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ABSTRACT 

The early design phases of construction projects have a major impact on the 

success of the projects in terms of cost, construction time, global warming potential 

and other aspects. However, detailed information on the ongoing design is often 

lacking in these early project phases. This gap can be filled by using information 

and data of existing infrastructure. The historic data from past projects is collected, 

processed, analyzed, and evaluated systematically so that it is made into ready 

input for design. This is the evidence-based design (EBD) assistant’s approach to 

support design at the early project stages. A database of past footbridge designs 

provided by the engineering design firm schlaich bergermann partner (sbp) is used 

as the knowledge database to investigate and validate the potential of using historic 

data for evidence-based design to improve the design of future projects. Data 

collection was done manually involving digitizing past project data which will be 

stored in the digital twin for construction. The collected data was cleaned, filtered, 

and clustered using data analytics methods. Data processing, analyses and 

evaluation was done using machine learning approaches. The study found that (i) 

historic data/information is valuable input for design, (ii) historic data/information 

provides good predictions for performance indicator values (PI-values), and (iii) 

machine learning models can be used to evaluate and compare accuracies of PI-

values. The very limited size of the database and scanty data was a major challenge 

in the implementation of the approach. However, we recommend that organizations 

consider growing such knowledge databases to enrich evidence-based design. 
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ASHVIN PROJECT 

ASHVIN aims at enabling the European construction industry to significantly 

improve its productivity, while reducing cost and ensuring absolutely safe work 

conditions, by providing a proposal for a European wide digital twin standard, an 

open source digital twin platform integrating IoT and image technologies, and a 

set of tools and demonstrated procedures to apply the platform and the standard 

proven to guarantee specified productivity, cost, and safety improvements. The 

envisioned platform will provide a digital representation of the construction 

product at hand and allow to collect real-time digital data before, during, and after 

production of the product to continuously monitor changes in the environment and 

within the production process. Based on the platform, ASHVIN will develop and 

demonstrate applications that use the digital twin data. These applications will 

allow it to fully leverage the potential of the IoT based digital twin platform to reach 

the expected impacts (better scheduling forecast by 20%; better allocation of 

resources and optimization of equipment usage; reduced number of accidents; 

reduction of construction projects). The ASHVIN solutions will overcome worker 

protection and privacy issues that come with the tracking of construction 

activities, provide means to fuse video data and sensor data, integrate geo-

monitoring data, provide multi-physics simulation methods for digital representing 

the behavior of a product (not only its shape), provide evidence based 

engineering methods to design for productivity and safety, provide 4D simulation 

and visualization methods of construction processes, and develop a lean 

planning process supported by real-time data. All innovations will be 

demonstrated on real-world construction projects across Europe. The ASHVIN 

consortium combines strong R&I players from 9 EU member states with strong 

expertise in construction and engineering management, digital twin technology, 

IoT, and data security / privacy. 
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1 INTRODUCTION 

1.1 Motivation 

The early design phases of building design and construction models have large 

influence on the overall project success. Generative design can be one approach to 

increase the productivity in the early design phases along with the quality of 

constructed design options. 

Generative design is already being used successfully as a design concept in many 

industries. The basic idea is to use a computer to generate a large number of design 

alternatives for a given design task and then evaluate them on a set of target variables. 

In civil engineering, and specifically in structural design, this type of design process 

has now also found its way into several projects.  (Diaz, et al., 2021) collected scientific 

publications on the adoption of generative design principles in structural design 

projects. Seven application cases for generative design were identified including 

cantilever optimization for 3D printing, material optimization in slabs, and material 

optimization for deep reinforced concrete beams. (Rempling, et al., 2019) implemented 

a set-based parametric design method which was demonstrated by comparing 

optimized bridge geometries with constructed bridge projects. It was shown that the 

generated bridge geometries were outperforming the realized bridges both in terms of 

cost and carbon footprint. 

The quality of the underlying parametric model, which represents the basis of all 

generated variants as a genotype, plays a major role in the success of the generative 

design process. Apart from the quality of the parametric model, there is another 

influential parameter, namely the coverage of the design space by the parametric logic 

together with the parameter envelope.  

There are two limits to covering the entire design space using one or more parametric 

models. On the one hand, the creation of a parametric model suitable for generative 

design requires an investment of time, and on the other hand, it is very difficult to cover 

the entire design space in sufficient depth using only one very generic parametric 

model. Thus, in the sense of an efficient design process, it is necessary to restrict the 

design space, since only for this limited subspace a parametric model of sufficient 

quality can be generated with a reasonable expenditure of time. 

This limitation of the design space is currently executed by the designing engineer in 

the earliest design phase. The constraints made then, e.g., regarding a structural 

typology, have a great influence on the overall success of the design process, because 

they restrict the design space. 

This work deals with the question of how this early design stage, which runs from the 

receipt of the design task to the creation of the parametric model and thus the 

delimitation of the design space, can be supported on the basis of project data from 

existing projects. In other words: How can data from past design projects be used in 

early design stages to bridge the gap between the design task and a generative design 

process? 

1.2 Historical Digital Twin Data for Construction 
This research was conducted within Task 2.2 of the European Union funded Horizon 

2020 project ASHVIN, which aims to enable digital twins in the construction industry. 
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The structural design firm schlaich bergermann partner (sbp) as one project partner 

kindly provided data for their portfolio of footbridge design projects. Therefore, the 

domain of footbridge design was chosen to demonstrate the applicability of the 

Evidence Based Design (EBD). 

The prior task 2.1 identified the relevant Performance Indicators (PIs) and Key 

Performance Indicators (KPIs) for footbridge design projects in the domains of 

productivity, resource efficiency and safety (Krenn, 2021). The assessment of models 

regarding these PIs is performed using the ASHVIN BRICS Tool, which is also 

presented later in this document. The PI values together with general project 

information are stored inside the knowledge database which forms the conceptual 

basis of the EBD.  

The EBD evaluates the knowledge database to provide the user with a broad overview 

of the design space. This way the bridge designer can make an informed decision on 

the constraints of the parametric model which is used for further design space 

exploration.  

The creation of this parametric model along with the search for pareto optimal solutions 

is performed in the succeeding ASHVIN Task 2.3. This Task developed the GEN Tool 

as a generative design modeller for productivity, resource efficiency and safety.  

The additional succeeding ASHVIN Tasks 2.4 and 2.5 deal with the visualization of the 

EBD and GEN Tool results and the implementation of both tools on the ASHVIN Digital 

Twin platform. 

1.3 Potential Users and Audience 

The EBD Approach is aiming towards an audience in the very early stage of footbridge 

design. The audience includes both engineers and designers as well as decision 

makers in public and private institutions.  

Designers can use the approach after receiving the initial design task and before 

exploring the design space in more detail using the parametric design and optimization 

functionality presented in ASHVIN Task 2.3.  

But also project developers or public officials can use the EBD prior to the formulation 

of the design task to quickly get an overview of the realistic KPI ranges for an 

envisioned project. They can thereby make informed decisions e.g., when comparing 

different possible footbridge locations.   

1.4 Existing solutions for evidence-based design 

No market ready solutions are currently available to perform the evidence-based 

design exploration envisioned in this report. In a broader sense, EBD had large impact 

in the design of hospitals and other recovery facilities as the influence of parameters 

like daylight availability were subject of research (Wakamura, et al., 2001), (Southwell, 

et al., 1995). 

For the adaptation within the construction industry, (Rwamamara, et al., 2011) 

investigated strategies to prevent musculoskeletal injuries on construction sites. 

Several recommendations were drawn from the study including the involvement of 

construction planners in the design process and the use of industrialised production 

procedures. 
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Within the ASHVIN project the focus lies on the usage of historic Digital Twin (DT) to 

enable better designs. Several data bases of construction projects are available (e.g., 

(Administration, 2022)), but these do not include geometric data along with PI (e.g. 

cost) relevant data that could be used for PI predictions. This is the strength of the 

knowledge database provided by sbp as this dataset allows for the connection between 

geometric dimensions and PI values.   

1.5 Structure of this report 
This work is structured in three main chapters. The overall vision of the ASHVIN design 

support approach is presented in section 2. Section 3 investigates the data currently 

available and how it is used within the ASHVIN design process. Section 4 highlights 

the learnings from the currently available data and presents an approach to enrich the 

database with data from additional data sources. The final section 4.5 summarizes the 

main findings.  
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2 VISION 
This chapter presents the vision of the ASHVIN design support approach. It is currently 

not possible to fully implement this vision mainly due to the lack of Digital Twin data 

from the design and construction phase (see chapter 3). Therefore, this vision should 

provide further motivation to implement the ASHVIN Approach to digital twins in the 

construction industry. 

An overview of the ASHVIN design support workflow is shown in Figure 1. Three tools 

are introduced to support the designer in the early design phase of footbridge design.  

 

Figure 1: General Concept of the ASHVIN Design Support Tools BRICS, EBD and GEN 

The design workflow starts with the creation or receiving of the design task, which 

includes the project-specific details such as location of the proposed project include 

requirements for bridge crossing, for example. The constraints from the design task 

are fed into the Evidence Based Design Assistant (EBD). The EBD is based on a 

knowledge database of built footbridges, which is used to provide insights for the 

ongoing design process. 

The designer of the new footbridge interacts with the EBD to identify desirable 

parameter combinations and bridge typologies, thereby enabling the use of a 

parametric modelling tool to build a more detailed model of the identified subspace of 

the design space.  

The GEN enables to evaluate options according to PIs and, thus, to determine pareto-

optimal options, which form the basis for decision-making. These pareto optimal 

solutions are the to be assessed by decision makers to select one possible bridge 

design to be investigated further during detailed design.  

All newly build projects are then designed and constructed using a digital Twin (DT). 

This digital twin data can then be assessed using the BRICS (Bridge AnalytICS) tool 

which computes PIs from the raw DT data. The knowledge database is stored on the 

ASHVIN platform.  
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The BRICS tool closes the loop with the knowledge database thereby creating a 

system which constantly allows for the enrichment of the knowledge database with 

every newly constructed footbridge.  

The task of the EBD is to identify a sufficiently small subspace of the design space for 

which a parametric model can then be modeled using the GEN tool. The concept of 

design space and the different roles of the EBD tool and the GEN tool are illustrated 

in Figure 2.  

 

Figure 2: Conceptual Overview of the design space. 

At the beginning of the design process, no reliable statement can be made as to which 

part of the design space contains suitable designs for the current design task. The 

EBD allows to exclude subspaces of the design space by predicting PI values. The 

subspaces with PI values within desired limits are shown as colored ovals in the figure. 

The areas considered reasonable for the different PIs may be in different parts of the 

design space. The overlap of these subspaces can be identified as the subspace for 

which further detailed investigation using a parametric model is appropriate. 

In addition to the predictions, the EBD tool also outputs warnings that completely 

exclude areas of the design space. These should then be incorporated into the 

parametric model as a hard constraint, so that only solutions outside the critical areas 

can be considered. The subspace with warnings is shown in the figure as a red marking.  

The overlapping area of all three PI subspaces excluding the warning area is 

investigated in more detail with a parametric model. Several alternative solutions are 

created, from which the pareto-optimal solutions are prompted to the designer to 

choose the most appropriate design option. The non-optimal solutions are depicted as 

grey dots in the figure. The pareto optimal solutions are depicted as green dots.  

The implementation of a digital twin during the design and construction phase plays 

the key role in enabling the evidence-based design process discussed in this chapter. 

The DT of past construction projects are used as guiding examples to get insights into 

the design space. Therefore, geometric properties of the projects are to be stored 

along with material information, construction techniques and site information. The 
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critical point is to link this information to the PIs identified in ASHVIN Task 2.1. Thus, it 

is also necessary to store all available data needed to compute PI values inside the 

DT database. The following chapter is discussing the steps of the evidence-based 

design process that are possible with the currently available data.  
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3 CURRENT STATUS 
This chapter presents the current state of the database and what output it can provide 

for the subsequent ASHVIN Task 2.3. 

3.1 sbp footbridge database 

The database of historical footbridge projects used in this study was provided by 

project partner sbp. It is available in the form of nine excel data files. An overview of 

all nine files is given in Table 1. The individual data files are analyzed and evaluated 

using diagrams. This section aims to showcase the entirety of all the data provided by 

sbp and identifies the data tables that are useful for further EBD activities.  

All 9 data files are described in detail in the following sections of this chapter. The 

database contains a total of 238 observations on footbridge projects with each 66 

variables. A general problem of the database is the sparseness of the available data 

(see Figure 3) in addition to many variable values missing to make ample observations. 

Textbook examples work with much larger datasets containing several thousands of 

observations (Boehmke, et al., 2019). Therefore, all predictions made on basis of the 

available data are to be seen as examples on how to process the data when larger 

datasets are available. The general quality of the predictions will be discussed further 

in section 3.2.  

Table 1: Overview of the sbp footbridge database 

File name description 

fb0_location Location information including continent, country, city 

and geographic coordinates. 

fb1_general_info General information including architect, contractors, 

design scope and won awards. 

fb2_basic_struct_prop Basic structural properties including bridge type, 

material and ground conditions. 

fb3_basic_geometry Basic geometry including length, span, deck area and 

bridge type specific information. 

fb4_timeline Timeline information including project start/end, scope 

start/end and construction start/end. 

fb5_design_team Design team information including office location, 

partner and project manager 

fb7_financial_aspects Financial aspects including total cost, material cost and 

revenue design 

fb9_text Textual description of the bridge in German and English 

language 

fb10_env_imp Information on environmental aspects including global 

warming potential for excavation, structure, construction 

etc.  
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Figure 3: Overview of the sbp footbridge database 
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3.1.1 Locations 

The locations dataset holds location data for the footbridge projects. Every project is 

identified using its project number (proj_nr). An overview of the different variables in 

the dataset is given in Table 2. Location data including continent, country and city is 

present for all footbridge projects, while the geographic coordinates are missing for 

some observations as can be seen in Figure 3.  

Table 2: Overview of the variables in the fb_0_location dataset 

Column name description data type 

proj_nr Identifier of the project. integer 

proj_name The name of the project. String 

loc_continent The continent the project is based on. String 

loc_contry The country the project is based in. String 

loc_city The city the project is based in. String 

loc_wgs84_latitude The latitude coordinate of the project 

location in the WGS84 reference 

system. 

float 

loc_wgs84_longitude The longitude coordinate of the project 

location in the WGS84 reference 

system. 

float 

 

Figure 4 shows the location of all footbridge projects according to their geographic 

coordinates. Every red dot represents one footbridge project. Three main geographic 

areas can be easily distinguished:  

1. Europe 

2. US 

3. South-East Asia 

Figure 5 shows the strong focus on the German market in the portfolio of sbp 

footbridges as many of the footbridge projects in the database where constructed in 

Germany.  

 

Figure 4: Location of all footbridge projects 
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Figure 5: Countries of footbridges in the sbp database 

3.1.2 General Information 

The variables available in the dataset fb_1_general_info are presented in Table 3. This 

dataset holds information on project stakeholders including the client, architect, 

contractor, and the engineer. Additionally, the scope of sbp involvement in the project 

is present.  

Table 3: Overview of the variables in the fb_1_general_info dataset 

Column name description data type 

proj_nr Identifier of the project. integer 

proj_status iu: “in use”; nb: “not built” String 

bt_client Name of the client String 

bt_client_sector Sector of the client (“private” or “public”) String 

bt_architect Name of the architecture company of the 

project 

String 

bt_contractor Name of the contractor company of the 

project 

String 

bt_engineer Name of the engineering company of the 

project 

String 

scope Design scope of sbp in the project separated 

by / 

String 

awards Awards won by the projects String 

scope_german German scope description String 

 

The project status is especially important as it helps distinguishing between built and 

not built designs. In the following chapters only built designs are further investigated. 

From the total of 238 footbridge projects in the database 83 are built and were selected 

for the further investigation. Only these built examples are useful for the EBD approach 

as only for these PI values including for example construction time can be recorded. 
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3.1.3 Basic structural properties 

The variables present in the dataset fb_2_basic_struct_prop are presented in Table 4. 

The three variables ground_condition, special_boundary_condition and crossing, 

which would be especially interesting for the prediction of PI values are included in the 

dataset for future data gathering. 

Table 4: Overview of the variables in the fb_2_basic_struct_prop dataset 

Column name description data type 

proj_nr Identifier of the project. integer 

bridge_type One of currently 10 bridge 

typologies 

String 

bridge_type_special Special description of the bridge 

typology 

String 

description_german Description of the bridge in German String 

bridge_type_monolithic Integral/semi integral or none String 

bridge_material Bridge materials separated by / String 

bridge_type_sbp Bridge type description in German String 

Ground_condition Description of the ground condition 

of the site 

String 

Special_boundary_condition Description of special boundary 

conditions of the orjects 

String 

crossing Object the bridge is crossing String 

 

The sbp footbridges can be distinguished in 10 different bridge typologies:  

• Arch bridges 

• Cable-stayed bridges 

• Cable-net bridges 

• Cantilever bridges 

• Frame bridges 

• Girder bridges 

• Shell bridges  

• Stress-ribbon bridges 

• Suspension bridges 

• Truss bridges 

Figure 7 shows the distribution of the different bridge typologies within the dataset. 

Five typologies have more than five observations in the dataset, namely the arch, 

cable-stayed, girder, stress-ribbon, and suspension bridges. Girder and suspension 

bridges both have more than fifteen observations in the dataset.  
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Figure 6: Present data in the basic structural properties database 

 

Figure 7: Number of bridges with the different bridge typologies 

Figure 8 shows the maximum span of all bridges in the database grouped by the bridge 

typology. Some general guidelines for the design of footbridges can be derived from 

this distribution:  

• Suspension bridges are built in a wide range of spans from 25 m up to over 

200 m. 

• Stress ribbon bridges are mostly built in a span range between 25 m and 50 m 

with some exceptions above 50 m. 

• Girder bridges are built in a span range below 40 m with two exceptions above 

50 m. 

• Cable stayed bridges are built in a span range between 20 m and 80 m.  

For the other bridge typologies, the number of observations is not large enough to 

make an informed statement regarding their typical span lengths.  
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Figure 8: Maximum span of footbridge projects grouped by bridge typology 

The bridge material is also present in the basic structural properties database. One 

bridge can have multiple materials. Figure 9 shows the number of bridges with the 

different materials. It can be observed that cables, concrete, and steel are the most 

prominent materials within the sbp footbridge database. Over 70 bridges have 

components made of steel while about 50 bridges consist of concrete components. 

Less than half of the 83 total built bridges are constructed using cables.  

 

Figure 9: Material used in the database 

Figure 10 shows the correlation between the bridge typology and the bridge material. 

Dark blue indicates no correlation while light blue is read as perfect correlation. As also 

discussed in the previous figure steel is the most prominent material being present in 

nearly every bridge typology with perfect correlation. Concrete is also distributed over 
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nearly all bridge typologies. The cables are only present in suspension, stress-ribbon, 

cantilever, cable net and cable stayed bridges.   

 

 

Figure 10: Correlation matrix of bridge typology and bridge material 
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3.1.4 Basic Geometry 

The variables present in the dataset fb_3_basic_geometry are presented in Table 5.  

Table 5: Overview of the variables in the fb_3_basic_geometry dataset 

Column name description data type 

proj_nr Identifier of the project. integer 

coord system Coordinate System of the project (“Gauß-

Krueger” or “UTM”) 

String 

length Bridge length in [m] float 

span Bridge spans in [m] separated by / float 

deck_width Bridge deck width in [m]  float 

deck_thickness Bridge deck thickness in [m] float 

deck_area Bridge deck area in [m²] float 

pylon_mast_height Height of the pylon in [m] float 

pylon_mast_diameter Diameter of the pylon in [m] float 

pier_height Height of the pier in [m] float 

inclinatin Inclination of the bridge in radians float 

cable_sag Cable sag of the bridge’s suspension cable 

in [m] 

float 

arch_rise Rise of the bridge’s arch in [m] float 

 

 

Figure 11: Linear correlation between the maximum span and the pylon height 

Very few data is available on the typology specific dimensions like pylon height or arch 

rise as can be seen in Figure 3. Nevertheless, one interesting correlation can be seen 

between the bridge maximum span and the pylon height. This is presented in Figure 

11. A linear correlation can be observed for the maximum span ranging from 25 m to 
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200 m and the pylon height between 5 m and 50 m. This correlation can directly feed 

into the Evidence Based Design Assistant as a dimension recommendation.  

In contrast to the pylon height, for the deck thickness no correlation with the maximum 

bridge span can be observed (see Figure 12). No linear relationship between the two 

variables is apparent. A k-nearest-neighbours approach might be used to implement 

the findings of this investigation within the prototypical implementation of the EBD 

presented in section 3.3. 

 

Figure 12: Scatterplot of the deck thickness for different maximum spans 
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3.1.5 Timeline 

The variables present in the dataset fb_4_timeline are presented in Table 6. This 

dataset is especially useful as it contains the construction duration, which can be seen 

as a PI value for the productivity on the construction site. The construction duration is 

present in the database for 43 footbridge projects. 

Prediction functions for the prediction of the construction time based on geometric 

properties are investigated in section 3.2.2. 

Table 6: Overview of the variables in the fb_4_timeline dataset 

Column name description data type 

proj_nr Identifier of the project. integer 

proj_start Project start date date 

proj_end Project end date date 

proj_duration Project duration in [days] integer 

scope_start sbp scope start date  date 

scope_end sbp scope end date date 

scope_duration sbp scope duration in [days] integer 

constr_start Construction start date date 

constr_end Construction end date date 

constr_duration Construction duration in [day] integer 

finished Project finish date date 

 

3.1.6 Design Team 

The design team dataset holds no relevant data for the further studies. 

3.1.7 Financial Aspects 

The variables present in the dataset fb_7_financial_aspects are presented in Table 7. 

This dataset holds financial information for the bridge construction which can be used 

as a PI for the cost. The total design cost are available for 86 bridges. Analogously to 

the construction time, prediction functions for the cost are presented in section 0. 

Table 7: Overview of the variables in the fb_7_financial_aspects dataset 

Column name description data type 

proj_nr Identifier of the project. integer 

costs_tot Total design costs of the project in [€] integer 

costs_material Material costs of the project in [€] integer 

costs_design_personnel Cost of the design personnel in [€] integer 

revenue_design Revenue of the design in [€]  integer 

 

3.1.8 Text 

The text dataset holds no relevant data for the further studies. 
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3.1.9 Environmental impact 

The variables present in the dataset fb_10_environmental_impact are presented in 

Table 8. 

This dataset holds carbon footprint information which can be used as a PI for the 

sustainability of footbridge design projects. The GWP (Global Warming Potential) data 

is available for 29 of the footbridge design projects in the database. 

Analogously to the construction time and cost prediction functions are investigated in 

section 0. 

 

Table 8: Overview of the variables in the fb_10_env_impact dataset 

Column name description data type 

proj_nr Identifier of the project. integer 

CO2_Excavation Greenhouse gas emissions during the 

excavations works in [kgCOe] 

float 

CO2_Structure Carbon footprint of the structure in [kgCO2e] float 

CO2_Foundations Carbon footprint of the foundations in 

[kgCO2e] 

float 

CO2_Temporary 

structure 

Greenhouse gas emissions of the temporary 

structures in [kgCO2e] 

float 

CO2_Finishing Greenhouse gas emissions of the finishings in 

[kgCO2e] 

float 

CO2_Construction 

site 

Greenhouse gas emissions on the construction 

site in [kgCO2e] 

float 

CO2_Exploitation Greenhouse gas emissions of the exploitation 

in [kgCO2e] 

float 

CO2_Transport Greenhouse gas emissions of the transport in 

[kgCO2e] 

float 
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3.1.10 Summary for geometric and PI values 

This section presents a summary of the most relevant data from the sbp database, 

namely the geometric dimensions and PI values.  

Table 9: Overview of the geometric and PI-related data in the sbp footbridge database including minima, maxima 
and mean values 

Name min max mean unit 

length 23 760 119.27 [m] 

span 2.5 216.7 51.25 [m] 

span_num 1 11 1.53 - 

deck_width 1.8 11.5 4.14 [m] 

deck_thickness 0.1 1.2 0.34 [m] 

deck_area 61.6 10580 580.71 [m²] 

pylon_mast_height 7 52.4 20.31 [m] 

pylon_mast_diam 0.66 1.2 0.8 [m] 

time 81 1310 423.65 [days] 

time_per_area 0.11 5.40 1.48 [days/m²] 

cost 220000 3.6e+07 2515661 [€] 

cost_per_area 1750 22727 5320 [€/m²] 

carb 1687 103106 15350 [kgCO2eq] 

carb_per_area 9.31 42.83 29.04 [kgCO2eq/m²] 

 

Table 9 includes the minima, maxima and mean values for the geometric dimensions 

included in the sbp footbridge database. The PI-values for construction time, design 

cost and carbon footprint are included as total values as well as normalized values per 

square meter deck area. These normalized values are computed for every project with 

its specific PI value and deck area. The minimum and maximum values are then 

identified from these projects specific normalized values.  

3.2 PI Predictions from the sbp footbridge database 

This section summarizes the PI-predictions for cost, construction time and carbon 

footprint using linear regression models. These PIs were chosen from the PIs collected 

in ASHVIN Task 2.1. The design personnel costs are a PI for the KPI cost, the 

personnel productivity during the construction phase is a PI for the KPI productivity 

and the Global Warming Potential (GWP) is a PI for the KPI resource efficiency. 

Due to the very limited size of the dataset, it is difficult to draw reliable conclusions 

from the prediction functions. Therefore, the very basic machine learning (ML) class of 

linear regression models was chosen to demonstrate the evidence-based design 

approach. These regression models are an output of Task 2.2 and are used as input 

for the creation of the parametric logic in ASHVIN Task 2.3. 

For each of the three PIs five linear regression models with different predictors were 

created. The basic geometric dimensions bridge length L, bridge width W and bridge 

thickness T are used as predictors.  

In the ML nomenclature, L, W and T are the independent variables, while the PI values 

for cost, productivity and resource efficiency are the dependent variables.  
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The different models are compared using three common error measures (Bradley , et 

al., 2020):  

1. Root mean square error (RMSE), objective: minimize. 

2. Mean absolute error (MAE), objective: minimize. 

3. R², objective: maximize. 

The linear regression models were created in R (The R Foundation, 2022) using the 

package caret (Kuhn, 2022). This package is especially useful to directly perform 

model testing via cross validation. Additionally, the error measures presented before 

are computed by the functions form the caret package.  

3.2.1 Cost 

For the cost PI five different linear regression models were created each using different 

predictor(s). As can be seen in Table 10 the sample size for the models 4 and 5 using 

all three predictors is greatly reduced compared to the single predictor models 1 to 3 

as the geometric data is only available for a limited number of bridges.  

Model 5 uses all three dimensions L, W and T as well as their combinations L*W, L*T, 

W*T and L*W*T as predictors.  

Table 10: Predictor(s) of the linear regression models for cost prediction 

Model  predictor(s) Sample size 

1 Bridge length L 54 

2 Bridge width W 47 

3 Bridge deck thickness T 28 

4 Length, width, thickness without interaction 22 

5 Length, width, thickness including interaction 22 

 

All models were evaluated using 10-fold cross validations. The resulting accuracy 

measured using RMSE, MAE and R² is shown in Table 11. Model 4 performs best 

considering RMSE and MAE error measures while model 5 has the best performance 

regarding R².  

It has to be emphasized that no general conclusions can be drawn from these 

investigations due to the very limited size of the dataset. This process is presented as 

an example to showcase the potential of DT based data in future construction projects.  

Table 11: Accuracy of the linear regression models for cost prediction using RMSE, MAE and R² 

Model RMSE [€] MAE [€] R2 [-] 

1 2855840 1864489 0.662 

2 4507420 3041447 0.263 

3 1261940 1061050 0.483 

4 454148 406878 0.943 

5 473036 429627 0.989 
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The coefficients for the derived linear models are shown in Table 12. The general 

formula for the cost prediction is presented below.  

𝑐𝑜𝑠𝑡[€] = 𝑐0 + 𝑐𝐿 ⋅ 𝐿 + 𝑐𝑊 ⋅ 𝑊 + 𝑐𝑇 ⋅ 𝑇 + 𝑐𝐿𝑊 ⋅ 𝐿 ⋅ 𝑊 

+𝑐𝐿𝑇 ⋅ 𝐿 ⋅ 𝑇 + 𝑐𝑊𝑇 ⋅ 𝑊 ⋅ 𝑇 + 𝑐𝐿𝑊𝑇 ⋅ 𝐿 ⋅ 𝑊 ⋅ 𝑇 

In this equation the coefficients ci from Table 12 are input. To illustrate the procedure, 

the resulting equation for model 4 is shown below. 

𝑐𝑜𝑠𝑡𝑚𝑜𝑑𝑒𝑙4[€] = −249792€ + 13318
€

𝑚
 ⋅ 𝐿 − 109904

€

𝑚
⋅ 𝑊 + 2172682

€

𝑚
⋅ 𝑇 

+0 ⋅ 𝐿 ⋅ 𝑊 + 0 ⋅ 𝐿 ⋅ 𝑇 + 0 ⋅ 𝑊 ⋅ 𝑇 + 0 ⋅ 𝐿 ⋅ 𝑊 ⋅ 𝑇 

It is obvious from the coefficients in Table 12 that some predictions made from the 

available data are not reliable. Examples are the models 1 and 2 with their negative 

intercepts. These lead to the obviously false prediction that for example short bridges 

(L < 40m) would correlate with negative design cost. These observations are again 

indications for the insufficient size of the database.  

Table 12: Coefficients for all five models for cost prediction 

 
Model1 Model2 Model3 Model4 Model5 

intercept -1391717 -4405144 526777 -249792 -1495436 

L 35528 0 0 13318 22696 

W 0 1700765 0 -109904 393660 

T 0 0 2773472 2172682 3751242 

L*W  0 0 0 0 -3948 

L*T 0 0 0 0 -945 

W*T 0 0 0 0 -748154 

L*W*T 0 0 0 0 2583 

 

3.2.2 Construction Time  

Analogously to the cost also for the construction time five different linear regression 

models were created and compared. The predictor(s) along with the sample sizes are 

presented in Table 13. The sample size is even smaller than for the cost predictions 

Table 13: Predictor(s) of the linear regression models for construction time prediction 

Model  predictor(s) Sample size 

1 Bridge length 29 

2 Bridge width 28 

3 Bridge deck thickness 13 

4 Length, width, thickness without interaction 12 

5 Length, width, thickness including interaction 12 
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In contrast to the design cost prediction model 1 performs best based on the RMSE 

and MAR error measures as can be seen in Table 14. This model is using the bridge 

length as a single predictor. For the R² error measure models 3 to 5 show the best 

performance with the perfect R² value of 1.0. This performance is to be questioned 

considering the very small dataset. A high value of R² along with the performance in 

the other two error measures could be an indication for overfitting (Babyak, 2004). 

Table 14: Accuracy of the linear regression models for construction time prediction using RMSE, MAE and R² 

Model RMSE [days] MAE [days] R2 [-] 

1 134.06 115.61 0.63 

2 230.85 190.58 0.68 

3 154.48 152.91 1.00 

4 136.53 131.74 1.00 

5 479.77 416.19 1.00 

 

The coefficients ci and the intercept c0 for all five linear regression models for 

construction time prediction are shown in Table 15. 

Table 15: Coefficients for all five models for construction time prediction 

 
Model1 Model2 Model3 Model4 Model5 

intercept 248.92 178.32 366.30 35.31 84.92 

L 1.32 0 0 1.27 -4.40 

W 0 55.01 0 47.40 10.65 

T 0 0 35.68 3.87 -2.16 

L*W  0 0 0 0 1.99 

L*T 0 0 0 0 7.99 

W*T 0 0 0 0 23.76 

L*W*T 0 0 0 0 -2.59 

 

The general formula for the construction time prediction is presented below.  

𝑡𝑖𝑚𝑒[𝑑𝑎𝑦𝑠] = 𝑐0 + 𝑐𝐿 ⋅ 𝐿 + 𝑐𝑊 ⋅ 𝑊 + 𝑐𝑇 ⋅ 𝑇 + 𝑐𝐿𝑊 ⋅ 𝐿 ⋅ 𝑊 

+𝑐𝐿𝑇 ⋅ 𝐿 ⋅ 𝑇 + 𝑐𝑊𝑇 ⋅ 𝑊 ⋅ 𝑇 + 𝑐𝐿𝑊𝑇 ⋅ 𝐿 ⋅ 𝑊 ⋅ 𝑇 

For model 5 this translates to the following prediction function:  

𝑡𝑖𝑚𝑒[𝑑𝑎𝑦𝑠] = 84.92 𝑑𝑎𝑦𝑠 − 4.4
𝑑𝑎𝑦𝑠

𝑚
⋅ 𝐿 + 10.65

𝑑𝑎𝑦𝑠

𝑚
⋅ 𝑊 − 2.16

𝑑𝑎𝑦𝑠

𝑚
⋅ 𝑇 

+1.99
𝑑𝑎𝑦𝑠

𝑚2
⋅ 𝐿 ⋅ 𝑊 + 7.99

𝑑𝑎𝑦𝑠

𝑚2
⋅ 𝐿 ⋅ 𝑇 + 23.76

𝑑𝑎𝑦𝑠

𝑚2
⋅ 𝑊 ⋅ 𝑇 − 2.59

𝑑𝑎𝑦𝑠

𝑚3
⋅ 𝐿 ⋅ 𝑊 ⋅ 𝑇 
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3.2.3 Carbon Footprint 

Five different carbon footprint prediction models were created as can be seen in Table 

16. For these models the sample size was even smaller than for the cost and 

construction time models. Therefore only 5-fold cross validation could be performed 

on these models. 

Table 16: Predictor(s) of the linear regression models for carbon footprint prediction 

Model  predictor(s) Sample size 

1 Bridge length 19 

2 Bridge width 17 

3 Bridge deck thickness 7 

4 Length, width, thickness without interaction 6 

5 Length, width, thickness including interaction 6 

 

The accuracy assessment using RMSE, MAE and R² in Table 17 shows similar results 

to the construction time prediction models. Model 1 using the bridge length as the 

single predictor performs best considering RMSE and MAE while R² identifies the 

models 3 to 5 to be most accurate. Again, the overfitting of the data due to very small 

sample size has to be taken into consideration especially for these models.  

Table 17: Accuracy of the linear regression models for carbon footprint prediction using RMSE, MAE and R² 

Model RMSE 

[kgCO2e] 

MAE 

[kgCO2e] 

R2 [-] 

1 10532 6326 0.82 

2 17382 12158 0.37 

3 12276 11942 1 

4 13651 13285 1 

5 48697 48514 1 

 

The intercepts c0 and the coefficients ci for the five carbon footprint prediction models 

are presented in Table 18. For model 5 it was not possible to compute all coefficients 

because the number of coefficients (8) is higher than the sample size (6). This is why 

only the six first coefficients could be computed for this model. 
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Table 18: Coefficients for all five models for carbon footprint prediction 

 
Model1 Model2 Model3 Model4 Model5 

intercept -877.0 -15325.2 -3597.9 -12332.0 4128.9 

L 113.85 0 0 48.8 -442.3 

W 0 6584.1 0 -130.9 -5333.9 

T 0 0 39944.3 44131.2 38107.0 

L*W  0 0 0 0 189.9 

L*T 0 0 0 0 -219.2 

W*T 0 0 0 0 0 

L*W*T 0 0 0 0 0 

 

The general equation is shown below: 

𝑐𝑎𝑟𝑏𝑜𝑛 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 [𝑘𝑔𝐶𝑂2𝑒] = 𝑐0 + 𝑐𝐿 ⋅ 𝐿 + 𝑐𝑊 ⋅ 𝑊 + 𝑐𝑇 ⋅ 𝑇 + 𝑐𝐿𝑊 ⋅ 𝐿 ⋅ 𝑊 

+𝑐𝐿𝑇 ⋅ 𝐿 ⋅ 𝑇 + 𝑐𝑊𝑇 ⋅ 𝑊 ⋅ 𝑇 + 𝑐𝐿𝑊𝑇 ⋅ 𝐿 ⋅ 𝑊 ⋅ 𝑇 

For model 5 this translates to the following specific function: 

𝑐𝑎𝑟𝑏𝑜𝑛 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 [𝑘𝑔𝐶𝑂2𝑒] = 4128.9 𝑘𝑔𝐶𝑂2𝑒 − 442.3
𝑘𝑔𝐶𝑂2𝑒

𝑚
⋅ 𝐿 

−5333.9
𝑘𝑔𝐶𝑂2𝑒

𝑚
⋅ 𝑊 + 38107.0

𝑘𝑔𝐶𝑂2𝑒

𝑚
⋅ 𝑇 + 189.9

𝑘𝑔𝐶𝑂2𝑒

𝑚2
⋅ 𝐿 ⋅ 𝑊 

−219.2
𝑘𝑔𝐶𝑂2𝑒

𝑚2
⋅ 𝐿 ⋅ 𝑇 + 0 ⋅ 𝑊 ⋅ 𝑇 + 0 ⋅ 𝐿 ⋅ 𝑊 ⋅ 𝑇 

3.3 Output from the evidence-based design into the parametric design 

This section summarizes the connection between the evidence-based design 

investigations of ASHVIN task 2.2 and the parametric and generative design workflow 

of ASHVIN task 2.3. The geometric dimensions provided in Table 9 feed into the 

parametric model of ASHVIN Task 2.3 as parameter ranges. As only one typology is 

implemented in T2.3 the pylon dimensions are not used in the parametric model. 

Additionally to the geometric dimensions also the PI predictions explained in section 

3.2 are used in the generative design process to score the PI values of the different 

design options. A summary of the relevant tables feeding into the parametric and 

generative design workflow of ASHVIN Task 2.3 is given in Table 19. 

Table 19: Overview of the data provided to ASHVIN Task 2.3 

Table Description 

Table 9 Parameter ranges of geometric values 

Table 12 Coefficients for linear regression models for cost prediction 

Table 15 Coefficients for linear regression models for construction time prediction 

Table 18 Coefficients for linear regression models for carbon footprint prediction 
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4 MOVING ON 
This section contains steps that could be taken to enrich the existing database of 

footbridge designs along with possibilities to use the presented knowledge database 

for a prototypical EBD tool. 

4.1 Prototypical Implementation of an Evidence Based design Assistant 

This section presents a prototypical implementation of an evidence-based design 

assistant which is based on the knowledge database presented in the previous 

sections.  

4.1.1 General Concept 

The evidence-based design assistant is envisioned as a tool helping the footbridge 

designer in the early design phases to get a broad overview over the design space. 

With this overview the designer is enabled to take an informed decision on which type 

of design should be investigated in more detail.  

The insights are provided to the user in three distinct categories as presented in Figure 

13. These are explained in more detail in the following sections.  

 

Figure 13: General Concept of the Evidence Based Design Assistant 

4.1.1.1 Predictions 

Predictions are seen as numerical forecasts of PI-Values based on the input of the 

user. The input of the user is derived from project requirements like the length of the 

footbridge and other boundary conditions like loading type and soil conditions. The 

predictions are made based on data from built footbridge projects.  

By providing predictions of PI values the tool enables the designer to take an informed 

decision on which kind of bridge typology might be further investigated. Predictions 

can be made in different KPI categories. The productivity KPI could be addressed 

using the construction time of past footbridge projects. Similarly, also the Cost KPI 

could be covered with the construction cost. For the Sustainability KPI the Carbon 

Footprint of the Construction could be used.  

In terms of safety a predicted number of accidents might be helpful, although this falls 

into another category than the other three examples provided before. A construction 

should ideally always be completed without any construction accidents. Therefore, 

Knowledge 

Database 

Predictions 

Warnings 

Recommendations 
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other measures like warnings were implemented to mitigate the risk for the workers on 

footbridge construction sites. 

4.1.1.2 Warnings 

Warnings are mostly connected to the Safety KPI to mitigate risks of construction 

workers. This is done by identifying critical combinations of input values that could lead 

to higher risks on the construction site. As some risks are very site specific another 

idea is to prompt the user with accidents which happened on the construction sites of 

similar projects to the one currently in design. This helps the design team to keep in 

mind potential risks and helps mitigating them.  

Also, for the other KPIs warnings might be useful to show the risk of not staying in the 

desired ranges of cost, productivity, or resource efficiency.  

4.1.1.3 Recommendations 

For different bridge types, rough dimensions can be derived from the data of the 

existing structures. These are then referred to as recommendations. In addition to 

rough dimensions, a material recommendation can also be made. Furthermore, 

relevant standards for the dimensioning or regarding safety aspects on the 

construction site can be incorporated as a reference. 

4.1.2 User Interface 

This section presents the user interface of the prototypical implementation of the 

evidence-based design assistant (EBD). The EBD was implemented as a R shiny 

dashboard application (RStudio, 2020). 

4.1.2.1 Inputs 

The user of the tool specifies the basic geometry of the new bridge to be designed in 

the tool. For the geometry, two initial values are used as a basis: 

• Bridge length in [m] 

• Bridge width in [m] 

In most cases, these two values can be taken from the task description of a new 

footbridge to be designed. The ranges of definition of the geometric input variables 

were derived from the minimum and maximum values of the bridges available in the 

sbp database.  

As no safety related data is available in the database an industry expert was contacted 

to gain insights which constraints might be influencing the construction safety and are 

at the same time available during the early design phases.  

The prefabrication status was identified as one key aspect as for certain types of 

bridges the possibility to prefabricate major parts greatly reduces the number of 

connections being manufactured on site. Every single connection poses a potential 

safety risk and therefore the reduction of the number of connections could be a valid 

mean for achieving safer construction.  

To enable prefabrication warnings within the EBD the possibility to prefabricate larger 

parts on site or the possibility to deliver large parts is queried from the user.  
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Figure 14: Parameter input of the prototypical Implementation of the Evidence Based Design Assistant 

The last input present in the tool is the desired bridge typology. The user can thereby 

decide if the insights should be provided for a general footbridge or with regards to a 

specific bridge typology.  

The inputs widget of the shiny application is shown in Figure 14. 

4.1.2.2 Evidence Landscape 

The evidence landscape gives an overview over all footbridge projects in the database 

that are used for the current predictions and recommendations. It shows a 2-D 

scatterplot with the two input parameters length and width on the x-axis and y-axis. All 

footbridge projects within the database are depicted as dots in the plot, in coloured 

groups based on the bridge type. The current project defined by the inputs is marked 

with a red dot. For the five selected most similar projects for the nearest neighbours 

approach the project number is also given within the plot for easy connection with the 

small data sheets provided in the tool.  

Under the evidence landscape a small text tells the user how many footbridge projects 

were found for the specified typology. A screenshot of the evidence landscape in the 

shiny application is provided in Figure 15. 



D2.2 Evaluation and recommendations for an evidence-based design for productivity, 
resource efficiency, and safety based on historical digital twin data 

  

 36 

 

 

Figure 15: Evidence landscape in the prototypical Implementation of the Evidence Based Design Assistant. 

4.1.2.3 Predictions 

To enhance the interpretability of the EBDs outputs a k-Nearest neighbours approach 

was selected for the PI predictions for cost, time and carbon footprint. The predictions 

are computed using the five most similar footbridge projects. Similarity is evaluated 

based on the bridge length and width. If a specific bridge typology is selected, only 

bridges with this typology the five most similar projects with this typology are 

considered.  

A screenshot of the predictions representation is shown in Figure 16. A red dot marks 

the prediction for the bridge currently under investigation based on the user input. The 

black dots show the five selected similar footbridge projects with larger dots implying 

greater similarity. Next to the graphical representation also numerical values are 

provided both as total values and normalized values per square meter deck area.   
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Figure 16: Predictions output in the prototypical Implementation of the Evidence Based Design Assistant 

4.1.2.4 Recommendations 

Dimension recommendations are given for the different bridge typologies. These are 

currently based on quasi linear relationships between input and output values. The 

only observable linear relationship is the pylon height based on the bridge span as 

shown in section 0. A screenshot of the respective widget is shown in Figure 17. 

 

Figure 17: Screenshot of the dimension recommendations widget in the prototypical Implementation of the 
Evidence Based Design Assistant. 

4.1.2.5 Warnings 

Two types of warnings are implemented in the EBD-Prototype. The prefabrication 

warnings are based on the user input and provide insights whether the chosen bridge 

typology would benefit from prefabrication in the construction safety.  

Additionally, the five nearest neighbours identified also for the PI prediction are shown 

with PI data and possible safety incidents during construction. This way the user of the 

tool is enabled to take measures preventing similar construction incidents in the 

upcoming design and construction project. The data on construction incidents needs 

to be stored within the knowledge database so it can be used for warnings in this widget 

of the tool.  

A screenshot of the warnings widget is shown in Figure 18. The prefabrication warning 

is currently active (red text) as a bridge type was chosen which would benefit from 

prefabrication.  

Under the pictures of the 5 nearest bridges the number of safety incidents is provided. 

If there were any safety incidents in the database these could be added here including 

a small description.  
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Figure 18: Warnings in the prototypical Implementation of the Evidence Based Design Assistant 

4.2 Prototypical implementation of the BRICS Tool for scoring PI values 
Two tool prototypes for PI computation are presented in (Merz, 2022), which was 

written within ASHVIN Task 2.2. These two tools are presented in the following 

chapters. The tools can be seen as two first components of the BRICS tool for scoring 

PI values. 

Both the Sofistik2CarbonFootprint tool and the ProjectHoursMonitor tool allow for the 

direct export of the computed PI values into the knowledge database.  

4.2.1 Carbon Footprint Calculation from Sofistik Models 

Structural analysis can be performed using 3D Finite Element Models (FEM) which 

can be implemented e.g. using the structural analysis software Sofistik.   

This tool provides the functionality to directly compute a carbon footprint of the 

embodied carbon of the structure from a Sofistik FE model. Figure 19 shows a 

screenshot of the tool with the input of bridge database and project number on the left 

side and the textual representation of the computed carbon footprint on the right.  

 

Figure 19: Screenshot of the information tab of the Sofistik2CarbonFootprint Tool 

Other graphical representations of the computed carbon footprint are also available in 

the tool as shown in Figure 20 and Figure 21.  

The By Group tab of the tool presents a bar chart of the carbon footprint divided into 

the different material types and structural elements. The history chart gives insights 

into the development of the model’s carbon footprint when several model iterations are 

provided.  
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Figure 20: Screenshot of the by group tab of the Sofistik2CarbonFootprint Tool 

 

Figure 21: Screenshot of the history tab of the Sofistik2CarbonFootprint Tool 

4.2.2 Project design hours calculations from projects hours datasets 

The ProjectHoursMonitor uses project hours tables provided by a project hours 

software to score the current project in comparison with other footbridge design 

projects from the database.  

Figure 22 shows the information tab which is similar to the information tab in the 

Sofstik2CarbonFootprint tool. 

 

Figure 22: Screenshot of the information tab of the ProjectHoursMonitor Tool 
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The comparison of the project design hours of different bridge types and the current 

bridge design marked with a red dot can be seen in Figure 23. This allows for the quick 

assessment of the status of the current footbridge design project.  

 

Figure 23: Screenshot of the design cost per bridge type tab of the ProjectHoursMonitor Tool 

4.3 Updated database scheme 

This section collects learnings from the previous chapter 3 with regards to the available 

and required data for evidence-based design activities. 

4.3.1 Geometric dimensions 

For the geometric dimensions an issue in the sbp database is the inconsistency 

between the length, the width, and the deck area variable. These three variables 

should be reduced to two variables as the deck area can be computed by multiplying 

the length with the width.  

Additionally, the length variable might be dropped as the length should be computable 

from the sum of the spans. 

Another topic regarding the geometric dimensions would be bridge type specific 

dimensions. The sbp database currently contains variables like the pylon height which 

is only applicable for certain bridge types like cable-span bridges or suspension 

bridges. One solution could be the introduction of generic dimensions in the general 

database which would be translated to bridge type specific dimensions using a 

separate data file as shown in Table 20. 

Table 20: Example for the connection of bridge typologies and type specific dimensions 

bridge type dimension 1 dimension 2 dimension 3 

arch Arch rise Number of hangers Arch cross section area 

suspension Pylon height Cable sag Pylon cross section area 

cable-stayed Pylon height Number of cables Pylon cross section area 

 

4.3.2 Inclusion of safety incidents and accident descriptions 

To provide safety related insights during the design phase it is necessary to the safety 

incidents during construction inside the knowledge database. Along with the plain 

number of fatal accidents, non-fatal accidents and near misses also a short description 
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of the accident’s cause should be included in the database enabling the designer to 

learn from previous incidents.  

4.3.3 Inclusion of prefabrication related data in the database 

To quantify the influence of prefabrication on the PIs of footbridge design the 

prefabrication status of newly built footbridge design projects should be included in the 

database. Different approaches for assessing the prefabrication status are available 

mainly in the building construction sector. An adoption for footbridge design might be 

useful in this area.   

4.4 Data Storage requirements 

Database storage requirements accompanied by financial and energy related cost 

might be a major drawback to the implementation of DT for the early design stages. 

Therefore storage requirements for the currently available data were investigated 

along with projections for a greatly increasing database of footbridge projects.  

The ASHVIN digital twin platform is currently running two different clusters which are 

shown in Table 21. 

Table 21: Currently used clusters with specification and monthly cost. 

Cluster Specification Cost 

Digital Ocean 

Cluster x3 nodes 

6vCPUs, 12Gb RAM, 240 Gb Disk 24 $/month 

AWS EC2 x3 nodes + 

RDS: t3.xlarge 

4 CPUs, 16.0Gb RAM + db.t2.micro - 

2vCPUs, 1Gb RAM, Disk on demand 

(100Gb scalable to 1000Gb) 

420$ + 750$ for 

RDS / month 

 

The footbridge database provided by sbp including around 300 footbridge projects with 

ca. 70 parameters has a size of 300 kB. For comparison the US National Bridge 

Inventory database (Administration, 2022) holding over 700,000 us bridges and 123 

variables has a size of under 300 MB.  

Regarding the power consumption an estimate was made based on (Intel, 2009) a 

value of between 0.001Kwh and 1Kwh per month was derived for a potential database 

size of 300 MB. This translates to the emission of between 0,042 gCO2eq and 420 

gCO2eg in case of energy production in Germany (Umweltbundesamt, 2022).   

It can be concluded that the cost and energy related ramifications of the storage of 

digital twin data for the design phase of footbridge projects is very small and therefore 

doesn’t pose a major obstacle in the implementation of the approach.   
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4.5 Sensor-based data within the design workflow 
The data presented in this report is based on geometric dimensions or site-specific 

conditions as well as PI values which are the result of computations or observations 

during or after the construction. This data is not sensor-based but originates from 3D-

models, site investigations or design/construction computations.  

As the ASHVIN project has a focus on sensor-based data this section explores the 

possibilities to interact with this topic in the design phase. 

4.5.1 Design insights for sensor placement 

One important aspect is the placement of sensor during the construction or 

maintenance phase of a footbridge. Due to the cost of sensor installation and the large 

amount of data produced by sensors (especially compared to the database sizes 

discussed in section 4.4) the strategic placement of a limited number of sensors 

requires careful attention. 

The designers of the footbridge have insight knowledge of its structural behaviour and 

are thereby predestined to also plan for possible sensor positions in the design stage 

of the footbridge. These sensor positions should be stored in the DT during the design 

stage so that their installation in later stages of the lifespan is informed by the designers’ 

decisions.  

If the EBD provides safety warnings for the construction of the footbridge the 

installation of sensors like motion trackers might be prompted to the designer as a 

recommendation. This way sensor installation could be a mean to enhance 

construction safety. 

4.5.2 Using sensor data in the knowledge database 

Another aspect of the sensor data is the inclusion of insights made from this historic 

DT data into the knowledge database.  

One possible use case could be the design load estimation. In the example of 

footbridges, a strain gauge measuring the strain in the lower part of the cross section 

could be used to calculate the real loading of the footbridge. Another possibility would 

be camera images capturing the real occupancy of the footbridge in discrete time 

intervals. Collecting this data for several footbridges and including it into the knowledge 

database would enable engineers to compare the loading required by design codes 

with the evidence-based prediction. If the real loading is significantly smaller than the 

design load this could lead to a revision of the design code. Smaller design loads then 

influence the dimensions of newly built footbridges and would lead to less material 

being necessary, thereby reducing the PIs of material cost and carbon footprint. 

5 CONCLUSION 
This deliverable includes an explanation of the knowledge-based design system 

envisioned within the ASHVIN projects. The three distinct approaches of PI 

computation, evidence-based design and generative design are capsulated into three 

tool prototypes, of which the evidence-based design assistant and the BRICS tool for 

PI scoring are presented in this document.  

The available data from the sbp footbridge portfolio is analysed and the potential for 

ML prediction models regarding cost, construction time and carbon footprint is 

discovered. Different linear regression models were compared and the preferable 
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geometric predictors for different PI values were identified. It has to be noted that the 

available database is very small and therefore no reliable statements regarding 

specific values can be made. But it was still possible to showcase the overall workflow 

and information flow into the following ASHVIN task 2.3. 

Steps towards an improved database scheme as well as the BRICS tool for enriching 

the knowledge database were presented along with the investigation of data storage 

requirements.  

The overall process shows the applicability of the approach even though the available 

database has major flaws which motivates the introduction of a digital twin as a 

standardized way of collecting data of future footbridge design and construction 

projects.   
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