(
lwCLθ̇

+ ltΛCLtθ̇

)
+ iA1(lwCLα̇

+ ltΛCLtα̇)
)

+ lwV1CLh −V0hw A0

(
V0

(
CTα+CLα

)
2A1 + CThα

+ CLh + (CLα̇
+ CTα̇α)iA1 +

(
CLθ̇

+ CTθ̇α

)
iT1

)
(A23)

Note that T3 and A3 have a transient term. Its solution can be written as

T3 = T3s + V1t(τ1, τ2)zT3 (A24)

A3 = A3s + V1t(τ1, τ2)zA3 (A25)

where zT3 and zA3 are complex and constant.
System of algebraic equations for T4 and A4:

M2

(
T4
A4

)
= b2 (A26)

being

M2(1, 1) = 2i
(
Mk0 − CLθ̇

−ΛCLtθ̇

)
(A27)

M2(1, 2) = (−2i(Mk0 + CLα̇
+ ΛCLtα̇)−V0(CLα + ΛCLtα)) (A28)

M2(2, 1) = −
(

4
k2

0
χ

+ 2iV0

(
lwCLθ̇

+ ltΛCLtθ̇

))
(A29)

M2(2, 2) = −
(

V2
0 (lwCLα + ltΛCLtα) + 2iV0(lwCLα̇

+ ltΛCLtα̇)
)

, (A30)

and

b2(1) = 0 (A31)

b2(2) = −hw

(
V2

0

(
CTα+CLα

)
+ V0 A1

(
CThα

+ CLh + (CLα̇
+ CTα̇α)iA1 +

(
CLθ̇

+ CTθ̇α

)
iT1

)
+ CTh

+iCThα̇
A1 − CTθ̇α̇

A1T1 + iCThθ̇
T1 − CTθ̇

)
(A32)

Expressions for T2s, A5s and V2s:
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T2s = A2s +
2V0V1

δ∗t

(
(CTα −ΛCDtα)

(
A2

0 + 2A1 Ā1

)
−ΛCDtαδt

δ∗t A0 − C∗D0
− Li∗ −ΛC∗D0t

)
+

V1s
δ∗t

(
CThα

Ā1 + C̄Thα
A1 + iCTθ̇α

(T1 Ā1 − T̄1 A1)
)

+
V2

0
δ∗t

(
(CTα −ΛCDtα)(A0 A2s + A1 Ā3s + Ā1 A3s)−ΛCDtαδt

δ∗t A2s

)
+

V0

δ∗t

(
CThα

Ā3s + C̄Thα
A3s + iCTθ̇α

(T3s Ā1 − T̄3s A1 + T1 Ā3s − T̄1 A3s)
)
+

i
δ∗t

(
C̄Thα̇

A3s − CThα̇
Ā3s
)

+
CTθ̇α̇

δ∗t
(T3s Ā1 − T̄3s A1 + T1 Ā3s − T̄1 A3s) +

i
δ∗t

(
C̄Thθ̇

T3s − CThθ̇
T̄3s

)
+

2CTθ

δ∗t
(T1T̄3s + T̄1T3s) (A33)

A5s = −
1

V2
0 (lwCLα + ltΛCLtα)

(2V0V3(lwCLα + ltΛCLtα)Ā1 + 2V0V̄3(lwCLα + ltΛCLtα)A1

+ V3

(
lwC̄Lh − iĀ1(lwCLα̇

+ ltΛCLtα̇)− iT̄1

(
lwCLθ̇

+ ltΛCLtθ̇

))
+ V̄3

(
lwCLh − iA1(lwCLα̇

+ ltΛCLtα̇)− iT1

(
lwCLθ̇

+ ltΛCLtθ̇

))
+ 2V0V1s

(
(lwCLα + ltΛCLtα)A2s − hw

(
(CTα + CLα)

(
A2

0 + 2A1 Ā1

)
−ΛCDtαδt

δ∗t A0 − C∗D0

))
−V1shw

((
CLh + CThα

)
Ā1 +

(
C̄Lh + C̄Thα

)
A1 + i

(
CLθ̇

+ CTθ̇α

)
(T1 Ā1 − T̄1 A1)

)
− hw

(
i
(
C̄Thα̇

A3s − CThα̇
Ā3s
)
+ CTθ̇α̇

(A3sT̄1 + Ā3sT1 + A1T̄3s + Ā1T3s) + i
(

C̄Thθ̇
T3s − CThθ̇

T̄3s

))
− hwCTθ̇

(T1T̄3s + T̄1T3s) + ilwCLU̇
(Ā1V3 + A1V̄3) + V2

0 lw

(
−
(

CLα

2
+ CTα

)(
A3

0 + 6A0 A1 Ā1

)
+ A0C∗D0

)
+ V2

0 ltΛ
(
−
(

CLtα

2
− CDtα

)(
A3

0 + 6A0 A1 Ā1

)
+

(
CLtα

2
− CDtαδt

)(
A2

0 + A1 Ā1

)
δ∗t + A0C∗D0

)
−2hw(CTα + CLα)(A0 A2s + A1 Ā3s + Ā1 A3s)) (A34)

V2s = −
V1s
V0

+
1

2V0(CLα A0 + ΛCLtα(A0 − δ∗t ))
(iMk0(V̄3(T1 − A1)−V3(T̄1 − Ā1))

−V3

(
C̄Lh − iĀ1(CLα̇

+ ΛCLtα̇)− iT̄1

(
CLθ̇

+ ΛCLtθ̇

))
− 2V0V3(CLα + ΛCLtα)Ā1

− V̄3

(
CLh − iA1(CLα̇

+ ΛCLtα̇)− iT1

(
CLθ̇

+ ΛCLtθ̇

))
− 2V0V̄3(CLα + ΛCLtα)A1

− iCLU̇
(Ā1V3 − A1V̄3)− 2V0V1s A2s(CLα + ΛCLtα)−V2

0 A5s(CLα + ΛCLtα)

−δ∗t

(
A0

2
+ A1 Ā1 +

T0s

2
+ T1T̄1 − A0T0s − A1T̄1 − Ā1T1

))
(A35)

Damping of the transient phase ξ

ξ = −
CLU̇

A0

2ΓMk0
(1 + ∆lw)−

ω2
1∆

2ΓM2χ
−

CThα
Ā1 + C̄Thα

A1 + iCTθ̇α
(T1 Ā1 − T̄1 A1) + i

(
C̄Thα̇

zA3 − CThα̇
z̄A3
)

2

−
CTθ̇α̇

(zA3T̄1 + z̄A3T1 + zT3 Ā1 + z̄T3 A1) + i
(

C̄Thθ̇
zT3 + CThθ̇

z̄T3

)
+ 2CTθ̇

(T1z̄T3 + T̄1zT3)

2

− V0

2

(
CThα

z̄A3 + C̄Thα
zA3 − iCTθ̇α

(−zA3T̄1 + z̄A3T1 − A1z̄T3 + Ā1zT3)
)
− δ∗t (T0s − A0)

2Γ

−V0

(
(CTα −ΛCDtα)

(
A2

0 + 2A1 Ā1

)
−ΛCDtαδt

δ∗t A0 − C∗D0
− Li∗ −ΛC∗D0t

)
−

V0CTθ̇α
A0ω2

1

2Mk0

−
V2

0
2

(
(CTα −ΛCDtα)(−iω1 A0zA2 + A1z̄A3 + Ā1 A3s) + iω1ΛCDtαδt

δ∗t zA2

)
+

δ∗t iω1zA2

2
(A36)
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and correction of the transient frequency with τ2, ω2

ω2 =
V1s
Γω1

(CLα A0 + ΛCLtα(A0 − δ∗t )) +
CLα(1 + ∆lw) + ΛCLtα(1 + ∆lt)

Γ

(
V0

ω1
A2s −V0V1izA4

)
+
(

CLθ̇
(1 + ∆lw) + ΛCLtθ̇

(1 + ∆lt)
) V1sω1

2ΓMk0
− ∆V0

Γω1

(
(CTα + CLα)

(
A2

0 + 2A1 Ā1

)
− C∗D0

)
− ∆hw

2Γω1

((
CLh + CThα

)
Ā1 +

(
C̄Lh + C̄Thα

)
A1 + i

(
CLθ̇

+ CTθ̇α

)
(T1 Ā1 − T̄1 A1) + i

(
C̄Thα̇

zA3 − CThα̇
z̄A3
))

− ∆hw

2Γω1

(
CTθ̇α̇

(zA3T̄1 + z̄A3T1 + zT3 Ā1 + z̄T3 A1) + i
(

C̄Thθ̇
zT3 + CThθ̇

z̄T3

)
+ 2CTθ̇

(T1z̄T3 + T̄1zT3)
)

−
∆V2

0 hw

Γω1
(CTα + CLα)(−A0iω1zA2 + A1z̄A3 + Ā1zA3)−

∆V0hwω1

2ΓMk0

(
CTθ̇α

+ CLθ̇

)
A1 −

V1sω1

2Γ

− ∆V0hw

2Γω1

((
CThα

+ CLh

)
z̄A3 +

(
C̄Thα

+ C̄Lh

)
zA3 − i

(
CTθ̇α

+ CLθ̇

)
(−zA3T̄1 + z̄A3T1 − A1z̄T3 + Ā1zT3)

)
(A37)

with A2(τ1, τ2) defined as

A2t(τ1, τ2) = zA2T0t(τ2)eΦT+iω1τ1 ; zA2 = − iω1

Mk0V0

lwCLθ̇
+ ΛltCLtθ̇

lwCLα + ΛltCLtα

(A38)

and the constant terms

Γ = V0

(
1−

CLθ̇
+ ΛCLtθ̇

Mk0
+

lwCLθ̇
+ ΛltCLtθ̇

Mk0
∆
)

(A39)

∆ =
CLα + ΛCLtα

lwCLα + ΛltCLtα

(A40)
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