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Abstract—We present a novel unified framework of compute–
forward achievable rate regions for simultaneous decoding of
multiple linear codeword combinations. This framework covers
a wide class of discrete and continuous-input channels, and
computation over finite fields, integers, and reals. The resulting
rate regions recover several well-known achievability results, and
in some cases extend them. The framework is built upon a recently
established achievable rate region based on linear codes and joint
typicality decoding. The latter is extended from finite fields to
computation over the integers and, via a discretization approach, to
computation over the reals with integer coefficients and continuous
inputs. Evaluating the latter with Gaussian distributions, we obtain
a closed-form rate region which generalizes the classic compute–
forward rates originally derived by means of lattice codes by Nazer
and Gastpar.

I. INTRODUCTION

Consider a network information theory problem where one
or more transmitters wish to communicate with one or more
receivers, and our goal is to determine the rate region for a wide
class of sources and channels, both discrete and continuous-
valued. One approach is to handle the discrete and continuous
cases separately. For instance, in the textbook of Cover and
Thomas [1], the achievability proofs for discrete memoryless
channels are developed first, and then Gaussian channels are
handled using i.i.d. Gaussian codebooks. An alternative ap-
proach is to first establish a rate region for the discrete memo-
ryless case, and then use discretization arguments to extend this
to continuous-valued channels. For instance, in the textbook of
El Gamal and Kim [2], the achievable rate for Gaussian (and
other continuous-valued) channels is derived by applying scalar
quantization to the channel input and output, and then taking
appropriate limits of the resulting mutual information (with
respect to the quantization resolution). A quantization approach
has notoriously been used in the deterministic approach [3],
though their focus is on achieving a constant gap to the cutset
bound.

In this paper, we focus on the compute–forward problem
where the goal is for one or more receivers to recover linear
combinations of the transmitters’ messages. Prior work has
derived achievable rate regions for the special case of Gaus-
sian channels using nested lattice codes [4], [5] and for the
special case of discrete memoryless channels using nested linear
codes [6], [7]. In particular, the latter approach employs standard
joint typicality encoding and decoding techniques. Here, we
propose a discretization approach to unify the treatment of dis-
crete and continuous-valued channels for the compute–forward
problem. Specifically, our approach recovers prior Gaussian
compute–forward results [4], [5], and, in some cases, improves

upon them. This is due to the fact that the underlying rate region
for discrete channels [7] is based on simultaneous decoding
rather than sequential decoding.

A key technical difference between our work and prior
discretization approaches is that the discrete memoryless rate
region is not described with mutual informations terms, but via
entropies. As a result, the limit arguments are considerably more
subtle, and require a generalization of Rényi’s d-dimensional
entropy [8] to handle linear combinations (which we term
algebraic entropy). Overall, this paper, alongside several recent
works [6], [7], [9]–[14], demonstrates that algebraic approaches
to network information theory problems can be handled via
standard techniques, such as joint typicality encoding and de-
coding.

II. NOTATION

For a matrix A (or column vector) and a set of row indices S,
[A]S denotes the submatrix of A comprising only those rows
indexed by S. For U a ring and some subset A ⊆ U, we define

ΛA(Q) =
{
Qv : v ∈ Ad

}
. (1)

If A is a discrete additive subgroup of U, then ΛA(Q) is called
a lattice generated by Q. If A = U, it is called the span of
Q. The largest integer that is smaller or equal to a given real
number X is denoted as bXc.

III. GENERAL PROBLEM STATEMENT OF
COMPUTE–FORWARD

Consider the K-user memoryless multiple-access channel
(MAC) (X1 × . . .×XK , PY |X1,...,XK

,Y), which consists of K
sender alphabets Xk, k ∈ [K], one receiver alphabet Y , and a
conditional probability distribution PY |X1,...,XK

.
Consider a ring U and a subset A ⊆ U thereof. Let

aT
1 , . . . ,a

T
L ∈ AK denote L coefficient vectors, assume L ≤ K,

and define the coefficient matrix

A =

aT
1
...

aT
L

 ∈ AL×K . (2)

A (2nR1 , . . . , 2nRK , n) code for compute–forward over (U,A)
with coefficient matrix A consists of
• K message sets [2nRk ], k ∈ [K];
• K encoders, where encoder k maps a message mk ∈

[2nRk ] to a codeword unk (mk) ∈ Un such that unk (mk)
is one-to-one;
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Fig. 1. A many-to-one channel with K transmitters, in which the receiver seeks to decode L linear combinations of the codewords (Un
1 , . . . , U

n
K)

• K modulation mappings U→ X that map1 the entries of a
codeword unk ∈ Un entry-by-entry to a physical codeword
xnk (mk) ∈ Xn;

• L linear combinations (where L ≤ K) for each message
tuple (m1, . . . ,mK)w

n
a1

(m1, . . . ,mK)
...

wnaL
(m1, . . . ,mK)

 = A

 u
n
1 (m1)

...
unK(mK)

 ,
where additions and multiplications are defined over the
vector space Un, and

• a decoder that assigns estimates (ŵna1
, . . . , ŵnaL

) ∈ Un ×
· · · × Un to each received sequence yn ∈ Yn.

Each message Mk is independently and uniformly drawn
from [2nRk ]. The average probability of error is defined as
P

(n)
e = P

{
(Ŵn

a1
, . . . , Ŵn

aL
) 6= (Wn

a1
, . . . ,Wn

aL
)
}

. We say that
a rate tuple (R1, . . . , RK) is achievable for computing A-linear
combinations if there exists a sequence of (2nR1 , . . . , 2nRK , n)

compute–forward codes such that limn→∞ P
(n)
e = 0.

IV. PRELIMINARIES

In this section, we lay out some important concepts, nota-
tions and auxiliary results which are necessary for a complete
understanding of the main theorems presented in Section V.

A. Algebraic entropy and algebraic information dimension

For a random variable u with countable support set U , the
Shannon entropy is defined in the usual way as

H(u) = −
∑
u∈U

P{u = u} logP{u = u}. (3)

For a real-valued, absolutely continuous random variable u ∈
Rn with density fu(u), the differential entropy is defined as

h(u) = −
∫
fu(u) log fu(u) du. (4)

In his 1959 paper [8], Rényi elucidates some interesting con-
nections between the discrete entropy of quantized variables and
differential entropies. In particular, he introduces the concept of
information dimension. We generalize his concept as follows.

Definition 1 (Algebraic information dimension and algebraic
entropy). For a coefficient matrix Q ∈ Rm×n and a random

1Modulation mappings need not be one-to-one (injective).

vector u ∈ Rn, the algebraic information dimension dQ(u)
and the algebraic entropy HQ(u) shall be defined as

dQ(u) = lim
ν→∞

H(Qbνuc)
log(ν)

(5a)

HQ(u) = lim
ν→∞

{
H(Qbνuc)− dQ(u) log(ν)

}
(5b)

if the limits exist.

If dQ(u) and HQ(u) exist, then given a pair of variables
(u, Y ) ∈ Rn × Y , one can define the conditional algebraic
information dimension dQ(u|Y ) =

∫
dQ(u|Y = y) dPY (y)

and conditional algebraic entropy HQ(u|Y ) =
∫
HQ(u|Y =

y) dPY (y).2

1) Discrete distributions: The following lemma connects
HQ(u) to discrete entropy (for discrete distributions).

Lemma 1. For a real matrix Q ∈ Rm×n and a random
variable u ∈ Rn with discrete support (point mass) and finite
discrete entropy H(u), the algebraic information dimension and
algebraic entropy are given by

dQ(u) = 0 HQ(u) = H(Qu). (6)

By convention, (6) shall also apply to finite fields, i.e., to the
case u ∈ Fnq and Q ∈ Fm×nq .

2) Continuous distributions: In the following, we present
a lemma linking algebraic entropy to differential entropy (for
continuous distributions), in a similar vein as [8]. Prior to stating
it, we need some preliminary definitions.

Definition 2 (Unimodular matrix). A square integer matrix Q ∈
Zn×n is unimodular if its inverse Q−1 ∈ Zn×n is integer too.
A matrix Q is unimodular iff |det(Q)| = 1.

Definition 3 (Right-invertible and left-invertible matrices). A
strictly broad integer matrix Q ∈ Zn×m with n < m is said
to be right-invertible if there exists a tall integer matrix Q] ∈
Zm×n (called the right-inverse) such that QQ] = In. Similarly,
a strictly tall integer matrix Q ∈ Zn×m with n > m is said to be
left-invertible if there exists a broad integer matrix Q] ∈ Zm×n
(called the left-inverse) such that Q]Q = Im. The following
statements are equivalent:

2Equivalently, to define dQ(u) and HQ(u) one can replace the discrete
entropies on the right-hand sides of (5a) and (5b) by H(Qbνuc|Y ). This
can be shown using the Dominated Convergence Theorem and the Monotone
Convergence Theorem, respectively.



1) Q is right-invertible
2) QT is left-invertible
3) Q can be completed to a unimodular matrix

[
QT RT

]
with some R ∈ Z(m−n)×m.

4) The determinants of all n× n minors of Q are coprime.

Definition 4 (Smith normal form and elementary divisors). For
any integer matrix Q ∈ Zm×n, there exists a non-negative inte-
ger diagonal matrix Σ(Q) = diag(σ1(Q), σ2(Q), . . . , σr(Q))
with r = rank(Q) such that3 σ1(Q) | σ2(Q) | . . . | σr(Q) and

Q = S̃(Q)

[
Σ(Q) 0

0 0

]
T̃(Q) (7)

for some unimodular matrices S̃(Q) ∈ Zm×m and T̃(Q) ∈
Zn×n. Equivalently, there exists a left-invertible S(Q) ∈
Zm×r and a right-invertible T(Q) ∈ Zr×n such that Q =
S(Q)Σ(Q)T(Q). Here, Σ(Q) is called the reduced Smith
normal form of Q and its diagonal entries σi(Q) are called
elementary divisors.

Note that for a square full-rank Q, we have det(Σ(Q)) =∏r
i=1 σi(Q) = |det(Q)|. In a certain sense, for integer matrices,

det(Σ(Q)) may be interpreted as a generalization of the deter-
minant to rectangular matrices. The reader is referred to [15]
for additional details on Smith normal forms.

Lemma 2. For an integer matrix Q ∈ Zm×n and an absolutely
continuous random vector u ∈ Rn with finite differential
entropies h([u]I) for all index sets I ⊂ [n] and finite H(buc),
the algebraic information dimension dQ(u) and algebraic en-
tropy HQ(u) with parameter Q are well defined and given
respectively by

dQ(u) = rank(Q) HQ(u) = h(T(Q)u). (8)

If Q has full row rank, HQ(u) can be expressed in terms of
its Smith normal form Σ(Q) rather than T(Q), namely,

HQ(u) = h(Qu)− log det(Σ(Q)). (9)

If Q is also right-invertible, then Q = T(Q) (up to row
permutations and scaling rows with −1), so (8) further simplifies
to HQ(u) = h(Qu).

Lemma 2 builds upon a generalization of a key result due
to Makkuva and Wu [16, Lem. 1], who show that for indepen-
dent, absolutely continuous variables Uk, k ∈ [K] with finite
differential entropies h(Uk) and a single-row matrix Q ∈ Z1×K

composed of coprime coefficients qk, k ∈ [K],

lim
ν→∞

{
H
(∑

k qkbνUkc
)
−H

(⌊∑
k qkνUk

⌋)}
= 0. (10)

Since the definition of algebraic entropy is based on the limit
[cf. (5b)]

HQ(u) = lim
ν→∞

{
H
(∑

k qkbνUkc
)
− log(ν)

}
(11)

we see that if the qk are not coprime, they can be divided by
their greatest common divisor (gcd) to enforce coprimality (i.e.,
right-invertibility of Q), after which the asymptotic equality (10)
allows one to switch the order of the integer part operation
b·c and the weighted summation, in the limit as ν → ∞. The
operation Q 7→ T(Q) that appears in (8) can be interpreted as a

3a | b means a divides b

generalization of this gcd-reduction, i.e., a transition from Q to
a right-invertible matrix T(Q), for the case where Q has more
than one row.

B. Matroids

Given a collection of vectors (e.g., the columns of a matrix),
the associated matroid can be viewed as a full description of
the linear dependence relations between subsets of vectors. In
the following, we give an axiomatic definition of matroids.

Definition 5 (Matroids). A matroid M is a pair (E, I) con-
sisting of a finite set E and a collection of subsets I ⊂ 2E

satisfying the properties [17, Sec. 1.1]:

1) ∅ ∈ I
2) If I ∈ I and I ′ ⊂ I , then I ′ ∈ I
3) If I1 and I2 are in I and |I1| < |I2|, then there exists an

element J ∈ I2 \ I1 such that I1 ∩ J ∈ I.

We say that B ∈ I is a basis of M = (E, I) if there is
no larger B′ ∈ I that contains B. In other words, a basis
is a maximal independent set of the matroid. All bases have
the same cardinality [17, Lem. 1.2.1, 1.2.4] and a matroid is
uniquely defined by the collection of its bases, which we will
generally denote as B(M) [17, Lem. 1.2.2, Thm. 1.2.3].

Definition 6 (Representable matroids). If E denotes the set of
column labels of a matrix Q ∈ Am×n over a ring or field A, and
if I denotes the set of subsets of E such that for every I ∈ I,
the rows of [QT]I are linearly independent (in the vector space
Am), then (E, I) is a matroid, called the vector matroid of Q
(cf. [17, Proposition 1.1.1]) and is denoted as M(Q).

If a matroid M is isomorphic to the vector matroid of some
matrix Q over some ring A, then we say that M is representable
over A. Accordingly, Q is a representation for M over A.

We define MA(n) as the set of representable matroids of size
n that are representable over A, and CA(M) shall denote the
set of matrix representations over A of the matroid M .

Definition 7 (Dual matroids). Let M = (E, I) be a matroid and
B(M) the collection of its bases. Then {E \ B : B ∈ B(M)}
is the set of bases of a matroid on E, called the dual of M , and
denoted as M∗ (cf. [17, Thm. 2.1.1]).

V. A GENERAL FORMULA FOR COMPUTE–FORWARD
ACHIEVABLE RATES

In the following, U denotes a ring and A ⊆ U denotes
a discrete additive subgroup of U, that is, a lattice over U.
The three main compute–forward theorems presented further
below are concerned with the following three choices of (U,A),
respectively:

• Theorem 1: (U,A) = (Fq,Fq)
• Theorem 2: (U,A) = (Z,Z)
• Theorem 3: (U,A) = (R,Z).

Let (u, Y ) ∈ UK × Y follow a joint distribution Pu,Y =∏K
k=1 PUk

PY |u. In the following, for some natural numbers 1 ≤
LB ≤ K,

• B denotes a full row-rank matrix over A of size LB ×K;
• M denotes a matroid of size LB;
• T denotes a subset of [K].



With these notations in mind, we first define the set

Q(B,M, T ) ,
{

(R1, . . . , RK) ∈ RK+ :∑
k∈T

Rk < H([u]T )−HB(u|Y ) + J(B,M)
}

(12)

where J(B,M) denotes a min-entropy term defined as

J(B,M) , inf
C∈CA(M)

HCB(u|Y ). (13)

With these definitions settled, we define the set

Q(B) =
⋂
M

⋃
S

⋂
T

Q(B,M, T ) (14)

where the three nested set operations are over triples (M,S, T )
meeting the following constraints:

1) M iterates over all matroids of size LB except the full-rank
matroid, i.e., M ∈MA(LB)\ ([LB], 2[LB]). Henceforth, we
shall denote this set of matroids (excluding the full-rank
matroid) as M ◦

A(LB);
2) S iterates over all index sets that correspond to bases of

the dual matroid M∗, i.e., S ∈ B(M∗);
3) T iterates over all index sets that correspond to bases of

the matroid of which [B]S is a representation, i.e., T ∈
B(M([B]S)).

Finally, let us define the so-called joint decoding rate region

R(A) ,
⋃
B

Q(B) (15)

where B ∈ ALB×K , LB = rank(A), . . . ,K runs over all full
row-rank matrices satisfying ΛA(B) ⊇ ΛA(A). The following
theorems will provide an operational meaning to this rate region.

Theorem 1 (Finite-field compute–forward). Let (U,A) =
(Fq,Fq) for some prime field size q. A rate tuple (R1, . . . , RK)
is achievable for decoding the A-linear combinations of code-
words if it is contained in R(A).

Theorem 2 (Integer compute–forward). Let (U,A) = (Z,Z)
and assume that H(u) is finite. A tuple (R1, . . . , RK) is achiev-
able for decoding the A-linear combinations of codewords if it
is contained in R(A).

Theorem 3 (Continuous compute–forward). Let (U,A) =
(R,Z). Assume that the vector of auxiliaries u ∈ RK has an
absolutely continuous distribution as well as finite entropies
h(u) and H(buc). In addition, we have either of the two
(mutually exclusive) situations:

1) the mappings xk(uk) have finitely many (jump) disconti-
nuities and images xk(R) of finite cardinality;

2) the mappings xk(uk) = βkuk are linear with βk some
real-valued coefficients, and the system equation is given
by Y =

∑
k hkxk + Z with independent noise Z.

Under these assumptions, a tuple (R1, . . . , RK) is achievable
for decoding the A-linear combinations of codewords if it is
contained in R(A).

For Theorems 1 and 2, by Lemma 1 the rate region
R(A) is expressible in terms of discrete entropies since we
obtain H([u]T ) = H([u]T ), HB(u|Y ) = H(Bu|Y ) and
HCB(u|Y ) = H(CBu|Y ), whereas for Theorem 3, by
Lemma 2 the corresponding algebraic entropies evaluate to dif-
ferential entropies h([u]T ), h(T(B)u|Y ) and h(T(CB)u|Y ).

VI. THE TWO-USER CASE

To gain some insight into the rate regions described by (14)
and (15), let us consider a two-user channel (K = 2).

R2

R1

(a) Q([a1 a2]) ⊂ RMAC

RMAC

Q ([ 1 0
0 1 ])

Q ([a1 a2])

R2

R1

(b) Q([a1 a2]) 6⊂ RMAC

Fig. 2. Partial rate regions Q(B) for B =
[
1 0
0 1

]
and B = [a1 a2] with

a1, a2 6= 0, that can be combined by union-taking [cf. (15)] to obtain the
compute–forward rate region R(A). The multiple-access rate region RMAC,
which is achievable with (unstructured) random codes, is shown for reference.

Figure 2 exhibits the different subregions that com-
pose the compute–forward rate region R(A). The set
RMAC = {(R1, R2) ∈ R2

+ : R1 < I(U1;Y,U2), R2 <
I(U2;Y,U1), R1 + R2 < I(U1, U2;Y )} denotes the conven-
tional multiple-access rate region.

For K = 2 one can prove the following two simplifications
of the union in (15): for a single linear combination (L = 1)
specified by a coefficient vector A = [a1 a2] ∈ A1×2 (with
a1, a2 6= 0), we have

R(A) = RMAC ∪Q ([a1 a2]) (16)

whereas for the case of two independent linear combinations
(L = 2) specified by a full-rank matrix A = [ a11 a12a21 a22 ] ∈ A2×2,
we have4

R(A) = Q ([ 1 0
0 1 ]) . (17)

Comparing Figures 2a and 2b, we see that in the former,
a case is depicted where the rate region (16) (for L = 1) is
contained entirely in RMAC (in which case R([a1 a2]) reduces
to RMAC), whereas in the latter, the opposite case is shown.

In the former case, i.e., if Q([a1 a2]) ⊂ RMAC holds for all
[a1 a2] with non-zero entries, the rate region (17) (for L = 2)
coincides with RMAC. In this circumstance, one can achieve
the full MAC capacity rate region with nested linear codes,
rather than random codes. Specifically, this occurs when for all
a1, a2 6= 0,

H[a1 a2](U1, U2|Y ) ≥ 1

2
H(U1, U2|Y ). (18)

Otherwise, we have a situation like the one depicted in Fig-
ure 2b, in which Q ([a1 a2]) protrudes out of the MAC rate
region, while the rate region for L = 2, as given in (17), is
smaller than the MAC rate region. Notice that the subset of
Q ([a1 a2]) lying outside of RMAC and the subset of RMAC

lying outside of Q ([ 1 0
0 1 ]), are two triangular-shaped sets that

are mirror images of each other (about the dominant face
of the MAC rate region). This indicates a tension between
random codes and nested linear codes, in that the latter excel at
computing rank-deficient codeword combinations, but are less
efficient than random codes when it comes to computing a full-
rank set of linear combinations (i.e., recovering all messages).

4Equation (17) holds because, as one can show, Q
([ a11 a12

a21 a22

])
is contained

in Q
([

1 0
0 1

])
for any full-rank

[ a11 a12
a21 a22

]
.



Note that the general aspect of the rate region depicted in
Figure 2 is applicable to Theorems 1, 2 and 3 alike. We refer
the reader to our previous paper [6], where the two-user case is
discussed at length, and [7], which also illustrates the three-user
case.

VII. GAUSSIAN CHANNELS

Arguably the most important special case of our main results
is Theorem 3 evaluated for Gaussian distributions. Consider a
multiple access channel with M receiver antennas which obeys
the system equation

y = Hx+ z (19)

where x =
[
X1, . . . , XK

]T
represents the vector or channel in-

puts, H ∈ RM×K stands for the channel gain matrix, y ∈ RM is
the vector of channel outputs and z ∼ NR(0, I) is i.i.d. additive
Gaussian noise. We assume that the channel inputs are subject
to average power constraints E[X2

k ] ≤ Pk, k = 1, . . . ,K. We
define P = diag(P1, . . . , PK) as the covariance matrix of x.

The following corollary to Theorem 3 provides a generaliza-
tion of the compute–forward rate region from [4] for the Gaus-
sian channel (19), to the effect of simultaneously computing
multiple linearly independent combinations of Gaussian code-
words, rather than only one linear combination. This improves
on the best-known rate region from prior work, which was based
on nested lattice encoding and sequential decoding [5].

Corollary 1 (Gaussian compute–forward). Let (U,A) = (R,Z).
We evaluate Theorem 3 for the Gaussian channel (19), auxiliary
variables Uk ∼ NR(0, β2

kPk) with scaling parameters βk > 0
and modulation mappings Xk = Uk/βk to satisfy the power
constraints E[X2

k ] = Pk. Then, Q(B,M, T ) in Theorem 3
specializes to the set of rate tuples (R1, . . . , RK) such that∑
k∈T

Rk <
1

2

∑
k∈T

log(β2
kPk)− 1

2
log

det
(
BKBT

)
det(Σ(B))

+ J(B,M)

(20)

where K stands for the conditional covariance matrix

K = E
[
uuT

∣∣Y ] = diag(β)
(
P−1 + HTH

)−1
diag(β) (21)

and where

J(B,M) = inf
C∈CZ(M)

1

2
log

det
(
CBKBTCT

)
det(Σ(CB))

. (22)

Note that Corollary 1 is obtained directly from the Gaussian
entropy formula and (9). One can easily show that in the
infimum (22), the matrix C can be restricted to being right-
invertible. If, in addition, B is also right-invertible, then both
B and CB have elementary divisors all equal to one, hence the
denominators on the right-hand sides of (20) and (22) disappear,
thus simplifying expressions. Note, however, that we have no
proof nor disproof5 that in the union over matrices B in (15),
B can be restricted to being right-invertible without loss of
optimality. This stands as an open problem.

Figure 3 shows a three-dimensional rate region obtained from
evaluating Corollary 1 for computation of a single combination
A = [1 1 1] over a symmetric Gaussian channel with a single
receive antenna (M = 1).

5Except for the two-user case K = 2, for which we can show that right-
invertible matrices B =

[
1 0
0 1

]
and B = [b1 b2] (with coprime b1 and b2)

suffice to attain the entire rate region R(A). See also Section VI.

Fig. 3. Three-user joint decoding rate region computed numerically for a
Gaussian channel.

Finally, let us particularize (20) to the case of two users
(K = 2) and a single linear combination (L = 1), setting all
parameters βk to one and equal power constraints P1 = P2 = P ,
and evaluating the union (15) only for B = [a1 a2]. Denote the
latter row vector as aT and the channel matrix H ∈ R1×2 as
the row vector hT. With these choices, we can readily recover
the well-known compute–forward rectangular rate region due to
Nazer and Gastpar [4]:

max{R1, R2}

<
1

2
log

(
P

aT (P−1I + hhT)
−1

a

)
+ log gcd (|a1|, |a2|).

(23)

We observe how in this special case, the term Σ(B) from (20),
which here reduces to a scalar, evaluates to the greatest common
divisor of |a2| and |a2|. Also note that for L = 1, the term
J(B,M) disappears, which further contributes to simplification.
In fact, much of the difficulties in proving Theorems 2, 3
(Corollary 1) can be traced to the term J(B,M), and stem
from the exchange of quantization limit and infimum (13).

VIII. CONCLUSION

In this paper, we proposed a discretization approach to
translate compute–forward achievability results from discrete to
continuous-valued channels in a unified manner. Although we
focused on the compute–forward problem, this discretization ap-
proach could also be used to extend other algebraic achievability
results to continuous-valued channels.
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