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ABSTRACT
The spectral behavior of kernel matrices built from complex multi-
variate data is established in the asymptotic regime where both the
number of observations and their dimensionality increase without
bound at the same rate. The result is an extension of currently avail-
able results for inner product based kernel matrices formed from
real valued observations to the case where the input data is com-
plex valued. In particular, assuming complex independent standard-
ized Gaussian inputs and imposing certain conditions on the kernel
function, it is shown that the empirical distribution of eigenvalues of
this type of matrices converges almost surely to a probability mea-
sure in this asymptotic domain. Furthermore, the asymptotic spectral
density can be obtained by solving a quartic polynomial equation in-
volving its Stieltjes transform and some coefficients depending on
the Hermite-like expansion of the kernel function. This is in stark
contrast with the equivalent result for real valued observations, in
which the underlying polynomial equation is cubic.

Index Terms— Kernel matrices, complex observations, limiting
spectrum, Hermite polynomials.

1. INTRODUCTION

Practical problems in modern data science cannot possibly be de-
scribed using only linear interactions among the data, and this fact
that has traditionally motivated the need for non-linear data analyti-
cal procedures. The introduction of kernel methods has spurred the
development of a number of non-linear extensions to classical linear
algorithms, which have been usually referred to as kernel methods
[1]. Kernel methods have been shown to outperform linear tech-
niques in a number of classification, regression and structure ex-
traction procedures inherent to modern machine learning. Relevant
examples include Spectral Clustering [2, 3, 4, 5], Principal Compo-
nent Analysis [6, 7, 8, 9], Support Vector Machines [10], Discrim-
inant Analysis [11, 12, 13, 14] or Canonical Correlation Analysis
[15, 16, 17, 18].

Kernel-based learning methods conventionally work on the ker-
nel matrix K, which is built from the observations by applying a
non-linear function to some distance measure between pairs of ob-
servations. More specifically, if x1, . . . ,xn are a collection of p-
dimensional observations and f(·) is a certain non-linear function,
the kernel matrix K is defined as a n×n random matrix with entries
Ki,j = f(d (xi,xj)) where d (xi,xj) is a certain distance measure
between the observations xi and xj , usually chosen for real valued
data as either d (xi,xj) = xTi xj (inner product kernel matrices) or
d (xi,xj) = ‖xi − xj‖2 (Euclidean distance kernel matrices).
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It turns out that the spectral behavior of the kernel matrix K
(i.e. the behavior of its eigenvalues and eigenvectors) is of funda-
mental importance in order to determine the performance of the cor-
responding learning algorithms. Unfortunately, given the inherent
non-linearity of the kernel function f(·) and the statistical nature of
the observed data, it becomes very difficult to infer statistical prop-
erties of K for fixed p, n. This has motivated a number of studies on
the asymptotic behavior of the spectrum of K.

Traditional studies have mainly focused on the behavior of these
kernel matrices in the limit as n→∞ for a fixed observation dimen-
sion p. For instance, [19] and [20] studied the relationship between
the eigenvalues of K and the eigenfunctions of the associated inte-
gral operator as n → ∞. It was argued in these papers that this
connection can be exploited in order to design kernel functions that
are specifically tuned for classification problems. Unfortunately, the
asymptotic regime in which the sample size n → ∞ for fixed p is
not representative in many machine learning applications, especially
in high dimensional data problems whereby p may have the same
magnitude (or be even larger) than n. This has recently motivated
the study of the behavior of the kernel matrix K under more real-
istic asymptotic conditions where both the observation dimension p
and the number of observations n converge to infinity at the same
rate (i.e. n, p → ∞ but n/p → γ, where 0 < γ < ∞). These
asymptotic approximations are much more realistic in order to study
learning mechanisms operating on data sets with the number of ob-
servations n commensurable with their dimension p.

Asymptotic studies so far have focused on both inner product
and Euclidean distance kernel matrices, although the former seem to
have received more attention in the literature. One of the first results
for this type of matrix was obtained in [21], which established the
convergence of the empirical eigenvalue distribution of the random
kernel matrix K with entries

Kij = f

(
xTi xj
p

)
δi 6=j (1)

where the observations xj are independent zero mean p-dimensional
Gaussian random vectors with covariance matrix C and where f(·)
is a sufficiently smooth function. Later, this result was generalized
in [22] to the more relevant setting where the observations follow a
(non necessarily zero mean) Gaussian mixture model. One of the
main concerns with the above model is the fact that, according to
the law of large numbers, the entries of the above matrix converge
almost surely to 0, and as a consequence the asymptotic eigenvalue
distribution of K only depends on the kernel function f(·) through
its local behavior at zero (namely f(0) plus the two derivatives f ′(0)
and f ′′(0)).

An alternative approach was followed in [23], which established
the almost sure convergence of the empirical eigenvalue distribution



of the kernel matrix with entries

Kij =
1
√
p
f

(
xTi xj√
p

)
δi 6=j (2)

where the observations xj are independent standardized p-dimensional
Gaussian random vectors and where f(·) follows some regularity
conditions but is not necessarily continuous. One of the main advan-
tages of the above model with respect to (1) is the fact that now the
arguments of the kernel function f(·) associated to off-diagonal ele-
ments of K converge in law to a standard Gaussian random variable
instead of zero, so that the global behavior of f(·) comes into play
in the asymptotic spectrum of K. In particular, it was established
in [23] that the asymptotic eigenvalue distribution of the kernel ma-
trix can be obtained by solving a third order polynomial equation
whose coefficients depend on f(·) via two quantities related to the
expansion of f(·) in the Hermite orthogonal polynomial system.

This celebrated result for the model in (2) has recently been ex-
tended along multiple directions. For example, in [24] the above
result was generalized to kernel matrices built from non-necessarily
Gaussian observations. Furthermore, in [25] the authors studied the
behavior of the largest eigenvalue of K and established that it con-
verges to the largest point in the support of the asymptotic eigenvalue
distribution. Recently, the analysis of the model in (2) has been ex-
tended in [26] to multi-class mixture model for the observations.

All the results reviewed above focused on the spectral analysis
of the kernel matrix K for real valued f(·) and real valued obser-
vations xi. Unfortunately, there exist a number of applications in
signal processing where the data to be classified belongs to the com-
plex field, a situation that cannot be studied using the above results.
One relevant example is the clustering of wireless communication
channels in multi-antenna settings, where n users need to be clus-
tered according to their associated channel as measured in a multi-
antenna setting composed of p elements. It has recently been recog-
nized that learning separately from the real and imaginary parts of
the observation is clearly suboptimal, and kernels operating on the
actual complex data are much more efficient. This has motivated a
number of studies on complex valued kernels in a number of applica-
tions, including filtering [27, 28], principal component analysis [29]
or regression [30, 31].

Quite unexpectedly, it will be shown below that when the obser-
vations are drawn from a multivariate circularly symmetric complex
distribution, the empirical eigenvalue distribution of K converges al-
most surely to a limit that is different from the one obtained with real
valued inputs. This is in contrast with conventional random matrix
model results, which typically behave in the same way regardless of
whether their entries are complex or real valued (as long as they have
equivalent moments).

2. PROBLEM STATEMENT AND DEFINITIONS

Our objective is to analyze the asymptotic behavior of the eigen-
value distribution of inner product kernel matrices built from com-
plex observations. In this work, we focus on the case where ob-
servations are complex circularly symmetric standardized Gaussian
random variables. This can be seen as a first step in order to obtain
wider results for the more realistic scenarios, in which observations
follow a multi-class mixture model. See for instance [26], where
the “uninformative” result (equivalent to the one derived here but for
real valued observations) is modified in order to account for different
means/covariances in the input data.

More specifically, we consider here the n × n kernel matrix K
with entries1

Kij =
1
√
p
k

(
xHi xj√

p

)
δi 6=j (3)

where xi are independent circularly symmetric standard complex
Gaussian random vectors (i.e. they have independent real and imag-
inary parts with zero mean and variance 0.5Ip) and where k(z) is
a certain (generally complex valued) kernel function of complex
variable. The main difference between the above model and (2)
is the fact that we consider complex observations, so that the ar-
gument of k(z) is a complex number. We will generally assume
that the complex function may take complex values and is such that
k(z∗) = k∗(z). This implies that the kernel matrix K is Hermitian,
so that it has real valued eigenvalues.

It is important to point out that the complex model in (3) cannot
be obtained as a particular instance of (2) because there is no direct
way of expressing xHi xj in terms of the scalar product of the corre-
sponding real valued components. Indeed, if we write xi = ui+ivi
(where ui and vi contain the real and imaginary parts of xi), we
have

xHi xj =
(
uTi uj + vTi vj

)
+ i
(
uTi vj − vTi uj

)
(4)

and we see here that the real valued model is only valid to describe
the complex one when k(z) is a real valued function of either Re(z)
or Im(z).

In some occasions, it will be effective to consider k(z) as a func-
tion of the real and imaginary parts of z. Throughout the paper, x
and y will denote the real and imaginary parts of the complex vari-
able z, so that z = x+ iy. Furthermore, we will identify

k(z) = k(x+ iy) = f(x, y)

where f(x, y) is now a bivariate function of real valued variables.

2.1. Orthogonal polynomials

The spectral convergence result presented in this paper holds for
a wide family of kernel functions k(z), which do not even need
to be continuous. However, as it will be made explicit below, we
need k(z) to have some regularity conditions with respect to the
probability measures of the real and imaginary parts of xHi xj/

√
p,

which will be denoted as µp and νp respectively. We will denote by
{Pl,p, l ≥ 0} and {Ql,p, l ≥ 0} the orthonormal polynomials asso-
ciated to these two probability measures, which can be obtained via
the conventional Gram-Schmidt orthogonalization procedure.

By the central limit theorem, as p → ∞ the random variable
xHi xj/

√
p converges in law to a complex circularly symmetric stan-

dardized Gaussian random variable, which has probability measure
π−1 exp

(
− |z|2

)
dxdy. This means that as p→∞ the coefficients

of the polynomials Pl,p(x) and Ql,p(x) will both converge to those
of the orthonormal polynomials associated with the probability mea-
sure π−1/2 exp

(
−x2

)
dx, see further [23, Lemma 4.1]. We will

denote as hm(x) the m-th normalized orthogonal polynomial asso-
ciated to this measure (sometimes this polynomial is referred to as
the “physicist” Hermite polynomial of order m), which is such that

1√
π

∫ ∞
−∞

hm(x)hn(x) exp
(
−x2

)
dx = δm−n.

1Here and throughout the paper z∗ indicates the complex conjugate of z
and (·)H complex conjugate transpose.



We can easily find a closed form expression for the coefficients of
these polynomials as

hm(x) =

√
m!

2m

bm/2c∑
l=0

(−1)l

l! (m− 2l)!
(2x)m−2l . (5)

In particular, we have h0(x) = 1, h1(x) =
√
2x and h2(x) =√

2(x2 − 1/2).

3. MAIN RESULT

Having introduced the main definitions that are relevant to our prob-
lem, we are now in a position to formulate the main assumptions
regarding the observations as well as the kernel function k(z) (equiv-
alently f(x, y)).
(As1) The observations xi are modeled as independent circularly
symmetric standard Gaussian complex random vectors, so that they
have independent real and imaginary parts with zero mean and vari-
ance 0.5Ip.
(As2) The kernel function f(x, y) is square integrable with respect
to the probability measure µp×νp, so that we can define (by Fubini)

a
(p)
k,l =

∫
R

∫
R
f(x, y)Pk,p(x)Pl,p(y)dµp(x)dνp(y)

for k, l ≥ 0. Then, the double series
∑
k,l≥0 a

(p)
k,lPk,p(x)Ql,p(y)

converges uniformly in p in the family of square integrable functions
with respect to the measure µp × νp. In other words, for any ε > 0
there exist p0 and L such that∑

k,l≥L+1

∣∣∣a(p)k,l ∣∣∣2 < ε

for any p > p0.
(As3) The coefficients a(p)k,l in the above expansion converge as p→
∞ for k, l ∈ {0, 1}. We will denote as ak,l the corresponding limits,
which can also be expressed as

ak,l =
1

π

∫
R

∫
R
f(x, y)hk(x)hl(y) exp

(
− |z|2

)
dxdy

with hk(x) as defined above. Furthermore, we will assume that the
following double series also converges to a non-negative real number
C as p→∞ ∑

k,l≥0

∣∣∣a(p)k,l ∣∣∣2 → C > 0

and we will consider a(p)0,0 = 0.
The last assumption implies that k (z) has zero mean with re-

spect to the complex circularly symmetric Gaussian measure, that
is

1

π

∫ ∞
−∞

∫ ∞
−∞

k (z) exp
(
− |z|2

)
dxdy = 0.

Contrary to what it may seem, this assumption is irrelevant for
the purposes of establishing the asymptotic eigenvalue distribution,
since if a(p)0,0 6= 0 we can always rewrite our kernel matrix as

K = K0 +
a
(p)
0,0√
p

(
1n1

T
n − In

)
(6)

where K0 is a kernel matrix built with the function k(z) − a
(p)
0,0

instead of k(z). Assuming that a(p)0,0 is bounded, the two matrices K
and K0 have the same asymptotic eigenvalue distribution, since they
are equivalent up to a negative displacement a(p)0,0/

√
p → 0 (note

that rank one perturbations do not alter the asymptotic eigenvalue
distribution).

Theorem 1. Let p, n → ∞ with n/p → γ, 0 < γ < ∞ and
assume that (As1)-(As3) hold. With probability one, the empiri-
cal eigenvalue distribution of K converges weakly to a probability
measure ξ, uniquely determined by its Stieltjes transform m(z) =∫
R+ (t− z)−1 dξ(t) for z ∈ C+ (the upper complex semi-plane) as

the unique solution in C+ to the following quartic equation

−1
m(z)

= z + γm(z)ω +

(
|α̃|2

1 + α̃γm(z)
+

|α|2

1 + αγm(z)

)
γm(z)

(7)
where

ω =

∞∑
q,r=0

|aq,r|2 − |a1,0|2 − |a0,1|2

and where we have introduced the two complex coefficients

α =
1√
2
(a1,0 + ia0,1) and α̃ =

1√
2
(a1,0 − ia0,1) .

Proof. The proof essentially follows from the proof in [23]. More
details are provided in the supplementary material.

Theorem 1 offers a simple method to retrieve the asymptotic
eigenvalue distribution of the kernel matrix K. Indeed, one only
needs to solve the equation in (7) by a polynomial rooting procedure
to obtain m(z) and use the inverse Stieltjes method to obtain the
asymptotic density of eigenvalues as

dξ(λ)

dλ
= lim
y→0+

1

π
Im [m(λ+ iy)] .

In this sense, it is somewhat surprising to see that the Stietjes trans-
formm(z) is obtained as a solution to a quartic polynomial equation,
which is in contrast with the cubic equation that fully describes the
real valued case (see [23]). This result is quite exceptional if we
compare it to more common random matrix theory models, where
the asymptotic eigenvalue density is typically the same regardless of
whether the associated entries are real or complex valued (up to mo-
ment equivalence). Here, this is clearly not the case, and we see that
the asymptotic eigenvalue distribution formed with complex entries
leads to a completely different spectral behavior.

The asymptotic eigenvalue distribution of the kernel matrix K
depends on the kernel function through three different parameters,
namely α, α̃ and ω. If ζ ∼ CN (0, 1) denotes a circularly symmetric
complex standard Gaussian random variable, these parameters can
be expressed explicitly with respect to the kernel function as

α = E [ζk(ζ)] α̃ = E [ζ∗k(ζ)]

and

ω = E
[
k2(ζ)

]
− |α+ α̃|2

2
− |α− α̃|

2

2
.

It is interesting to particularize the above equation to the case where
the kernel function k(z) is real valued (still of complex variable).
Whenever this is the case, the two coefficients α, α̃ become the com-
plex conjugate of one another, so that ω takes the simpler form

ω = Var (k(ζ))− 2 |α|2 .



Note, however, that even when the kernel function is real valued, the
polynomial equation (7) is still quartic (rather than cubic, as in the
real valued case). We will see below that it is possible to retrieve the
real valued result in [23] as a particular instance of Theorem 1.

3.1. Recovering the conventional real valued result

We can try to recover the original result from this, by observing that,
according to (4) we are able to write

2Re
(
xHi xj

)
= wT

i wj

where wi =
√
2[uTi ,v

T
i ]
T is a 2p-dimensional real vector of in-

dependent and identically distributed standardized Gaussian entries.
Now, we can particularize Theorem 1 to the specific choice

k(z) =
1√
2
g
(√

2Re(z)
)

where g is now a real valued function, so that

Kij =
1
√
p
k

(
xTi xj√
p

)
δi6=j =

1√
2p
g

(
wT
i wj√
2p

)
δi6=j .

With this choice, the kernel matrix K fits into the conventional real
valued model in (2) but with observation dimensionality equal to 2p

instead of p. As p → ∞, the coefficients a(p)k,l will converge to
ak,l =

1√
2
akδl with ak defined as

ak =
1√
2π

∫
R
g (x)hk

(
x√
2

)
exp

(
−x

2

2

)
dx

as p → ∞, which coincides with the corresponding coefficient for
the real valued series expansion in [23]. With these definitions, we
readily see from Theorem 1 that the empirical eigenvalue distribution
of K converges towards a measure with Stieltjes transform as the
unique solution in C+ to the following equation

−1
m(z)

= z +
γ

2
m(z)

∑
k≥1

a2k +
γ

2

a21m(z)

1 + a1
γ
2
m(z)

which is the same cubic equation that was originally obtained in [23]
(with the equivalent of γ replaced by γ/2).

4. PARTICULARIZATION TO SOME SPECIFIC KERNEL
FUNCTIONS

4.1. Gaussian radial basis function

Consider the complex kernel function

k(z) = exp
(
−λ |z|2

)
where λ is a certain positive parameter. We observe here that for
this particular kernel choice, it is not true that a(p)0,0 = 0. However, as
explained above, this does not really affect the asymptotic eigenvalue
distribution. Using the definition of the polynomials in (5) we can
readily establish that a1,0 = a0,1 = 0 and also

ω =
1

1 + 2λ

λ2

(1 + λ)2
.

This implies that the empirical density of eigenvalues converges to a
probability measure with Stieltjes transform

1

m(z)
= −z − γm(z)

1

1 + 2λ

λ2

(1 + λ)2

which is a semicircle law with density

lim
y→0+

1

π
Im [m(x+ iy)] =

1

2πγω

√
4γω − x2

on the support
(
−2√γω, 2√γω

)
. For the real valued case, where

f(x) = exp
(
−λx2

)
it can readily be shown that the eigenvalue

density also converges to a semi-circle law with the same density,
but now with

ω =
1√

1 + 4λ
− 1

1 + 2λ
.

Hence, even if we obtain a semi-circular law in both cases, we see
that the dependence of the support of the asymptotic eigenvalue dis-
tribution on the kernel parameter λ is significantly different.

4.2. Sign function

To illustrate a situation in which the coefficients α, α̃ are different
from zero, we consider here a direct extension of the sign kernel
to the complex domain by choosing the complex kernel matrix as
k(z) = k(x + iy) = sign(x) + i·sign(y). In this case, we can
readily see that

a1,0 =

√
2

π
, a0,1 = i

√
2

π
.

On the other hand, it can easily be reasoned that
∑
m,n≥0 |am,n|

2 =

2. This means that the Stieltjes transform m(z) can be obtained by
finding the only root of the following cubic equation on the upper
complex plane:

−1
m(z)

= z + 2

(
1− 2

π

)
γm(z) +

4

π

γm(z)

1 + 2√
π
γm(z)

.

The corresponding equation for real valued observations can be
obtained by choosing k(z) = 1√

2
sign

(√
2Re(z)

)
and noting that,

in this situation, a1,0 = 1√
π

, a0,1 = 0 and
∑
m,n≥0 |am,n|

2 = 1
2

.
This means that m(z) is a solution to the equation

−1
m(z)

= z +

(
1− 2

π

)
γm(z) +

2

π

γm(z)

1 +
√

2
π
γm(z)

which is slightly different from the equation obtained in the complex
domain. In the numerical evaluation section below, we will compare
the two corresponding eigenvalue densities and point out the differ-
ences.

4.3. Quadratic polynomial

We finally particularize the results in Theorem 1 to the choice
k(z) = λ |z|2. In this particular case, one can readily establish that

am,n = λ

(
1

2
δm +

1√
2
δm

)(
1

2
δn +

1√
2
δn

)



which directly implies that we have a0,1 = a1,0 = 0, while ω = λ2

2
.

This means that m(z) is obtained from the equation

1

m(z)
= −z − γm(z)

(
λ2

2

)
which is, again, a semicircle law. A similar conclusion can be ob-
tained for the case where the observations are real valued [32].

5. NUMERICAL VALIDATION

In order to illustrate the result in Theorem 1 we considered some
examples of kernel matrices generated with the kernel functions dis-
cussed above. For complex valued observations, real and imaginary
parts of the observations are independently generated with zero mean
and variance 1/2, whereas real valued observations were generated
also with zero mean but with variance 1. Both the Gaussian radial
basis function (with λ = 2) and the sign kernels presented above
were considered in the simulations. Figure 1 compares the histogram
of the eigenvalues obtained for some specific choices of n and p
against the asymptotic eigenvalue density as established in Theorem
1 (solid red lines).

Observe that there is a very good match between the asymp-
totic and the empirical eigenvalue distribution regardless of whether
p > n or p < n . Furthermore, these plots also exemplify the fact
that the eigenvalue density behaves essentially differently in the real
and complex value cases, especially with regards to the support of
the asymptotic eigenvalue distribution. The determination of this
support will be crucial in order to extend the present work to the
case where the observations follow a multi-class mixture model.

An interesting issue related to the kernel matrix formed with the
Gaussian radial basis function is the fact that an isolated eigenvalue
appears outside the support of the asymptotic eigenvalue distribu-
tion. This eigenvalue has not been represented in the histograms of
Figure 1. The presence of this eigenvalue, which of course does
not contribute to the asymptotic eigenvalue distribution, is caused by
the fact that a00 6= 0 in this particular choice of kernel function.
According to the reasoning in (6), this fact originates an additional
eigenvalue at

√
pa0,0, which will be arbitrarily large as p→∞. As

it can be seen from (6), this eigenvalue is associated to an all-ones
eigenvector, which can be easily canceled out by subtracting the em-
pirical mean along rows and columns of K.

6. CONCLUSIONS

The asymptotic eigenvalue distribution of inner product based ker-
nel matrices formed from complex observations has been studied in
the asymptotic regime whereby both the observation dimension p
and the number of input data n increase without bound at the same
rate. It has been shown that the empirical distribution of eigenvalues
converges almost surely to a probability measure with Stieltjes trans-
form that can be obtained from a quartic polynomial equation. This
contrasts with the real valued observation case, where the Stieltjes
transform is a root of a cubic polynomial instead.

The effect of the kernel function on the asymptotic eigenvalue
distribution is established through three different parameters (α, α̃
and ω) which are directly related to its bivariate expansion in terms
of Hermite polynomials. The result generalizes the real valued ob-
servation case, which can be retrieved as a particular case of the
presented result, by restricting the kernel function to be real val-
ued of a real variable. The result has been particularized to three
different choices of kernel function, namely Gaussian radial basis

function, sign function and quadratic polynomial respectively. Nu-
merical simulations confirm the validity of the presented results and
illustrate the different behavior of real valued and complex valued
kernel matrices. Results will be useful towards the characterization
of kernel-based machine learning algorithms working on complex
signals, for which conventional results based on real valued observa-
tions are not applicable.

Sign kernel (real)
n=600, p=1000

-2 -1 0 1 2 3
0

0.2

0.4

0.6

Sign kernel (complex)
n=600, p=1000

-2 -1 0 1 2 3
0

0.2

0.4

0.6

GRBF kernel (real)
n=600, p=1000, lambda=2

-0.5 0 0.5
0

0.5

1

1.5

GRBF kernel (complex) 
n=600, p=1000, lambda=2

-0.5 0 0.5
0

0.5

1

1.5

(a) Case n = 1000 and p = 600.

Sign kernel (real)
n=600, p=1000

-2 -1 0 1 2 3
0

0.2

0.4

0.6

Sign kernel (complex)
n=600, p=1000

-2 -1 0 1 2 3
0

0.2

0.4

0.6

GRBF kernel (real)
n=600, p=1000, lambda=2

-0.5 0 0.5
0

0.5

1

1.5

GRBF kernel (complex) 
n=600, p=1000, lambda=2

-0.5 0 0.5
0

0.5

1

1.5

(b) Case n = 600 and p = 1000.

Fig. 1. Comparison between eigenvalue histograms and asymptotic
eigenvalue distribution for different kernel functions and values of p
and n.
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