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Abstract 
Background: Geospatial linked data brings into the scope of the 
Semantic Web and its technologies, a wealth of datasets that combine 
semantically-rich descriptions of resources with their geo-location. 
There are, however, various Semantic Web technologies where 
technical work is needed in order to achieve the full integration of 
geospatial data, and federated query processing is one of these 
technologies. 
Methods: In this paper, we explore the idea of annotating data 
sources with a bounding polygon that summarizes the spatial extent 
of the resources in each data source, and of using such a summary as 
an (additional) source selection criterion in order to reduce the set of 
sources that will be tested as potentially holding relevant data. We 
present our source selection method, and we discuss its correctness 
and implementation. 
Results: We evaluate the proposed source selection using three 
different types of summaries with different degrees of accuracy, 
against not using geospatial summaries. We use datasets and queries 
from a practical use case that combines crop-type data with water 
availability data for food security. The experimental results suggest 
that more complex summaries lead to slower source selection times, 
but also to more precise exclusion of unneeded sources. Moreover, 
we observe the source selection runtime is (partially or fully) 
recovered by shorter planning and execution runtimes. As a result, 
the federated sources are not burdened by pointless querying from 
the federation engine. 
Conclusions: The evaluation draws on data and queries from the 
agroenvironmental domain and shows that our source selection 
method substantially improves the effectiveness of federated 
GeoSPARQL query processing.
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Plain language summary
Nowadays, many data providers choose to publish their datasets as public services. This situation provides an 
opportunity to develop federated query processors (or federators), which are systems that combine several public 
sources as a single, virtual dataset. To serve an input query, a federator poses several queries on remote sources, and  
it combines their results accordingly.

The first problem a federator must solve to serve a query, is that of deciding which federated sources are  
relevant to which parts of the query. This problem is known as source selection, and the software that handles it 
as a source selector. A standard source selection technique is to annotate each source with information about 
the kind of data it contains, and use it to remove sources that have irrelevant data. For example, a source with  
snow data is irrelevant a query that requires fetching crop data.

Geospatial data is data about objects that have a location on the surface of the Earth. Not much work has been  
done in federating geospatial sources, and no source selection methods that target geospatial data currently exist.

We propose a new geospatial source selector for geospatial data. Since it is more likely for a source to contain  
data from a specific area (e.g., a country border) rather than the entire Earth, we can use such information for  
better source selection. For example, a geospatial source that contains fields within Austria is irrelevant for a query  
that requires crop data within an area in Greece.

We evaluate our method using data and queries from the agroenvironmental domain. Even though we spend more 
time in source selection, the number of sources used is smaller. This results in a more effective query processing,  
because the federator has to issue less queries to the remote endpoints to evaluate the query.

Introduction
Geospatial linked data brings into the scope of the Semantic Web and its technologies, a wealth of datasets that 
combine semantically-rich descriptions of resources with the geo-location of these resources. These datasets are 
managed using RDF and the well-known suite of Semantic Web specifications around it, using extensions that 
allow expressing abstract spatial relationships between resources as well as concrete coordinates. These exten-
sions have been formally specified by the Open Geospatial Consortium1, demonstrating the geospatial commu-
nity’s increasing adoption of standards that facilitate the publication of interoperable data. There are, however, 
various Semantic Web technologies where technical work is needed in order to achieve the full integration of  
geospatial data2. Summarizing data sources for the purposes of source selection is one such technology.

Source selection is the process of mapping triple patterns in the query to a subset of the SPARQL endpoints 
that make up a federation. Source selection is typically based on characteristic properties and URI name-
spaces to eliminate sources that do not have relevant data and dramatically improve the efficiency of federated  
query processing. This approach breaks down when geospatial datasets are distributed by geographical extent.

In this paper, we explore the spatial extent of each data source as a new type of summary. Spatial extent makes 
more sense for geospatial data, in comparison to the vocabularies and URI namespaces used which make 
more sense for thematic data. In practice, we investigate how to best exploit the fact that geospatial datasets are 
likely to be naturally divided in a canonical geographical grida or following administrative regions or, more gen-
erally, areas of responsibility.b. In the remainder of this paper, we first present a characteristic use case which 
we use throughout the paper (Section: Motivation and use case) and then provide background information  
(Section: Background). Next, we describe our geospatial source selector that uses endpoint metadata (in the 
form of a bounding shape that contains all shapes that appear in the endpoint) to filter out sources that do not 
contribute to the result (Section: The Source Selector). We then use our open-source implementation of this 
source selector to empirically compare the efficiency of using bounding-box descriptions, precise and approxi-
mated shape descriptions, and conventional source selection (Section: Evaluation). Finally, we present and  
discuss relevant work (Section: Related work) and conclude (Section: Conclusions and future work).

aConsider how weather and climate datasets are organized in a canonical grid, such as for example the Copernicus CMIP6 climate  
projections.

bConsider, for example, the official data portal of the EU or the UCSD GIS data portal that both organize datasets following  
administrative regions.
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Motivation and use case
We will now present a characteristic use case that both motivates some of our technical choices and backs our 
experimental setup with data and a query load: the food security use case of the ExtremeEarth project, within 
which the work presented here is conducted. In this use case, crop type information needs to be combined with 
nearby snowfall and snow storage, since irrigation largely depends on snow storage and seasonal release of fresh  
water.

The queries that are most relevant for this analysis are spatial within queries, spatial intersection queries, and 
within-distance queries: retrieving the land parcels with a given crop that are within, intersecting, or within a 
given maximum distance respectively from any snow-covered area, without requiring the exact distance. Notice 
that within-distance queries are considerably more computationally demanding than spatial overlap and inclu-
sion queries that can be answered from the index. On the other hand, by comparison to queries that actually com-
pute the distance, they offer themselves to aggressive optimization: Many instances can be discarded in advance 
as they are too far away to be within the required distance so that the (expensive) distance computations actually  
performed by the database are minimized.

Consider, for example, Figure 1. Evaluating a filter that only retains shapes within distance d from p can imme-
diately (i.e., from the database index) discard all shapes contained in s

1
 if the distance between s

1
 and p is greater 

than d. This presents a huge optimization opportunity by comparison to computing the distance between p 
and all shapes in s

1
 and then comparing these against d. Transferring this discussion to federated query process-

ing, we see that geospatial datasets are often published by public administrations or other entities with  
responsibility over a specific geographic extent. This motivates applying this optimization to the source selec-
tion level: if s

1
 and s

2
 were the bounding polygons of all resources served by two GeoSPARQL endpoints, then  

source selection can exclude s
1
 from the execution plan.

Naturally, a GeoSPARQL query will normally combine geospatial restrictions with thematic triple patterns; in 
our case, for example, referring to a crops code list or hierarchy. Consider, now, Figure 2 where each of the three 

Figure 2. The boundaries of three sources and a polygon of interest; s1 uses the ‘blue’ vocabulary; s2 and s3 
use the ‘green’ vocabulary.

Figure 1. The boundaries of two sources s1 and s2, with a polygon of interest p that lies within the boundary 
of s2.
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data sources only contains triples using a specific code list or vocabulary. Such a situation is likely to appear 
when different organizations publish data regarding different aspects of a geographical region (for example, 
crops and precipitation data), some of which are also independently published for each region. For a query using  
only the ‘green’ vocabulary to retrieve entities of interest within a given distance from p, it makes no sense 
to consider including s

1
 in the execution plan. This partitioning is amenable to conventional source selec-

tion based on metadata about the vocabularies used in each data source. However, in order to have the optimal 
source selection a federation engine would need to also exclude s

3
 based on its geospatial extent, and only pose 

a query in s
2
. Such a source selection can only be achieved by extending conventional federated source selection 

with a mechanism that combines metadata about the thematic content of a data source with metadata about its  
geospatial extent.

The queries discussed in the previous paragraphs are used for fetching data that have a specific spatial relation-
ship with a fixed polygon p in the query. However, a source selection mechanism that is aware of the geospa-
tial nature of the sources, can be helpful and in queries that involve geospatial joins. Consider, for example,  
the federation that consists of the four geospatial sources of Figure 3, and assume that we are interested in find-
ing pairs of ‘red’ and ‘blue’ entities that their distance is less than d. As previously, we should exclude s

4
 from the 

query since this source contains only ‘green’ entities. Suppose now that the distance between the boundaries of s
1
 

and s
3
 is greater than d. Then, since all ‘red’ shapes are found in s

1
, and the distance between s

1
 and s

3
 is greater 

than d, we can safely deduce that there does not exist any ‘blue’ shape in s
3
 that is located within distance d for 

all ‘red’ shapes. As a result, it makes sense from a practical point of view to exclude s
3
 from the evaluation of  

the query because it contains irrelevant shapes; and to query only s
1
 and s

2
.

Background
In this section, we provide the background of our approach. In particular, we present a brief introduction on  
the GeoSPARQL query language, which is an extension of SPARQL and the de-facto query language for que-
rying Geospatial Linked Data1; and then we summarize the state-of-the-art on source selection in federated  
SPARQL query processors. Throughout the paper, we use SPARQL qnames to shorten URIs. The list of URI  
namespaces that we use are shown in Table 1.

Figure 3. Four sources, where s1 uses the ‘red’ vocabulary to describe resources, s2 and s3 the ‘blue’ vocabulary, 
and s4 the ‘green’ vocabulary.

Table 1. List of URI namespaces used throughout the paper.

Prefix Namespace
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

rdfs: <http://www.w3.org/2000/01/rdf-schema#>

geo: <http://www.opengis.net/ont/geosparql#>

geof: <http://www.opengis.net/def/function/geosparql/>

uom: <http://www.opengis.net/def/uom/OGC/1.0/>

void: <http://rdfs.org/ns/void#>

svd: <http://www.w3.org/2015/03/sevod#>
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The GeoSPARQL query language
The GeoSPARQL specification1 defines a set of classes and properties for asserting and querying geospatial  
information. The geo:SpatialObject class comprises any resource that can have a spatial representation. All  
the usual topological relations (containment, overlap, etc.) are foreseen as properties.

The geo:SpatialObject class subsumes the geo:Feature class that represents geo-located things 
that exist in the physical world; and geo:Geometry that represents spatial objects that have a single, concrete  
geographical shape. Each feature is linked with one (or more, e.g., seasonal variation) geometries with the  
geo:hasGeometry property. The geo:asWKT property is used to provide the concrete geographical 
shape of any spatial object as an RDF literal of the geo:wktLiteral datatype.c Such RDF literals are usually 
referred as WKT literals, because they represent geometries in the WKT (i.e., well-known text) format. Given the  
above, the link between features and their concrete coordinates follows the pattern:

r geo:hasGeometry g .
g geo:asWKT "WKT"^^geo:wktLiteral .

where r is an instance of geo:Feature and g is an instance of geo:Geometry.d

Naturally, inference about geo:wktLiteral values falls outside RDF graph entailment and can only be  
performed by specialized geospatial databases. Such entailment is accessed via geospatial functions. For example:

SELECT ?r WHERE {
  ?r geo:hasGeometry ?g .
  ?g geo:asWKT ?w .
  FILTER( geof:sfWithin(?w, "<http://www.opengis.net/def/crs/EPSG/0/4326>
      POLYGON((19.2477876 34.7006096,19.2477876 41.7488862,29.7296986 41.7488862,
      29.7296986 34.7006096,19.2477876 34.7006096))"^^geo:wktLiteral) )
}

This uses the geof:sfWithin function to access the geospatial operator that computes if the WKT value  
?w retrieved from the graph pattern is contained in another WKT value; such a query fetches all features within  
a given polygon.

Source selection in federated querying
The first step in federated SPARQL query processing is to select a subset of the sources that make up a federa-
tion for each triple pattern of the query. The goal for the source selector is to prune as many irrelevant sources  
as possible in order for the query planner to come up with a more efficient query execution plan.

Most federated SPARQL query processors make use of two basic approaches for their source selection mecha-
nism. In metadata-assisted source selection, the federator relies on a dataset descriptor about properties and 
classes for each federated source (for instance, expressed using the Vocabulary of Interlinked Datasets (VoID)3) 
in order to identify candidate sources for each individual triple pattern of the query4. On the other hand, in  
metadata-free source selection, first introduced by FedX5, the federator identifies the candidate sources by issu-
ing an ASK SPARQL query to all federated endpoints for each triple pattern of the query (and also uses a cache 
so that when the same triple pattern reoccurs, it doesn’t have to ping the sources again). In general, the lat-
ter approach is more accurate (because it relies on ASK queries and not metadata) but the former approach is  
faster (because issuing an ASK query to endpoints introduces a significant time overhead when a triple pat-
tern appears for the first time and the cache cannot be used). To get the best of both worlds, most federation  
engines6–9 use source metadata to perform a first pruning of the sources and then refine it using ASK  
queries. Finally, join-aware source selection focuses not only on individual triple patterns but also on how they 
join. In this family of approaches, sophisticated source metadata about subject and object URI namespaces10, 
or about characteristic sets that can describe complete star patterns11 are able to support inferences on join  
variables to eliminate irrelevant sources from the plan.

cTwo alternative serializations are foreseen by GeoSPARQL, geo:wktLiteral and geo:gmlLiteral, and two datatype properties,  
geo: hasWKT and geo:hasGML. We restrict the discussion in this paper to the WKT serialization, and it is straightforward to  
transfer this discussion to GML or any other serialization.

dTemporal or other restrictions might apply to select the correct geo:Geometry instance. We gloss over such considerations that fall  
well outside the scope of source selection based on geospatial extent.
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We will close this section with some examples regarding the source selectors discussed above. A  
VoID-metadata-assisted source selector can decide whether to keep a source d for the pattern ?s p ?o by 
simply checking if p appears in the metadata of d. On the other hand, for the pattern ?s ?p "str", an  
ASK-based source selector may be more accurate, because the VoID vodabulary does not allow a user to define  
specific metadata for every literal that appears in the sources. Finally, consider the join ?s p1 ?x . ?s p2 ?y  
and a candidate source d for the first pattern. If the subject namespace of all triples of d that match the first pattern 
is not included in the subject namespaces of all triples that match the second one in all of its candidate sources,  
then d is a irrelevant source for the first pattern.

The source selector
In this section, we present in detail our method, the source metadata it operates upon, and the method’s  
implementation.

Preliminaries
Let a and b be two spatial objects, that can be points, lines and/or polygonal areas. We say that a and b are dis-
joint if they do not have any points in common. Moreover, we say that a contains b if no points of b lie in the 
exterior of a, and at least one point of the interior of b lies in the interior of a. Notice that in this case, a does not 
contain its border, but a does contain itself. We say that a and b touch if they have at least one boundary point  
in common, but they share no interior points.

Let Q be a GeoSPARQL query and F be the set of sources federated by a query processor. We say that S ⊆ F is 
the optimal source set for Q if (a) using only the sources in S gives the same results for Q as using all the sources  
in F; and (b) there is no subset of S that gives the same results for Q as using all the sources in F.

Source metadata
The proposed source selector requires every federated source to be tagged with the following information:

Definition 1. A bounding polygon B(s) of a geospatial source s is any polygon that contains every spatial object in s.

For representing the bounding polygon of a source s, we extend the Sevod vocabulary12 by defining the following  
property:e

Definition 2. The geometry of a bounding polygon of a dataset can be denoted using the predicate  
svd:boundingWKT as follows:

svd:boundingWKT   rdf:type       rdf:Property    ;
                  rdfs:domain    void:Dataset    ;
                  rdfs:range     geo:wktLiteral  . 

This property allows void:Dataset objects to be annotated with a concrete shape. As will become obvi-
ous below, our method relies on concrete bounding polygons for which distances can be computed, as opposed  
to geometry objects that might only be defined via geospatial relations.

An example of such an annotation is shown below.

Example 1. The following set of RDF triples represents a source which is accessible from a specific endpoint  
and contains only shapes within a specific polygon, denoted as a WKT literal:

[] rdf:type	       void:Dataset ; 
   void:sparqlEndpoint   <http://example.org/sparql> ;
   svd:boundingWKT	      "<http://www.opengis.net/def/crs/EPSG/0/4326>
      POLYGON ((9.53155824986118  46.4017516462893, 9.53155824986118 49.0185728029906,
      17.1618132052086 49.0185728029906,  17.1618132052086 46.4017516462893,
      9.53155824986118 46.4017516462893)) "^^geo:wktLiteral .

eThe extension has been approved by W3C and is included in the vocabulary published at http://www.w3.org/2015/03/sevod#
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Obtaining a bounding polygon of a geospatial RDF dataset is a simple task (even though obtaining a good 
one isn’t). The most straightforward solution is to calculate the spatial union of all shapes in the dataset (i.e., all 
objects of the geo:asWKT property), which produces an accurate bounding polygon of the geospatial source. 
The main drawback of this approach is that the resulting summary may be large in size (since it comprises a 
large number of coordinates). Alternatively, we can use less accurate bounding polygons that are expected to 
have smaller size. Examples include the minimum bounding box13 of the spatial union, or an approximation 
of the spatial union using a quadtree14 of height k (i.e., a polygon obtained by partitioning the minimum bound-
ing box of the spatial union in 4k equal rectangles, by removing all rectangles that are disjoint from the spa-
tial union and then calculating the union of the remaining rectangles). This trade-off between summary size and  
summary accuracy is one of the issues our paper discusses and will be revisited in the evaluation section.

Source selection algorithm
In this subsection, we describe our source selection algorithm in detail. We assume the existence of some helper 
routines that their implementations is not included as a separate algorithm. Given a GeoSPARQL query Q,  
the routine GeospatialFilters(Q) returns the set of all GeoSPARQL filters that appear in Q. Given a filter f, the rou-
tine Vars(f) returns all variables that appear in f. Given a filter condition without free variables c, Eval(c) returns 
true if the condition holds, otherwise false. Finally, our algorithm builds on top of a thematic source selec-
tor, therefore we assume its existence by using the routine ThematicSourceSelector (cf. Background section  
for a discussion regarding the state-of-the-art of thematic source selection in federated query processing).

Our source selector is designed to support a family of GeoSPARQL queries. We concentrate on simple filter expres-
sions that consist of a geospatial function call. In particular, we consider filters whose condition is of the form 
r(x, y) or geof:distance(x, y, u) op d, where x, y are variables or WKT literals, r is a non-disjoint geospatial 
function (i.e., one of the geof: functions sfEquals, sfContains, sfIntersects, sfOverlaps,  
sfCrosses, sfTouches, or sfWithin), u is unit of measure, op ∈ {<,≤,=}, and d is a numeric literal. Our 
method can be easily extended for the other GeoSPARQL functions apart from the simple features relation family  
(e.g., Egenhofer and RCC81).

Algorithm 1 takes as input a GeoSPARQL filter and a boundary for each free variable of the geospatial fil-
ter, and returns true if the condition of the filter does not hold if we substitute every free variable of the filter 
with every shape contained in the corresponding boundary. We call this algorithm BPFilterEmpty, because it 
can check whether a GeoSPARQL filter f will return an empty result set, provided that all bindings of every  
variable of the filter are contained within a known polygon.

Algorithm 1. BPFilterEmpty

Input:
      a GeoSPARQL filter f s.t. Vars( f ) = {v1, . . . , vn},
      and a set of bindings B = {v1/b1, . . . , vn/bn}.
Output: true or false
 1: R1 := {geof:sfEquals, geof:sfWithin, geof:sfContains}
 2: R2 := {geof:sfOverlaps, geof:sfCrosses, geof:sfTouches, geof:sfIntersects}
 3: f ′ is a GeoSPARQL filter obtained by f by substituting v1, . . . , vn with b1, . . . , bn.
 4: if f ′ = r(x, y), where r ∈ R1 then
 5:       return Eval(sfDisjoint(x, y)) ∨ Eval(sfTouches(x, y))
 6: else if f ′ = r(x, y), where r ∈ R2 then
 7:       return Eval(geof:sfDisjoint(x, y))
 8: else if f ′ = geof:distance(x, y, u) op d,
                 where u is unit of measure, op ∈ {<,≤,=}, and d is a numeric literal then
 9:       return Eval(geof:distance(x, y, u) > d)
10: else
11:       return false
12: end if
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Algorithm 2 prunes the set of sources for every triple pattern of the form (x,geo:asWKT, o), by using the rel-
evant GeoSPARQL filters of the triple pattern and the bounding polygons of each candidate source. Notice 
that AsWktSourceSelector uses BPFilterEmpty as a helper algorithm to check if a candidate source for 
a triple pattern would contain irrelevant data and thus it can be pruned. In the following, we show how  
AsWktSourceSelector works with a simple example:

Example 2. Let s
1
, s

2
, s

3
 be three sources, b

1
, b

2
, b

3
 be their bounding polygons respectively, and POLY be a  

WKT literal. Moreover, assume that b
3
 is disjoint from both b

1
 and b

2
, and that POLY is within b

1
 and b

2
. Notice  

that POLY is disjoint from b
3
. Now, consider the following GeoSPARQL query:

SELECT * WHERE {
  ?u geo:asWKT ?x .
  ?v geo:asWKT ?y .
  FILTER( geof:sfWithin(?x, POLY) )
  FILTER( geof:sfIntersects(?x, ?y) )
}

POLY is disjoint from b
3
 and b

3
 is the bounding polygon of s

3
. Thus, no shape in s

3
 can be within POLY. In other 

words, for all bindings of ?x that come from s
3
, the condition of first geospatial filter should return false.  

Therefore, s
3
 contains irrelevant bindings for ?x, and as a result s

3
 can be pruned from the candidate sources of  

the first triple pattern. Indeed, it is easy to check that it holds:

BPFilterEmpty(geof:sfWithin(?x, POLY), {?x/b
3
}) = true

Source s
3
 can be pruned from the sources of the second triple pattern as well. To check this, apart from the 

bindings of ?y (as previously), we should consider the bindings of ?x as well, which come from the can-
didate sources of the first triple pattern. b

3
 is disjoint from both b

1
 and b

2
. Thus, no shape that belongs in s

3
 can  

intersect with some shape in s
1
 ∪ s

2
. In other words, for all bindings of ?y that come from s

3
, the condition of 

Algorithm 2. AsWktSourceSelector

Input:
       a GeoSPARQL query Q,
       a set T of triple patterns,
       a set S of sources,
       a mapping σ : T → 2S,
       a mapping B : S → B s.t. B(s) is the bounding polygon of s
Output:  a mapping σ : T →2S

 1:  F ≔ GeospatialFILTERS(Q)
 2:  repeat
 3:        σold ≔ σ
 4:        if there exists some f ∈ F, t ∈ T, and s ∈ S such that
                        Vars( f ) = {o}, t = (x, geo:asWKT, o), s ∈ σ(t)
                        and BPFilterEmpty( f , {o/B(s)}) then
 5:                σ(t) ≔ σ(t) − {s}
 6:        end if
 7:        if there exists some f ∈ F, t, t′ ∈ T, and s ∈ S such that
                        Vars( f ) = {o, o′}, t = (x, geo:asWKT, o), t′ = (x′, geo:asWKT, o′), s ∈ σ(t),
                        and for all s′ ∈ σ(t′) it holds BPFilterEmpty( f , {o/B(s), o′/B(s′)}) then
 8:                σ(t) ≔ σ(t) − {s}
 9:        end if
10:  until σold = σ
11:  return σ
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the second geospatial filter should return false, because all bindings of ?x come from solely s
1
 and s

2
. Indeed,  

it is easy to check that it holds using:

BPFilterEmpty(geof:sfIntersects(?x, ?y), {?x/b*, ?y/b
3
}) = true, for all b* ∈ {b

1
,b

2
}

As a result, AsWktSourceSelector should prune s
3
 from the candidate sources of both triple patterns of the query.

Algorithm 3 makes use of the previous algorithms and defines the proposed source selection mechanism. 
Notice that AsWktSourceSelector targets only triple patterns that link a specific geometry URI with its WKT  
serialization, i.e., patterns of predicate geo:asWKT. It leaves out triple patterns that link a resource with its 
geometry (i.e., geo:hasGeometry predicates), and triple patterns of thematic information. As discussed  
previously, the geospatial pruning obtained by Algorithm 2 should be complemented by a thematic source selec-
tor. Here we use the URI-prefix-based source selector included in Semagrow (which we will discuss in the  
implementation subsection). As a final note, the result of the algorithm is a mapping that associates each tri-
ple pattern of the query to a subset of the set of the sources of the federation. Since, in practice, source selectors 
are built ‘on top’ of each other, our source selector takes such a mapping as input, which can be the output of  
another source selector.

Correctness of source selection
In the following, we discuss the correctness of our source selection. In particular, we show that the geospa-
tial source selector does not remove any source that contains necessary data for the evaluation of the query, 
i.e., it does not remove any source that belongs to the optimal source set of the query. We begin with an impor-
tant property of Algorithm 1, and then we show that the set of sources that are kept in the output of the source  
selectors of Algorithm 2 and Algorithm 3

Lemma 1. Let f be a GeoSPARQL filter such that Vars(f) = {v
1
, . . . , v

n
}, and B = {v

1
/b

1
, . . . , v

n
/b

n
} be a set 

of variable bindings for all free variables of f. Then, BPFilterEmpty(f, B) = true if the condition of f does  
not hold if we substitute v

i
 in f with any possible shape contained in b

i
, for all 1 ≤ i ≤ n.

Proof. Notice that if two shapes x, y are disjoint, then every shape contained in x will be also disjoint from every 
shape contained in y (thus every pair of shapes taken from x and y are not related with any non-disjoint spa-
tial relation). Moreover, if x touches y, then there does not exist any shape contained in x that is equal, within, or 
contains any shape contained in y and vice-versa. Finally, if the distance between x and y is greater than D,  
then the distance between every shape contained in x from every shape contained in y is also greater than D.

Lemma 2. Let Q be a GeoSPARQL query, T be the set of triple patterns that appear in Q, S be a set of sources, 
B be a mapping such that B(s) is the bounding polygon of the source s, σ be a mapping that maps each tri-
ple pattern of Q to a set of sources from Q. Then, AsWktSourceSelector(Q, T, S, σ, B) does not prune  
any source that belongs to the optimal source set of Q.

Algorithm 3. GeospatialSourceSelector

Input:
       a GeoSPARQL query Q,
       a set T of triple patterns,
       a set S of sources,
       a mapping σ : T → 2S,
       a mapping B : S → B s.t. B(s) is the bounding polygon of s,
       and thematic metadata P
Output: a mapping σ : T → 2S

 1:   σ := AsWktSourceSelector(Q, T, S,σ,B)
 2:   σ := ThematicSourceSelector(T, S,σ,P)
 3:   return σ
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Proof. Let s be a source pruned by the algorithm. It suffices to show that s does not belong in the optimal source  
set of Q. We distinguish the following cases:

Case 1: There exists a geospatial filter f of Q such that Vars(f) = {o} and a triple pattern t = (x, geo:asWKT, 
o) of Q such that s ∈ σ(t) and BPFilterEmpty(f, {o/B(s)}) = true. According to Lemma 1, there does not 
exist any shape z ∈ B(s) s.t. the condition of f holds. Since s is the bounding polygon B(s) (and thus all shapes 
of s are contained in B(s)), it is easy to see that the result set of Q in this case will not contain any bindings  
for o that come from s; therefore, s is not contained in the optimal source set of t.

Case 2: There exists a geospatial filter f of Q such that Vars(f) = {o, o′} and two triple patterns t = 
(x, geo:asWKT, o), t′ = (x′, geo:asWKT, o′) of Q, such that s ∈ σ(t) and for all s′ ∈ σ(t′) it holds  
BPFilterEmpty(f, {o/B(s), o′/B(s′)}) = true. We denote by U the union of the bounding polygons for 
all candidate sources of t′. According to Lemma 1, there does not exist any pairs of shapes z ∈ B(s) and z′ ∈ U 
s.t. the condition of f holds. It is therefore clear that the result set of Q will not contain any bindings for o that 
come from s, because they are irrelevant to any binding for o′ that come from all sources of t′; therefore, s is not  
contained in the optimal source set of t.

All thematic source selectors already proposed in the literature are correct (i.e., do not prune sources that belong  
to the optimal source set of a query), thus:

Theorem 1. Let Q be a GeoSPARQL query, T be the set of triple patterns that appear in Q, S be a set of sources, 
B be a mapping such that B(s) is the bounding polygon of the source s, P are thematic metadata, σ be a mapping 
that maps each triple pattern of Q to a set of sources from Q. Then, GeospatialSourceSelector(Q, T, S, σ, B, P)  
does not prune any source that belongs to the optimal source set of Q.

Proof. Using Lemma 2, and the fact that ThematicSourceSelector does not prune any source that belongs to  
the optimal source set of Q.

Implementation
We provide an implementation of our geospatial source selector integrated in the Semagrow SPARQL fed-
eration engine. The elementary geospatial operations used in our source selector implementation are provided 
by the rdf4j framework. Our selector wraps the behaviour of the purely thematic HiBISCuS source selection  
mechanism10, used by Semagrow version 2.1.0 or newer (we note that the original version of Semagrow7 did 
not use it). As a result, the underlying thematic source selector of Semagrow uses both triple-pattern-wise 
source selction (using predicate and class metadata and ASK queries) and join-aware source selection (using  
URI-prefix subject and object metadata).

Moreover, we provide a tool (sevod-scraper) for extracting the source metadata required by our source selector. It 
takes, as input, an RDF dump and calculates a bounding polygon of the dataset, which can be a) the spatial union 
of all shapes in the dataset, b) the minimum bounding box of all shapes in the dataset, or c) an approximation  
of the union of all shapes in the dataset using a quadtree of given height.

Evaluation
In this section, we evaluate the performance of the proposed source selector. We describe in detail the experi-
mental setup and we analyze the results. Our experiment is based on real-world datasets and is inspired by a  
practical use-case scenario in the domain of food security.

Experimental setup
In the following we describe the experimental setup of our evaluation, i.e., the data used, the source endpoints, the 
configuration of the federations that are compared, the queries of the experiment, and some details on the experiment 
deployment and execution.

Datasets For the experimental evaluation, we use the following data sources:

1.   �The Database of Global Administrative Areas (GADM) for Austria, which contains all administrative  
divisions of Austria up to Level-3.

2.   �The Austrian Land Parcel Identification System (INVEKOS), which contains the geo-locations of  
all crop parcels in Austria and the owners’ self-declaration about the crops grown in each parcel.
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3.   �A snow cover map, which contains thematic and geospatial snow data within Austria from February to  
April of 2018.

We envisage that Austrian state governments publish crop data for their own area of responsibility; and a further 
(possibly different) entity publishes snow cover datasets for the same area. As the datasets described previously 
refer to the whole region of Austria, we partinioned them for the purposes of our experiment to datasets that refer 
to smaller areas. Regarding the administrative and crop datasets, we partition them into smaller datasets accord-
ing to the polygons of the states of Austria. For the snow cover dataset, we create two different partitions; one par-
tition using a canonical geographical grid (which reflects a scenario where the snow cover data provider ignores 
administrative areas) and one partition that follows the administrative regions (which reflects a scenario where 
snow cover data are also published by the state governments). The polygons of the grids for the former parti-
tion are obtained by dividing the minimum bounding box of Austria into 8 parts in a 4 × 2 grid, and the polygons  
of the states of Austria (used for the partitioning of all three datasets) are obtained from the GADM dataset.

The datasets and the code that we use for partitioning the data is publicly available. The partitioning of a given 
input dataset according to a set of boundaries is executed as follows: First, we populate each member of the par-
tition with all features that their geometry intersects with the corresponding boundary. Second, we substitute 
each shape of every member of the partition with its intersection with the corresponding boundary. For all fea-
tures where their geometry intersects with more than one partitioning boundary, we split the original shape 
into several parts so that each part fits entirely in a single member of the partition. Finally, we modify the URIs 
of all resources so that all resources that appear in the same output dataset share a common prefix, which is  
unique among the prefixes of all datasets of the experiment.

Table 2 and Table 3 illustrate the statistics for the datasets of the experiment; in the table, we group the datasets 
by type and display statistics about the sum of the group, as-well-as average and standard deviation for each  

Table 2. Information about the datasets used in the evaluation. For each 
group of datasets we illustrate the type of thematic data it contains, the boundary 
of each dataset, and the number of datasets in the group.

datasets data type boundary #datasets

gadm1-gadm9 administrative divisions state polygon 9

crops1-crops9 crop types and field boundaries state polygon 9

snowS1-snowS9 snow cover areas state polygon 9

snowG1-snowG7 snow cover areas 4 × 2 grid 7

Table 3. Dataset statistics. For each group of datasets we display statistics about the 
thematic, geospatial, and both thematic and geospatial (i.e., total) triples in each group. 
Statistics displayed: sum, average and standard deviation.

gadm1-gadm9 crops1-crops9

total geospatial thematic total geospatial thematic

sum 57,087 2,231 54,856 14,056,959 2,008,137 12,048,822

average 6,343 248 6,095 1,561,884 223,126 1,338,758

stdev 4,888 185 4,703 1,254,534 179,219 1,075,315

snowS1-snowS9 snowG1-snowG7

total geospatial thematic total geospatial thematic

sum 331,190 66,238 264,952 335,510 67,102 268,408

average 36,799 7,360 29,439 47,930 9,586 38,344

stddev 27,349 5,470 21,879 34,272 6,854 27,418
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dataset in the group (notice that the datasets are unequal in size due to the large standard deviation for each 
group). Apart from the statistics, boundary type for each dataset and the number of datasets per group. The 
number of the snowG datasets is 7 (and not 8, as expected) because the north-west part of the 4 × 2 grid does not  
contain any data due to the shape of Austria.

Each dataset is deployed in a separate GeoSPARQL endpoint. We use the Strabon geospatial RDF store15 for serv-
ing the data. Strabon encapsulates PostGIS for performing spatial operations, and uses a spatial index to optimize  
query processing time.

Federations For the experimental evaluation, we use two possible federation setups for the three available data 
layers (i.e., administrative, crops, and snow). The first federation setup comprises 27 source endpoints, namely 
gadm1-9, crops1-9, and snowS1-9; the second one comprises 25 source endpoints, namely gadm1-9, crops1-9,  
and snowG1-7. In the first setup, we have three datasets for each Austrian state, i.e., all three data layers are split 
according to the same set of geographical boundaries, while in the second one, the snow cover is divided in a 
canonical geographical grid, thus we have two data layers that are (by nature) aligned on an uneven geographical  
split and one that is not aligned.

For each federation setup, we set up four Semagrow federators, each with a different source selection configura-
tion. We illustrate all the information about the federations used in the experiment in Table 4. For each federation, 
we display the source selection method, the number of federated endpoints, details and statistics about the Sema-
grow metadata used (namely, type of bounding polygon used, metadata size and the number of coordinates that 
appear in all WKT literals of the svd:boundingWKT property), and which datasets from Table 2 used in the  
federation.

The federators of thm-27 and thm-25 use the standard thematic source selection of Semagrow, while the 
remaining federators use a geospatial source selection on top of it. The difference between the remaining fed-
erators is the accuracy of the bounding polygons that the sources are tagged with; in geo-poly each source is 
tagged with the exact polygon that refers to the corresponding areas (i.e., the geographical grid for snowG  
datasets and the borders of Austrian states for the remaining ones); in geo-appr with an approximation 
of the above polygons a quadtree of height 2; in geo-mbb with the minimum bounding box of all shapes 
that appear in the source. All metadata were created using the Sevod-Scraper tool (see the implementation  

Table 4. Information about the federations used in the evaluation. For each federation we 
illustrate the type of the source selector (i.e. geospatial or not), number of datasets that appear in the 
federation, and statistics about the metadata used by the federator.

thm-27 geo-mbb-27 geo-appr-27 geo-poly-27

Source selector thematic geospatial geospatial geospatial

#datasets 27 27 27 27

Bounding WKT - minimum bounding box approximate shape exact shape

#triples in metadata 3024 3051 3051 3051

#coordinates in metadata - 108 1998 68736

file size of metadata 125 KB 132 KB 189 KB 1.8 MB

thm-25 geo-mbb-25 geo-appr-25 geo-poly-25

Source selector thematic geospatial geospatial geospatial

#datasets 25 25 25 25

Bounding WKT - minimum bounding box approximate shape exact shape

#triples in metadata 2941 2959 2959 2959

#coordinates in metadata - 100 1360 45852

file size of metadata 123 KB 127 KB 165 KB 1.3 MB
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subsection for more details). The bounding polygons for geo-mbb-25, geo-mbb-27, geo-appr-25, and  
geo-appr-27 were calculated by the tool using the minimum bounding box and quadtree-based approxima-
tion, while for geo-poly-25 and geo-poly-27 we used the exact polygons of the states of Austria and the 
4 × 2 grid according to the actual borders of the partitioned datasets. Notice that an increased accuracy leads to 
an increased metadata size (i.e., even though that the geospatial source selectors use metadata that have the  
same set of triples, the WKT literals contain a larger set of coordinates).

Regarding the evaluation of a GeoSPARQL query, each Semagrow federation operates as follows: First, feder-
ated geospatial joins are evaluated using a bind-join fashion with a filter pushdown optimization. In particu-
lar, for each binding of the source query of the left part of the join, Semagrow issues a source query that contains 
the filter of the geospatial join to the source of the right part of the join. Second, to reduce redundant communi-
cation cost, Semagrow group several triple patterns into one source query whenever possible. For instance, triples 
that appear in a single source are grouped into a single subquery, thus pushing the join operation into the source  
endpoint.

Queries In Table 5, we summarize the queries of the experiment. The query workload is produced by seven query 
templates (Q1-7); each query template has a single parameter, which is either a WKT literal (Q1-3) or a Munici-
pality name (Q4-7). We generate a set of 100 municipality names and a set of 100 WKT literals; this makes a  
total of 700 queries.

For the municipality names, we select 100 random municipalities from the GADM shapefile using the Post-
greSQL random() function. We ignore the municipalities whose names contain characters not in the  
English alphabet in order to avoid possible string encoding conflicts. For the WKT literals, we create 100 ran-
dom polygons; We first generate 100 random points within the border of Austria; then, we extend each point by 
a few meters in each direction, by using the PostGIS ST_Expand() function, in order to form rectangles cov-
ering approximately an area of 25 square kilometres each. We prune all polygons that are not completely within  
Austria and repeat the steps above until the random polygons reach 100.

For every query, we define its administrative part as the triple patterns that refer to administrative data (i.e., data-
sets gadm1-9), its crop part as the triple patterns that refer to crop data (i.e., datasets crops1-9), and its snow 
part as the triple patterns that refer to snow data (i.e., datasets snowS1-9 or snowG1-7). Q1 comprises only an 
administrative part, Q2 and Q3 comprise a snow and a crop part, Q4 (respectively Q5) comprises an admin-
istrative and a snow (respectively crop) part, Q6 and Q7 contain all three types of parts. Q1-Q3, Q6-7 use the  
geof:sfIntersects function; Q3, Q4, and Q7 use the geof:distance function; and finally, Q5-7  
use the geof:sfWithin function.

For each query template, we also illustrate the number of triple patterns of the query (#tp), the number of geospa-
tial selection filters, i.e., geospatial filters with one free variable (#geoselec), the number of geospatial join  
filters, i.e., geospatial filters with two free variables (#geojoins), and the relevant data layers for each query  
template. Notice that the queries that are parameterized with a WKT have geospatial selection filters for each data 
layer of the query, while the remaning queries do not have geospatial selection filters. Moreover, all queries that 

Table 5. Queries used in the experiment.

Parameter Query

Q1 Polygon Municipalities intersecting a given polygon

Q2 Polygon Snow-covered potato fields intersecting a given polygon

Q3 Polygon Potato fields within 5 km from snow cover and intersecting a given polygon

Q4 Municipality name Snow cover areas within 5 km from a given municipality

Q5 Municipality name Potato fields within a given municipality

Q6 Municipality name Snow-covered potato fields within a given municipality

Q7 Municipality name Potato fields within 5 km from snow cover and within a given municipality
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make use of two or three data layers (i.e., all queries apart from Q1) have geospatial join filters for combining  
data from the corresponding layers.

Finally, in Table 6 we illustrate statistics about the queries in the evaluation. In particular, we illustrate the aver-
age number of results (#r) of all queries that belong to each query template. Notice that the queries return 
a small number of results (e.g., in Q6, for several municipalities the query is expected to return no results). This 
fact does not necessarily mean that the setup is not challenging enough. Using large-scale queries (and datasets) 
would be needed to evaluate the efficiency of the federated query execution engine of the federator. But since the 
subject of this evaluation is the source selection engine, discussing query execution efficiency would be a digres-
sion. If anything, using larger datasets and queries would make the source selection time overheads look even  
smaller, relatively, so our evaluation setup is actually stricter on ourselves than an evaluation on larger datasets.

Experiment deployment and execution We use a Kubernetes 1.14 cluster with 1 master node and 8 worker nodes 
with a total if 120 cores and 264GB RAM. Experiment deployment and execution is done through the KOBE  
benchmarking engine16, and the KOBE configurations for reproducing the experiments are publicly available.

Experimental results
In the following, we present the experimental results. We first focus on each phase of federated query processing  
separately, and then we discuss total query processing as a whole.

Evaluation metrics All queries are decomposed successfully and for every query a correct execution plan is pro-
duced. However, in some queries (e.g., in some query instances of Q4 and Q7) the query execution phase evokes  
an error, and in these situations the federator returns no answer.

The experimental results are summarized in Table 7, Table 8, Table 9, Table 10, Table 11, and Table 12. For each 
query template of Table 5 and for each federation of Table 4, we display the following evaluation metrics: to 
evaluate the efficiency of the query execution plan we display the average query execution time of all successful  
queries (Table 11) and the error rate (Table 10), i.e., the number of the unsuccessful queries over the number of 
all queries in the template; to check the efficiency of the other parts of query processing we display the average 
source selection time (Table 7) and planning time (Table 9); to check if the source selection time overheads are 
recovered by reduced planning and execution time, we display the time differences between each geospatial fed-
eration with its corresponding thematic one (Table 12); to evaluate the efficiency of the pruning of each source 
selection, we display the average number of sources that are accessed during the evaluation (Table 8); and finally, 
to check if any source selector achieves optimal pruning, we include the average size of the optimal source set  
(opt-27 and opt-25 columns of Table 8).

Regarding the time measurements shown in Table 7, Table 9, Table 11, and Table 12, apart from the aver-
age value, we include its standard derivation (displayed in parentheses). Moreover, regarding the average  
number of sources in Table 8, we include in parentheses the minimum and maximum number of sources.

Table 6. Query statistics.

# triple 
patterns

# geospatial 
selections

# geospatial 
joins

thematic data 
layers used

# results

Q1 6 1 0 gadm 3.7

Q2 10 2 1 crops, snow 2.1

Q3 10 2 1 crops, snow 15.6

Q4 9 0 1 gadm, snow 12.5

Q5 9 0 1 gadm, crops 9.7

Q6 14 0 3 gadm, crops, snow 0.5

Q7 14 0 3 gadm, crops, snow 6.7
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Table 7. Source Selection time (sec): Average (and standard 
deviation) of 100 instances per query template (Q1–Q7). We 
display metrics for each federation (i.e., geo-poly-27, geo-poly-25, 
geo-appr-27,etc.) of the evaluation.

geo-poly-27 geo-appr-27 geo-mbb-27 thm-27

Q1 0.10 (0.02) 0.14 (0.02) 0.13 (0.02) 0.08 (0.01)

Q2 0.87 (0.06) 0.26 (0.02) 0.22 (0.02) 0.13 (0.02)

Q3 8.28 (0.23) 0.74 (0.09) 0.22 (0.03) 0.14 (0.02)

Q4 1.76 (0.14) 0.37 (0.16) 0.21 (0.08) 0.17 (0.07)

Q5 0.42 (0.08) 0.21 (0.02) 0.20 (0.03) 0.26 (0.13)

Q6 1.57 (0.10) 0.37 (0.09) 0.30 (0.11) 0.22 (0.07)

Q7 8.53 (0.24) 1.11 (0.34) 0.42 (0.20) 0.39 (0.26)
geo-poly-25 geo-appr-25 geo-mbb-25 thm-25

Q1 0.16 (0.02) 0.14 (0.02) 0.13 (0.02) 0.08 (0.01)

Q2 0.46 (0.03) 0.14 (0.02) 0.20 (0.02) 0.13 (0.02)

Q3 0.43 (0.04) 0.21 (0.03) 0.19 (0.02) 0.14 (0.08)

Q4 0.36 (0.09) 0.19 (0.04) 0.19 (0.07) 0.16 (0.06)

Q5 0.33 (0.08) 0.29 (0.07) 0.19 (0.02) 0.22 (0.08)

Q6 0.76 (0.07) 0.29 (0.11) 0.28 (0.09) 0.18 (0.04)

Q7 0.83 (0.14) 0.39 (0.14) 0.35 (0.14) 0.41 (0.34)

Table 8. Source Selection pruning: number of sources selected by 
the different source selection methods, average (min- imum and 
maximmum) over 100 query instances per query template (Q1–Q7). We 
display metrics for each federation (i.e., geo-poly-27, geo-poly-25, geo-
appr-27,etc.) of the evaluation, as well as the optimal ones (i.e., opt-27, opt-
25).

opt-27 geo-poly-27 geo-appr-27 geo-mbb-27 thm-27

Q1 1.12 (1–2) 1.12 (1–2) 1.32 (1–3) 1.62 (1–3) 9

Q2 2.24 (2–4) 2.24 (2–4) 2.64 (2–6) 3.24 (2–6) 18

Q3 2.24 (2–4) 2.24 (2–4) 2.64 (2–6) 3.24 (2–6) 18

Q4 2.25 (2–4) 5.48 (3–7) 5.48 (3–7) 5.90 (3–7) 10

Q5 2.00 (2–2) 2.00 (2–2) 5.48 (3–7) 5.82 (3–7) 10

Q6 3.00 (3–3) 3.00 (3–3) 9.96 (5–13) 10.64 (5–13) 19

Q7 3.24 (3–5) 6.48 (4–8) 9.96 (5–13) 10.64 (5–13) 19
opt-25 geo-poly-25 geo-appr-25 geo-mbb-25 thm-25

Q1 1.12 (1–2) 1.12 (1–2) 1.32 (1–3) 1.62 (1–3) 9

Q2 2.18 (2–4) 2.18 (2–4) 2.38 (2–4) 2.68 (2–5) 16

Q3 2.18 (2–4) 2.18 (2–4) 2.38 (2–4) 2.68 (2–5) 16

Q4 2.14 (2–3) 4.34 (2–5) 4.59 (2–5) 4.59 (2–5) 8

Q5 2.00 (2–2) 2.00 (2–2) 5.48 (3–7) 5.82 (3–7) 10

Q6 3.18 (2–4) 4.97 (3–6) 8.82 (4–11) 9.41 (4–11) 17

Q7 3.18 (3–5) 4.97 (3–6) 8.82 (4–11) 9.41 (4–11) 17
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Comparison of source selection times In the following, we focus on the time overheads of the geospatial source  
selector. Thus, we will compare the federations of the experiment according to source selection time (Table 7).

We observe that the source selectors of thm-27 and thm-25 (in short thm) are the fastest ones; then we have 
geo-mbb-27 and geo-mbb-25 (in short geo-mbb); then we have geo-appr-27 and geo-appr-25 

Table 9. Query planning time (sec): Average (and standard 
deviation) of 100 instances per query template (Q1–Q7). We display 
metrics for each federation (i.e., geo-poly-27, geo-poly-25, geo-
appr-27,etc.) of the evaluation.

geo-poly-27 geo-appr-27 geo-mbb-27 thm-27

Q1 0.02 (0.01) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01)

Q2 0.28 (0.04) 0.30 (0.03) 0.31 (0.03) 0.39 (0.04)

Q3 0.26 (0.04) 0.24 (0.04) 0.26 (0.03) 0.38 (0.04)

Q4 0.10 (0.02) 0.15 (0.09) 0.13 (0.03) 0.19 (0.07)

Q5 0.12 (0.03) 0.11 (0.02) 0.12 (0.01) 0.15 (0.02)

Q6 13.56 (0.29) 14.48 (0.44) 14.33 (0.40) 16.00 (0.35)

Q7 13.69 (0.31) 14.55 (1.37) 14.81 (2.61) 16.55 (3.95)
geo-poly-25 geo-appr-25 geo-mbb-25 thm-25

Q1 0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 0.05 (0.01)

Q2 0.27 (0.05) 0.21 (0.02) 0.31 (0.02) 0.39 (0.04)

Q3 0.25 (0.05) 0.26 (0.03) 0.26 (0.03) 0.38 (0.05)

Q4 0.13 (0.07) 0.14 (0.10) 0.14 (0.07) 0.19 (0.13)

Q5 0.13 (0.02) 0.12 (0.02) 0.12 (0.01) 0.15 (0.02)

Q6 14.30 (0.49) 14.70 (0.48) 14.27 (0.46) 15.56 (0.29)

Q7 13.66 (0.28) 14.10 (0.46) 14.64 (2.43) 17.24 (6.36)

Table 10. Error rate: Number of errors 
occured, divided by the total number of 
queries of each query template (Q1–Q7). We 
display metrics for each federation (i.e., geo-
poly-27, geo-poly-25, geo-appr-27,etc.) of 
the evaluation.
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Q1 - - - - - - - -

Q2 - - - - - - - -

Q3 - - - 0.1 - - - -

Q4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Q5 - - - - - - - -

Q6 - 0.7 0.7 0.8 - 0.7 0.7 0.1

Q7 0.1 0.9 0.9 0.9 0.1 0.9 0.9 0.9
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Table 12. Time overhead of the geospatial source 
selection: Average (and standard deviation) of the 
difference in total query processing time (in seconds) 
of each geospatial federation minus the time of its 
corresponding thematic one, over the successful 
query instances of query template Q1 to Q5. A negative 
measurement indicates that the geospatial source selection 
overheads are recovered by faster query planning and 
execution. Q6 and Q7 are missing from the table since most 
queries in geo-appr, geo-mbb, and thm evoke errors 
during query execution phase.

geo-poly-27 geo-poly-27 geo-mbb-27

Q1 –0.01 (0.0000) +0.03 (0.0000) +0.03 (0.0001)

Q2 +0.51 (0.0013) –0.10 (0.0013) –0.12 (0.0013)

Q3 +8.03 (0.0004) +0.45 (0.0003) –0.05 (0.0002)

Q4 +0.23 (0.0017) –1.28 (0.0018) –1.20 (0.0017)

Q5 +0.14 (0.0002) –0.13 (0.0002) –0.12 (0.0002)
geo-poly-25 geo-appr-25 geo-mbb-25

Q1 +0.05 (0.0000) +0.03 (0.0000) +0.01 (0.0000)

Q2 –0.05 (0.0013) –0.43 (0.0013) –0.27 (0.0013)

Q3 –1.16 (0.0027) –1.39 (0.0027) –1.39 (0.0027)

Q4 –0.71 (0.0028) –1.01 (0.0028) –0.85 (0.0029)

Q5 +0.03 (0.0001) +0.04 (0.0001) –0.09 (0.0001)

Table 11. Query execution time (sec): Average (and standard 
deviation) of 100 instances per query template (Q1–Q7). We display 
metrics for each federation (i.e., geo-poly-27, geo-poly-25, geo-
appr-27,etc.) of the evaluation.

geo-poly-27 geo-appr-27 geo-mbb-27 thm-27

Q1 0.06 (0.05) 0.04 (0.03) 0.04 (0.04) 0.06 (0.06)

Q2 0.05 (0.05) 0.04 (0.02) 0.04 (0.02) 0.17 (1.30)

Q3 0.21 (1.20) 0.17 (1.12) 0.17 (1.15) 0.06 (0.25)

Q4 6.87 (4.18) 6.47 (3.49) 6.81 (3.55) 8.52 (4.96)

Q5 0.13 (0.08) 0.08 (0.03) 0.09 (0.06) 0.12 (0.09)

Q6 0.11 (0.05) 2.20 (2.21) 2.18 (2.39) 2.30 (1.47)

Q7 23.19 (67.86) 4.14 (1.63) 4.43 (1.06) 6.64 (2.30)
geo-poly-25 geo-appr-25 geo-mbb-25 thm-25

Q1 0.05 (0.05) 0.04 (0.01) 0.04 (0.01) 0.05 (0.02)

Q2 0.05 (0.05) 0.04 (0.03) 0.04 (0.02) 0.30 (1.32)

Q3 0.19 (1.15) 0.17 (1.09) 0.17 (1.13) 2.52 (10.28)

Q4 7.35 (4.73) 7.33 (4.70) 7.43 (4.77) 8.81 (5.27)

Q5 0.26 (0.41) 0.11 (0.05) 0.08 (0.03) 0.10 (0.04)

Q6 0.77 (0.83) 1.37 (1.10) 1.52 (1.50) 1.46 (1.04)

Q7 19.44 (57.78) 3.10 (2.33) 3.07 (2.37) 38.69 (70.86)
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(in short geo-appr); and finally we have geo-poly-27 and geo-poly-25 (in short geo-poly). This  
happens due to two main reasons. First, the geospatial source selector (i.e., that of geo-mbb, geo-appr and  
geo-poly) wraps the thematic source selector of Semagrow (i.e., that of thm), which explains why thm is 
the fastest of all. Second, the sources in geo-poly are annotated with polygons, which are more complex 
shapes than the approximated shapes in geo-appr, which are, in turn, more complex shapes than the bound-
ing boxes in geo-mbb. Thus, the boundary comparisons performed by the geospatial source selection are  
slower in geo-poly. This difference is more pronounced in Q3 and Q7, which include three geospatial filters 
and a within-distance operation (using the geof:distance function), which is computationally costlier than  
containment and intersection operations.

We observe that, in general, the source selection process is faster in the federations with 25 endpoints (e.g.,  
compare the source selection time for the queries for geo-poly-25 with geo-poly-27). This happens not 
only because in the 27-dataset setup we have two additional endpoints, but mainly because the snow data in the  
25-dataset setup is partitioned using a canonical grid. Therefore, the boundary annotations of the snow data-
sets are rectangles not only in geo-mbb-25 (as expected), but in geo-poly-25 and geo-appr-25 as 
well. As a result, the geospatial computations performed by the source selector for identifying irrelevant snow  
sources is much faster in the 25-dataset setup.

To sum up, we notice that source selection time depends on the complexity of the bounding polygon annotations  
of the sources; in other words, higher accuracy leads to slower source selection.

Comparison of source selection pruning In the following, we focus on the precision of the pruning of each 
source selector (Table 8). In particular, we compare the number of sources of each source selector with those  
of the other source selectors and with the optimal ones.

We observe that the thematic source selector keeps many irrelevant sources in the query plan. The source selec-
tor of thm exploits the thematic information (i.e., properties and URI-prefixes) of the sources and assigns the 
administrative (respectively crop, snow) part of the query to the administrative (resp. crop, snow) sources. More-
over, in Q4-7, the administrative part of the query is further restricted to a single administrative source, because 
the pattern that specifies the name of the municipality appears in only a single administrative source. This 
explains why, for example, thm-27 keeps 19 (i.e., 9 crop sources, 9 snow sources, and 1 administrative source) 
and not all 27 sources for all queries in the template. However, as expected, we will show that the geospatial  
selectors of the remaining federations achieve better pruning by exploiting the geospatial knowledge of the sources.

Regarding the geospatial selectors, we make three observations: First, we notice that the accuracy of the source 
selector increases as the accuracy of the source metadata increases. In particular, geo-poly is more precise than  
geo-appr, and geo-appr is more precise than geo-mbb. Second, we notice that the optimal pruning can 
be achieved only by geo-poly in Q1-3, Q5 (and also in Q4 only for the 27-dataset setup). Finally, the aver-
age number of sources for geo-appr and geo-mbb tend to be lower in Q1-3 than in Q4-7. In the remaining  
paragraphs we will try to discuss these observations. Q1-3 have geospatial selection filters, parameterized with a  
fixed polygon; thus, the geospatial selector operates by pruning all sources that are irrelevant according to the 
given query polygon. Since the less accurate geospatial summaries in geo-appr and geo-mbb are larger than 
the actual dataset boundaries of the sources, we can have a situation where the query polygon is disjoint from a 
data source but not disjoint from its bounding polygon annotation. This explains the optimal pruning for  
geo-poly (where the annotations are the exact boundaries of the sources). In the remaining geospatial  
federations, the source selection returns more sources, because there are cases where the parameterized polygon 
is contained in the approximated shape (for geo-appr) or in the minimum bounding box (for geo-mbb) of a  
neighbor source. This explains why geo-appr is equally or more specific than geo-mbb.

Q4-7 contain only geospatial join filters; therefore, the geospatial selector operates as follows; first, similarly to 
thm, it restricts the administrative part of the query in the source of the state where the municipality belongs to; 
then, it tries to prune all irrelevant crop and snow sources according to the boundary annotation of this adminis-
trative source and the geospatial filters of the query. As previously, we observe that accurate source descriptions 
can lead to more precise source selection. For instance, regarding Q5, geo-mbb (resp. geo-appr) prunes all 
crop sources that their bounding box (resp. approximated shape) is disjoint from the bounding box (resp. approxi-
mated shape) of the state of interest, while geo-poly, being more accurate, does better by keeping only the crop 
sources that refer this state, because the source boundaries do not overlap. This explains the optimal pruning of  
geo-poly for Q5.
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Q4-7 present two additional challenges in source selection, which are either non-present or non-important in  
Q1-3. First, Q4 and Q8 contain a within-distance federated join operation, but unlike Q3, the shapes of inter-
est do not intersect with a given polygon in the query. In such operations, the geospatial selector cannot achieve 
optimal pruning even in geo-poly. To give an example, consider Q4 and assume that the given municipal-
ity appears towards the center of the state. Since the exact geometric shape of the municipality will be discovered  
only during query execution, the source selector cannot exclude the possibility of its position being towards 
the border, thus keeping all the neighboring snow sources that may contain relevant data within 5km from the 
border of the state. Second, an overestimation of the set of sources can appear when the geographical parti-
tions between the data to be geospatially joined are unaligned. Consider Q6; since in the 27-dataset setup all data 
layer partitions are geographically aligned (each source refers to a specific Austrian state), geo-poly-27 
achieves optimal pruning (i.e., the source selector keeps the sources that refer to the state where the municipality 
belongs to). In contrast, since in the 25-dataset setup the snow data partition is not aligned with the other layers,  
geo-poly-25 keeps some irrelevant neighboring snow sources (i.e., those who intersect the state that belongs  
to the municipality but not the municipality itself) and thus does not achieve optimal pruning.

To sum up, we notice that the precision of the pruning by the geospatial source selector depends on the accuracy 
of the bounding polygon annotations of the sources. We observe that using the exact polygons of the sources could 
lead us to optimal pruning. Finally, we notice that in queries with WKT parameters (Q1-3) the geospatial source  
selectors tend to achieve a better pruning, even when using approximated shapes instead of exact polygons.

Comparison of query planning and execution In the following, we discuss the effect of geospatial source 
selection on query planning and query execution phases of federated query processing. In particular, we  
compare the query planning times (Table 9), the query execution times (Table 11), and the error rates (Table 10) of  
each federation of the experiment.

Regarding query planning time, we observe that, in general, geo-poly is the fastest; then it comes  
geo-appr; then we have geo-mbb; and finally thm is the slowest. This behaviour happens because  
having a large number of sources requires the construction of a larger query plan, which clearly affects the time 
for producing it; this is highlighted in Q6 and Q7 which have 14 triple patterns (the number of triple patterns  
of each query is shown in Table 6).

Regarding query execution, notice that only for some query templates we obtain a complete evaluation of all  
queries in the template. For instance, ∼90% of the queries of Q7 fail to be processed by thm-27 due to errors 
in the execution phase (i.e., the error rate in Table 10 is equal to 0.9). These errors occur when a federator issues 
a huge workload of source queries to the endpoints, and as a result, the sources are not able to serve all these 
requests. Therefore, in order to compare two query executions, we should consider both their query execution 
times and their error rates. For instance, consider again Q7; the query execution of thm-27 is faster than that  
of geo-poly-27, but the error rate of geo-poly-27 is much lower than that of thm-27. Thus, we 
argue that geo-poly-27 is more effective than thm-27 for Q7, because we believe that having more but 
slower successful query runs is a more important characteristic (recall that the average execution time refers  
only to successful query runs).

The number of source queries in the execution plan affects not only the completion of the execution but the  
execution time as well; having more sources in the plan means that more source queries are issued by the federator 
to the source endpoints. Consider, for instance, Q2 and Q3; in both cases, the query execution of geo-poly-25  
is faster than that of thm-25 by one order of magnitude; geo-poly-25 consults one (or in some cases two) 
snow datasets, while thm-25 consults all 7 snow datasets. Even though Semagrow manages to execute many  
queries in parallel, the duration of the query execution has to be as slow as the slowest source. By having a smaller 
the set of sources, the query executor avoids issuing queries to irrelevant larger datasets if they contain irrele-
vant results. Moreover, the time difference in query execution is more pronounced in queries that contain within- 
distance operations (e.g., in Q3), because the source endpoints use spatial indexes, hence geospatial queries that  
contain standard spatial relations (e.g., Q2) are executed faster.

The above discussion suggests that, according to the effectiveness of their query execution (which is based both 
on error rate and query execution time), the federators are to be ordered as follows: geo-poly, geo-appr,  
geo-mbb, and finally thm; the only exception being Q6 in the 25-dataset setup. In this sole case, geo-poly-25  
is better than thm-25, but thm-25 has lower error rate than geo-appr-25 and geo-mbb-25. This final 
observation indicates that, even though our geospatial source selector can provide a faster query processing,  
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it seems that in order to achieve better performance in geospatial scenarios, the remaining components of  
federated query processing should be extended with geospatial-specific optimizations as well.

To sum up, we observe that higher accuracy in geospatial source annotations (which results to a lower number 
of sources per query) could help by reducing the query planning time and the number of source queries issued  
by the federator, thus increasing the effectiveness of query execution.

Comparison of overall query processing time The discussion so far indicates that using a geospatial selector  
provides a positive impact on query planning and execution time. However, as the accuracy of the bounding  
polygons of the federated sources increases, source selection becomes slower, especially when using the exact  
polygons (as in geo-poly). The question that arises is whether the time overhead of the use of exact boundaries  
in source selection can be recovered by the remaining phases of query processing.

In Table 12, we draw a comparison between the time overheads of the geospatial source selectors; among the 
query instances that succeed in all eight federations, we show the difference of the total query processing time of 
geo-poly-27 (resp. geo-appr-27, geo-mbb-27) minus the total query processing time of thm-27;  
then, the same for the 25-dataset setup; and finally, we report the average (and standard deviation) for each query 
template. We leave out Q6 and Q7 because in both query templates less than 5 instances succeed in all 6 federations;  
in this case, we will compare the federations with respect to the error rate (Table 10).

Q1 is the easiest query of the experiment (it contains a single data layer and one geospatial selection filter, i.e., 
a filter that contains a spatial relation in which one of the two parameters is a WKT value). Thus, all federators  
perform equally in Q1 (i.e., all time differences are less than 0.05 seconds). In contrast, Q6 and Q7 are the most  
difficult queries of the experiment (they contain 3 data layers, three geospatial joins, and no WKT literals appear in 
the query body). Since most query instances of Q6 and Q7 fail to be processed, we compare the federations w.r.t.  
Table 10; we note that geo-poly performs the best since it minimizes the error rate.

The remaining queries (i.e., Q2-5) are somewhere in between Q1 and Q6-7 in terms of difficulty; this fact 
makes them easier to be processed by all federators of the experiment. In Table 12 we notice that geo-mbb and  
geo-appr outperform thm and geo-poly (overheads are smaller or similar). Regarding the comparison 
between geo-mbb and geo-appr though, we observe that geo-mbb is better in the 27-dataset setup, while  
geo-appr is better in the 25-dataset setup. This happens because the source selection cost in the 27-dataset setup 
is much higher than that of the 25-dataset setup (Table 7). Thus, in the former setup, only geo-mbb-27 can 
benefit from the reduction in query planning and execution times, while in the second one, the drop in planning  
and execution time of geo-appr-25 is greater than its source selection overhead.

To sum up, we observe that for difficult queries (such as queries that contain more than one geospatial join and 
no WKT literals in the query body), precise bounding polygons should be preferred, because otherwise we may 
face a computationally intensive query execution. In contrast, the use of less accurate descriptions will suffice 
if we consider simpler queries. However, it appears that no size fits all; for the setup that the partitions are una-
ligned, we benefit from the higher accuracy of the approximated shapes since one layer is already a geographical 
grid; while for the other setup the minimum bounding boxes are effective since all data layers are fully aligned  
according to the same administrative regions.

Related work
Despite the rich literature on thematic source selection discussed in the background section, work on feder-
ated geospatial query processing is very sparse, in the Semantic Web community, the geographical informa-
tion systems community, and the wider databases community. Recent studies2 find that there is no mature feder-
ated GeoSPARQL query processing system. Recent work on data integration methods cites systems that collect and 
integrate distributed geospatial data into a single store as well dynamic federation of non-geospatial data sources,  
but also does not include systems that are both federated and support geospatial operations17.

A related system is SkyQuery18, a federation of astronomy databases. SkyQuery optimizes the execution of  
SQL-like queries based on metadata similar in nature to the VoID dataset statistics, provided by the individ-
ual databases when registering to the federation. Cross match queries, in particular, use containment constraints 
to retrieve objects corresponding to the same astronomical body allowing for some error in the measurements.  
The constraint is satisfied by looking up an index of spherical triangles, operating analogously to our bound-
ing WKTs: for each triangle the index points to all databases that hold objects within the triangle. In fact, the  
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triangles that make up the SkyQuery index are organized as a containment hierarchy, analogously to how  
R-trees are used in geospatial database indexes18. This higher level of detail (by comparison to our  
system) allows SkyQuery to use its index not only for source selection but to fully optimize query execution.

Zimmermann et al.19 propose to use R-trees and Quadtrees as index structures across multiple spatial databases 
to reduce the query forwarding traffic. Each archive maintains a copy of such a global index with the minimum 
bounding rectange (MBR) of the dataset of each archive. The archives can determine through their local copy of 
the global index which of the other archives might have relevant data (i.e. whose MBR overlaps/intersects with 
the query rectangle). The query routing does not contain all the servers in a distributed spatial database environ-
ment in order to obtain the query results. The query is only forwarded to archives with potentially relevant data, 
decreasing the inter-node message traffic significantly. The infrastructure used by Zimmermann et al.19 to 
orchestrate query routing cannot be directly mapped to GeoSPARQL endpoints as they currently stand, so 
a major effort would be needed to extend Semantic Web infrastructure. Our method, by contrast, only requires a  
light-weight extension to the VoID vocabulary already used to summarize datasets.

Similarly, Tang et al.20 introduce a framework for integrated queries for geospatial data services. They main-
tain an R-tree index with MBRs of the services’ spatial extent and prune services that cannot possibly  
contribute to k-nearest neighbours queries based on the maximum and minimum distance between the query 
shape and these MBRs. Although the core idea is similar, Tang et al.20 only support k-NN operations and their sys-
tem does not present to the user a complete federated querying endpoint. By contrast, we demonstrate complete  
support for GeoSPARQL querying.

Conclusions and future work
We presented a source selection method that combines the thematic source selection typically used in federated 
query processing with an additional data source filtering based on the bounding polygon (expressed as a WKT  
value literal) that summarizes the geospatial extent of all resources in a data source. The prototype implementation  
of our method is provided as open source, integrated with the Semagrow federated GeoSPARQL processor.  
The data and queries used in the experiments are also published as the geofedbench benchmark of  
the KOBE benchmarking environment.

We explored three alternative bounding WKTs of varying accuracy. More complex bounding WKTs lead to 
slower source selection run-times, but also to more precise exclusion of unneeded sources, so that the sources in 
the federation are not burdened by pointless querying, which may inundate the sources with queries to the point 
of failure. Experimental results show that our method has substantial positive impact in overall query processing 
time as well. In particular, the source selection run-time is (partially or fully) recovered by shorter planning and 
execution run-time; and more precise selection makes the federation engine more prudent with the web resources  
it consumes.

Regarding the accuracy of the bounding WKTs used in our evaluation, we experimented with the (exact) mini-
mum bounding polygons, the minimum bounding boxes, and approximated polygon that fall in between the 
above two extremes in terms of accuracy. The former two summaries are straightforward to compute; but there 
are many other ways of balancing the trade-off between summary size (which relates to source selection time) 
and summary accuracy (which relates to source selection precision). As future work, we are planning to con-
tinue our research on finding the proper geospatial summarization techniques for maximizing the performance of 
the source selection. One possible direction would be to use a convex-hull algorithm to compute the optimal 
bounding WKT with a fixed user-defined number of edges. This will allow us to make the exact place where the  
system sits on the bounding box vs. bounding polygon trade-off user-configurable.

The experimental evaluation suggests that our source selection method which is aware of the geospatial nature 
of the federated sources can be quite effective in geospatial scenarios. However, source selection is only the 
first step of federated query processing. An interesting direction for future work would be to explore how not 
only source selection, but other phases of federated query processing such as query planning can benefit from  
geospatial-specific extensions that exploit dataset summaries.

Data availability
Source data
As discussed in our experimental setup, our evaluation depends on administrative, crop type, and snow cover  
publicly available data (Table 2 and Table 3 and Experimental setup subsection).
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The KOBE experimental setup used to carry out these experiments is configured to fetch all datasets from the  
following repository: http://rdf.iit.demokritos.gr/dumps/gss (DOI: https://doi.org/10.5281/zenodo.6340417)

These have been prepared by pre-processing the following:

•   �Austria administrative areas, https://gadm.org/maps/AUT.html

•   �INVEKOS, https://www.data.gv.at/katalog/dataset/f7691988-e57c-4ee9-bbd0-e361d3811641

•   �Snow cover data from the Extreme Earth project’s Food Security use case, http://earthanalytics.eu/food- 
security-use-case.html

Software availability
The software that refers to this work is publicly available.

Implementation of our source selection: https://github.com/semagrow/semagrow/releases/tag/2.2.0-gssbench

Code to conduct the experiments: https://github.com/semagrow/benchmark-geofedbench/releases/tag/1.0.0

Archived code at time of publication: DOI: 10.5281/zenodo.6341487

License: Apache License, Version 2.0

Ethics and consent
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Markus Stocker   
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The authors propose an approach that enables GeoSPARQL queries to determine which sources to 
geospatial data to query, in a federated setting. The work is technically sound and evaluated 
sufficiently well. However, I personally found it very hard to read. Aside from occasional typos, 
sentences are ofter far too long and complicated. I think authors should substantially revise the 
manuscript and improve readability. 
 
The authors claim that federated query processing is urgently needed to achieve "full" integration 
of geospatial data in the Semantic Web. Not sure I agree, since spatial querying in the Semantic 
Web is not obvious even on standalone databases. More generally, how much of a problem is it 
actually? The Semantic Web has been loosing ground for some time; the adoption of RDF and 
GeoSPARQL in (research) infrastructure is rare and the prospects not exactly great (in my opinion). 
On the other hand, there is solid GIS tech out there (PostGIS, JTS Topology Suite, etc.) that do an 
excellent job and seem to do just fine without RDF, GeoSPARQL, etc. Hence, while I appreciate the 
academic exercise of developing source selectors for GeoSPARQL I do wonder how much of a 
problem it actually is. 
 
For an academic work, I am afraid it does not cover well enough the literature. The authors limit 
the review to the Semantic Web area, which is not adequate because more related work has been 
done outside the Semantic Web area. Moreover, foundational work such as RCC are not reviewed 
adequately. Even within the Semantic Web area, there is related work that has not been 
considered. My suggestion is that the manuscript should have 2-3 times as many citations. 
 
In Definition 2, the authors suggest that the domain of the newly introduced property is 
void:Dataset. What is the implication of this restriction? Does the approach only work for 
individuals typed void:Dataset. What about all the other applicable types, say, qb:DataSet or 
dcat:Dataset? The choice seems to be very restrictive. 
 
Most of the results are obvious, expected and thus unsurprising. For instance, it does not surprise 
that the thematic source selector is faster than geospatial source selectors, since it is 
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computationally much cheaper to match some URIs than to perform polygon computations. The 
same can be said about source selection pruning: Of course the selector does a better job the 
more precise the information available. 
 
The overall conclusion seems that "difficult queries" rely on precise bounding polygons while less 
accurate descriptions are sufficient for "simpler queries". As the authors phrase it: "no size fits all." 
What does this mean in practice? Do all datasets have to be described with both precise and less-
precise bounding boxes, so that the system can choose based on query complexity? And if so how 
would this concretely work? What is the recommendation? 
 
As a minor remark, I suggest to move the result tables closer to the corresponding text. It was 
rather difficult to switch back and forth between text and tables.
 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: My areas of expertise include semantic web technologies as well as geospatial 
data and query processing.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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Regarding the comment on the (lack of) adoption of geospatial RDF/SW technologies, and 
on GeoSPARQL losing ground, we would like to react by pointing out that GeoSPARQL is an 
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OGC standard; That goes to show that, although W3C was also naturally involved, the main 
drive for developing the standard comes from the geospatial databases community. 
GeoSPARQL has also been implemented by Oracle, with the relevant reference added in the 
article. In any case, we would also like to point out that the work described here is shown to 
lead to greater efficiency, thus creating an opportunity for greater adoption of linked 
geospatial data in general and of federated linked geospatial data in particular. This would 
allow GIS technologies (including mature systems such as Oracle, with a demonstrated 
interest in GeoSPARQL) to also participate in the decentralization drive of the modern Web. 
We have rephrased the conclusions to more clearly spell out that we need to complement 
the work described here with work on predicting the run-time complexity of queries. This is 
clearly future work that relates to the query optimizer (rather than the source selector), so 
we give some initial thoughts in this direction in the final section. We have expanded the 
related work section with more discussion on relevant literature and how our work is 
positioned with respect to it. We have also expanded the background, including adding a 
reference to RCC8. Regarding the relationship between void:Dataset, qb:Dataset, and 
dcat:Dataset we feel that void:Dataset is the most appropriate term since it aims at 
annotating a SPARQL endpoint with useful statistics and summaries. qb:Dataset is too 
restrictive, since it also prescribes internal structure. dcat:Dataset is too generic, as it is not 
restricted to SPARQL endpoints but can be used for any data that is available for 
downloading. We feel that adding such minute SW details to this article would be a 
regression, but we can add it if you insist with your comment. We do not understand why 
the data underlying the results are commented as being partly available. All data and 
software needed to reproduce the experiments is published online. Regarding the 
positioning of the figures and tables, I am afraid that this is done by the journal’s editors, 
outside our control. We have fixed several typos and broken long sentences into shorter, 
more readable ones.  
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The manuscript proposes a geospatial source selector for geospatial data, presents the 
implementation of the related source selector and the correctness of the proposed source 
selection. Also, evaluation results are compared. 
 
The manuscript should address the following issues before indexing: 
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The motivation is incomplete. In the Introduction, the problems that the manuscript is focused on 
should be expressed in more detail with solid examples. Moreover, the state of the art should be 
discussed in more detail. The unique contribution needs to be clarified. For this purpose, 
contributions should be listed in a subsection. The main problems of federated query processing 
should also be presented and discussed. Also, the background section could be improved (such as 
with federation approaches, etc). Real-life use cases should be given and the proposed study 
should be discussed by considering the widespread effect of the proposed source selection. The 
literature work should be elaborated more. Also, recent studies in the field should be added and 
the review of the related works should be detailed. Further, some illustrations could be added to 
strengthen the presented manuscript, such as an example of a GeoSPARQL query, the overall 
architecture of the query processing and source selection, etc. The organization and readability of 
the manuscript needs to be improved.
 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 29 Sep 2022
Antonis Troumpoukis, National Center for Scientific Research (NCSR) Demokritos, Ag. 
Paraskevi, Greece 

We have added an explicit list of contributions in the “Introduction” section. We have added 
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material that motivates our work in the “Motivation and use case” section. We have 
expanded the related work section with more discussion on relevant literature and how our 
work is positioned with respect to it. We have also expanded the background with a more 
elaborated presentation of federated query processing systems (including architecture 
diagram). Finally, we have added an illustrative example of a GeoSPARQL query in the main 
methodological section. Real-life use cases are limited by the lack of technical infrastructure 
to implement them, infrastructure which is what we are presenting in this article. But, as we 
note in the article, it is a real-world phenomenon that datasets are partitioned either by 
jurisdiction or by gridding. This motivates our experimental setup, where we have 
successfully federated unaligned layers where one layer is partitioned by jurisdiction and 
another by gridding.  

Competing Interests: No competing interests were disclosed.

Open Research Europe

 
Page 29 of 29

Open Research Europe 2022, 2:48 Last updated: 06 OCT 2022


