
Large Scale Unit Testing Algorithm v2
Chew, Kean Ho[1]

[1]ZORALab Enterprise
kean.ho.chew@zoralab.com

October, 2022, 1st Issue

 1 Abstract
Working on unit testing software product in
modern programming languages is getting more
cumbersome as the software product is getting
incrementally complex in a very rapid and
demanding pace. Since year 2019, research efforts
had been done to effectively deploy large scale
testing specifically for Go Programming Language.

While the unit-testing algorithm is available in the
past, it had quickly became outdated as new
specialized techniques are developed to further
enhance overall testing capabilities. This impedes
one from building a more confident and battle-
tested software product. Therefore, said algorithm
has to be enhanced in order to cope with the latest
update and shall be deployable across other
programming languages.

This paper first revisits the past Large Scale Unit
Testing for Go Programming Language Packages
research paper for algorithm extractions. Then, the
paper presents the algorithm enhancements,
caveats, crucial lessons, and simultaneously
deploying it to the Rust and TinyGo programming
language as a 2nd and 3rd languages support.

Lastly, the paper concludes the enhanced large
scale testing algorithm capable of future
incremental improvement use not just for
programming environment but a way of life.

 2 Introduction
Working on unit testing software product in
modern programming languages is getting more
cumbersome as the software product is getting
incrementally complex in a very rapid and
demanding pace. Since year 2019, research
efforts had been done to effectively deploy large
scale testing specifically for Go Programming
Language[1].

While the unit-testing algorithm is available in the
past[1][2], it had quickly became outdated as new
specialized techniques are developed[3] to further
enhance overall testing capabilities. This impedes
one from building a more confident and battle-
tested software product. Therefore, said
algorithm has to be enhanced in order to cope
with the latest update and shall be deployable
across other programming languages.

This paper first revisits the past Large Scale Unit
Testing for Go Programming Language Packages
research paper for algorithm extractions. Then,
the paper presents the algorithm enhancements,
caveats, crucial lessons, and simultaneously
deploying it to the Rust and TinyGo programming
language as a 2nd and 3rd languages support.

Lastly, the paper concludes the enhanced large
scale testing algorithm capable of future
incremental improvement use not just for
programming environment but a way of life.

Page 1 of 15

 3 Background
This section covers the existing large scale unit
testing algorithm based on the past researches[1][2].
It introduces the algorithm itself, how it
approaches qualitative testing, test scopes, and its
test developer experience to date. This shall
provide a good and precise context and current
state of development without requiring readers to
spend large amount of resources to read through
past research papers.

 3.1 The Problems
The large scale unit testing algorithm was first
developed for Go Programming Language in year
2019[1] after a background research in year 2018[2].
It was initially designed to solve the uncontrollable
large and rapid growth of test codes where a
simple but heavily tested software feature can
easily scale to >1000 test cases in 1 development
iteration, yielding at least 48229 lines of codes [1].
Without the algorithm, the test developer often
confronts with unpredictable architectural code
changes; extremely long, unmodifiable, and
unmaintainable test codes; limited logging
functionalities; frequent naming collisions; and
coping with infrastructure differences[1].

 3.2 The Algorithm
The algorithm is a simple simulation generator
approach using factory design pattern[1] where in a
Go package requires a minimum of:

1. A testlibs_test.go file that is responsible
for generating the simulation parameters,
values, and managing external libraries
across all test suites or test cases including
assertion[1]; and

2. A Function_test.go file that is responsible
for test suite and test case of a public
accessible Function (notice the title-case)
[1]; and

3. A scenarios_test.go for generating each
test cases’ triggers for testlibs_test.go to
generate a simulation environment using
a mapped list of boolean string alongside
test cases’ report parameters like name
for the entire package[1].

Each test file is properly isolating its roles and
responsibilities accordingly in order to properly
scale with maintainable sanity[1]. Moreover, all test
files should and always comply to Go
Programming Language’s Effective Go standards
without any special customizations or
dependency[1][4].

 3.3 Test Scope and
Approaches
The algorithm is capable of facilitating a wide
range of test approaches ranging from:

1. Standard Node CFG[1];

2. Edge CFG[1];

3. Condition CFG[1]; and

4. Boundary Value Analysis[1]

The algorithm recommends the use of table-
driven test approach to systematically test across
all function’s boundaries limits[1]. This allows a
developer to effectively test and guarantees a
function behavior is working within a given scope
when the development resources (e.g. time,
knowledge, experience, software, and hardware)
are severely limited[1].

Page 2 of 15

If permitted by the development resources,
developer can proceed to perform higher level
testing with the same algorithm like integration
testing and etc[1].

 4 New Challenges
This section covers the use of the algorithm since
its birth with new encountering and problems. It
discusses each insights in details and why they
matters in the algorithm enhancements.

 4.1 New Test Facility
As time proceeds since year 2019, in year 2022, Go
core developers releases a new test facility called
“Go Fuzzing” that provides Open-Source Software
Fuzz (OSS-Fuzz) fuzzy testing capabilities[3][5]. Figure
4.1.1 shows the example of implementing a fuzzing
test approach[3].

Figure 4.1.1 - new Fuzzing test approach in Go
Programming Language[3]

The existing algorithm involving a
prepareTestHelper(t *testing.T) register method
prohibits its application to any new techniques[1].
Hence, the algorithm is not flexible enough where
it contradicts its own advertised main advantage of
being agile and nimble in testing businesses[1].

 4.2 Resources Demanding
and Unexportable Reports
Due to the nature of consolidating all test report
data in a single file[1], rendering the report can
sometimes crash a viewing operating system
browser due to high memory and rendering
computation demands. This is highly unfeasible
and will acts as the algorithm application’s upper-
limiting factor[1]. Moreover, the overwhelming
presentation of data at a time can make reader
confused and difficult to digest.

 4.3 Daunting Scrolling and
Searches
Due to the consolidated test scenarios and test
reports nature, it can very daunting to perform
scrolling and searches although both are easily
available to use[1]. It causes dependencies on
external search tool in order to operate an
upgrade to the existing test suites or test
scenarios. This is not feasible for long run.

 4.4 Assertion Nightmare
The existing algorithm offers a list of data
verification and assertions that is capable of
concluding a test case[1]. As such, the
development of a new assertion function causes
the entire simple test helper package
transformed into a bloated data verification
package. These data verification functions also
have useful applications outside of testing
environment like data sanitation. Therefore, it’s
better to provide just the missing test feature and
functions while letting the test developer
performs his/her own assertions outside of the
test helper library.

Page 3 of 15

 4.5 Not Portable to Other
Programming Languages
The current test helper library implementing the
existing algorithm is very restricted to Go
programming language due to over-reliance on
Go’s reflection package. Simple functions like
fmt.Printf uses reflect for rendering the string
output of unknown parameters in runtime[1]. Such
reliance must be removed so that the algorithm
can be applied to other programming languages
without runtime features or other business
paradigms. Moreover, opinionated tools like
GolangCI-Lint and “standard” directory structure[6]

complicates the algorithm portability.

 5 Enhancements
This section covers the list of enhancements done
to the algorithm presented in Section 3 with
resolutions applied for solving all new challenges
listed in Section 4. It explains its reasoning on why
such features must be implemented and how they
are being implemented.

 5.1 Compartmentalized Test
Suite
The first enhancement is to compartmentalize all
test suite into its own source codes. The file
structure is shown in Figure 5.1.1 where every
public functions in Size.go, TrailingZeros.go,
Length.go, and CPU.go like CPU(), S16_Length(),
S16_Resize(), S16_TrailingZeros(), S32_Length(),
S32_Resize(), and etc; are owning their respective
test scenarios table list, test algorithm function(s),
and test assertion functions. Figure 5.1.2 shows the
test suite file content of such compartmentalization
in CPU_testing.go for CPU() public function[7].

Due to the compartmentalization of the test
scenarios in each test suite file, the original
scenarios_test.go that consolidates all test
scenarios in a single file is thus eliminated. This
removed the risk of having massive-sized report
or large-sized test file. Also, as each test suite is
independent of another, it provides the test
developer a peace in mind when upgrading a
particular feature or function.

The testlibs_test.go simulation environment
generator retains its role and existences for
generating simulation values and functions that
are reusable across all test suites[8].

Figure 5.1.1 - Compartmentalized test suites

Page 4 of 15

Figure 5.1.2 - Compartmentalized test suite file
containing its own test scenarios on the top, test
algorithm in the middle, and test assertion at the

bottom[7].

 5.2 Data Type Assertion and
Registration Function Removal
To remove unnecessary growth of the data
validation assertion functions, the role of the
algorithm is carefully re-examined and all
unnecessary functions are rescinded.

It is vital to recognize that the algorithm’s ultimate
role is to only carefully process the state of the test
case, organize the data, and present it into a
necessary, very consistent, on-point, and inter-
translatable report. Anything else shall be
provided and operated by the programming
language test infrastructure alone ranging from
setting a conclusive verdict of a test case to data
type assertions. In short, the enhanced algorithm
must and shall not interfere and confuse developer.

Therefore, the algorithm is trimmed to only
perform logging; providing simulation switches

and test report parameters; and rendering the
intended test reports. Figure 5.2.1 shows the new
approach without assertions where the new
algorithm shall not interfere with existing test
infrastructure (e.g. t.Fail() is clearly stated in the
assertion decision while t.Log() records the output
of the test report rendered by the algorithm
formatting function hestiaTESTING.ToString(…)[7].

Also, in order to future-proof any new test
technique developed in the future like the 2022
Go Fuzzy test tool, the registration-like function is
thus rescinded from the enhanced algorithm
since assertion is no longer required. As such,
with the enhanced algorithm capable of working
independently from the test infrastructure,
implementing Go Fuzzy test is no longer a
blocking factor.

Figure 5.2.1 - Newer approach of using the test
algorithm without interfering with test

infrastructure conclusive function[7]

Page 5 of 15

 5.3 Direct Scenario Use
To eliminate a bunch of large code duplications due
to the looping execution in a test suite such as test
case’s UID assertion and generations, test suite
naming, and etc; with the new compartmentalized
algorithm enhancement in Section 5.1 alongside
the array nature of the test scenarios generator;
both UID and test suite name can be safely and
directly set in the test algorithm itself as shown in
Figure 5.2.1 (s.ID and s.Name). The Scenario data
structure can be directly used for facilitating the
simulation parameters generator instead of having
an intermediate translations. Figure 5.3.1 shows
the direct use of Scenario data structure that only
requires developer to fills in the test case
description and its switches[7].

Figure 5.3.1 - Using the Scenario data structure
directly to generate the list of test cases[7]

 5.4 Use Array Type for
Switches
While attempting to port the enhanced algorithm
to TinyGo Programming Language, dating to this
paper, it appears that TinyGo had yet to implement
some basic yet critical features such as but not
limited to map abstract data type list range looping
mechanism[9]. Apparently, manually implement
such feature can be a daunting task so the next

step is to replace it with a primitive string array
data type for test Scenario’s switches. Figure 5.4.1
shows an example of using string array data type
for all the Switches in S8_Length() function test
scenarios[10].

Figure 5.4.1 - Example of using string array for
Scenario. Switches[10]

The advantage is that the switches are:

1. consistent and orderly rendered;

2. less complicated (due to the removal of
additional boolean switch); and

3. straight to the point.

The disadvantage however, is that in order to
scan for a particular condition, the array have to
be looped from top to bottom for every
queries[11]. This slows down the test executions
but it shall not affect the actual software
merchandise. However, it also means that the
enhanced algorithm can have poor performance
on interpretive programming languages such as
but not limited to Ruby and Python.

Page 6 of 15

To make querying a condition easier in this new
string array list, a helper function like
HasCondition(…) bool function can simplify the
development experience as shown in Figure 5.4.2.

Figure 5.4.2 - Using HasCondition function to query
specific string condition from the Scenario’s

Switches[10]

With the new data type for Switches, TinyGo is now
capable of reusing the the enhanced algorithm test
library vis-a-vis with the original Go.

 5.5 Independent of
Programming Language
In order to ensure the enhanced algorithm is
portable to other programming languages or
outside of the software industry, we have to make
sure the algorithm itself does not rely on any
programming languages’ unique capabilities like
Go’s reflection and runtime features[11][12], TinyGo’s
LLVM optimizations capability[13], or Rust’s
macros[14]. This is the most difficult enhancement
ever done since the test helper library ideally has to
be completely independent from any dependency
including the standard packages. Useful sensory or
rendering functions are notoriously complicated to
implement from scratch. For TinyGo and Go, it is
very easy to invoke any reflection or runtime
related functions when using any functions from
Go’s standard libraries. Hence, long term
development efforts are required to ensure said
goal is achieved.

As dated to this paper, the algorithm was
successfully ported and implemented in TinyGo,
Go, and Rust programming languages.

 5.6 Export Capable Report
Data
The last enhancement is enabling the capability
of exporting the report data that are parse-able
by common formats such as JSON, TOML, or
YAML. Due to the strict enhancement in Section
5.5, the paper only implements TOML data
format rendering function[7]. TOML was selected
among others mainly because[20]:

1. It’s very simple to implement without
requiring a re-implementation of encoder
and decoder just to validate the output[20];
and

2. Its string building algorithm is very
simple to develop compared to the
alternatives[20]; and

3. Its quotation escaping capability is simple
enough for various possible string quoted
values without requiring additional linters
like its competitors[20].

Figure 5.6.1 shows the TOML rendering output
that is parse-able by other software like
documentation content management system[7].

Figure 5.6.1 - test output rendered in TOML
format[7]

Page 7 of 15

 6 Results
This section covers the enhanced algorithm
deployment results across multiple programming
languages in accordance to their specific language
specialities. It demonstrates how to deploy the
enhanced algorithms step-by-steps in an iterative
manner.

 6.1 Deployment in Go
Programming Language
Just like its predecessor, the enhanced algorithm
can be developed in the following sequences:

 1 Develop the test suite file first – this
identifies what you want to do and needed
to be done. Among its components, in
sequence:

 1.1 The test algorithm and
assertion – The main content of the
test suite codes as shown in Figure
5.2.1.

 1.2 The test scenarios – Then by
observing the test subject and the
algorithm, proceed to build the test
scenarios list as shown in Figure 5.3.1.

 2 Develop the common testlibs_test.go
test libraries – this unifies common
generator functions to reduce code
duplications. Among the sub-components
are usually:

 2.1 switch conditions – Switches in
its constant nature are kept here. These
statements shall be human-readable,
independent on its own context, self-
explanatory, and should not rely on the
scenario description for elaboration[8].
Figure 6.1.1 shows an example for
listing out the string conditions.

Figure 6.1.1 - commonly used test conditions[8]

 2.2 verifiable values used in
assertion and generator functions –
Depending on the test nature, values
that are used in generator and
assertion functions can be kept here.
There values shall be used at least
twice across one or more test suites.
Figure 6.1.2 shows an example for
listing out common test values used
in said manners.

Figure 6.1.2 - commonly used test values[8]

Page 8 of 15

 2.3 common generator functions
– common value generating functions
used across multiple test suites shall be
kept here. These functions shall be
used by more than 2 test suites. Figure
6.1.3 shows an example listed out
common generator functions used in
said manners.

Figure 6.1.3 - commonly used test functions[8]

 3 Observe the test report and improve
iteratively – Lastly, repeat step 1 to step 2
iteratively by observing the test reports
and/or generate the report data file
accordingly. Once satisfied, the developer
can move on to the new test suite
development. Figure 5.6.1 shows an
example of the reporting in string format
for a test report.

 4 Compile heatmap code coverage for
effective and insightful testing – the code
coverage heatmap allows the developer to
perform effective testing by insightful
learning. This saves resources and perform
pinpoint accuracy. Figure 6.1.4 shows an

example of the heatmap code coverage
that is testing against the test codes
shown in Figure 5.2.1.

Figure 6.1.4 - test coverage heatmap testing[8]

 6.2 TinyGo Deployment
Deployment for TinyGo is similar to Go as they
share the same language. However, there are a
few strict precautions due to the incomplete
development nature of TinyGo compiler:

 1 Be careful with using functions and
codes involving reflection – Not all
features in Go reflection package are
readily available[9][21].

Page 9 of 15

 2 No code coverage heat-map is made
available – Unlike Go compiler, TinyGo
does not generate heat-map code coverage
test report.

 3 Memory allocation warning – Unlike Go,
TinyGo can report out all its memory
allocations which is something special to
TinyGo alone[22]. This can compliment Go
compiler to create a much simple functions
with its algorithm much more portable to
other languages.

 6.3 Rust Programming
Language Deployment
Deploying the enhanced algorithm into Rust
Programming Language is different from
deploying into Go and TinyGo mainly because
Rust’s test infrastructure is entirely different in
nature. However, the deployment is still doable and
is, in fact, a lot easier to deploy compared to Go
and TinyGo.

 6.3.1 Rust’s Format! Macro
Unlike any other known programming languages,
Rust uses Format! per-processing macro to perform
string formatting instead of the conventional Printf
formatting function as shown in Figure 6.3.1.1[15].
While the goal is for performance gain in the actual
binary product via great use of macro, it does
introduce a novel way of doing string formatting.

Figure 6.3.1.1 - Rust using Format! Macro to
perform string formatting[15]

 6.3.2 Rust’s Test Functions
Unlike Go and TinyGo, Rust does not have a
runtime feature to operate their test
infrastructure or catching panics as shown in
Figure 6.3.2.1[16]. Instead, Rust relies heavily on
per-processor macro to indicate a test function
can expect a panic via execution failure[16]. In
short, the entire infrastructure relies solely on
macro implementations[16][17]. Moreover, unlike Go
or TinyGo, Rust’s unit test function is ONLY meant
for ONE (1) test case and not for a test suite with
multiple test cases[16]. Therefore, the table-driven
test methodology implementation can be quite
awkward.

Fortunately, this problem can be solved by
developing a macro function capable of per-
process all unit-test functions of a given test suite
on top of existing test infrastructure[17].
Unfortunately, due to Rust procedural macro not
able to handle arithmetic counting at per-
processing level (since it is only responsible for
writing Rust codes), the UID data field in the
Scenario has to be manually listed as shown in
Figure 6.3.4.2.

Page 10 of 15

Figure 6.3.2.1 - Rust using macros for unit testing
and panic catching

 6.3.3 Code Coverage
Heatmap
Rust code coverage heatmap is awkwardly
implemented as development work are still in
progress. Currently, Rust depends on Mozilla’s
GRCOV cargo module to perform the necessary
code coverage heatmap output[18]. Unlike Go, the
setup for Rust’ code coverage infrastructure is not
as intuitive as Go since it is a 3rd-class citizen
among its dependencies chart (gcov cargo → →
rustc) versus 1st class citizen in Go (go).

As dated to this paper, the authors failed to
implement such feature numerously so it shall be
left out from this paper. However, in the authors’
opinions, it is believed that it is achievable and the
authors have faith in Rust core team for making
Rust’s test infrastructure competitive to Go’s test
infrastructure.

 6.3.4 Approaches
Implementing the enhanced algorithm in Rust is
similar to Go as shown in Section 6.1 with slight
differences against the test scenarios table list.
The sequences are:

 1 Develop the test codes file first – for
identifying what is needed to be done
and how the testing is done as shown in
Figure 6.3.4.1[19]. In Rust, however, each
test scenario has to be defined
individually using the test function
generator macro[17] directly into the test
suite source code file as shown in Figure
6.3.4.2[19] instead of using a array listing
as shown in Figure 5.4.1.

 2

Figure 6.3.4.1 - Unit testing suite in Rust[19]

Page 11 of 15

Figure 6.3.4.2 - Declaring each test scenario directly
in Rust using the test function generator macro[19]

 3 Develop the common testlibs_test.rs test
libraries – for unifying common values and
libraries. Similar to Go, all switches’
conditions and commonly used test helper
functions are defined here since they’re
used across many test suites as shown in
Figure 6.3.4.3[19].

Figure 6.3.4.3 - Consolidating all commonly
used values and helper functions in Rust’

testlibs[19]

 4 Observe the test report and improve
iteratively – for improving the software
product quality overtime as shown in
Figure 6.3.4.4[19]. However, by default, Rust
does not print out any reporting output
onto the console. Therefore, the tester
must issue the -- --show-output
argument for the cargo test command
($ cargo test -- --show-output) in order
to force it to render the output. The
TOML format rendering of test report
TOML format is unaffected.

Figure 6.3.4.4 - Reading the test results from Rust
Unit testing output[19]

 5 Compile heatmap code coverage for
effective testing – for pinpoint accuracy
testing with minimal use of resources.
The test efforts and development should
be same as Go.

Page 12 of 15

 7 Future Improvements
This section covers all identified gaps for future
improvements that can be done beyond this paper.
It allows the algorithm to be further enhanced for
effective and efficient adoption without much
complexity.

 7.1 Improvement for Rust
Implementations
The implementation of the enhanced algorithm in
Rust is a new venture compared to its predecessor
where the translation is impossible. However, due
to the limited experience with Rust programming
language by this paper’s authors, the authors
believe that the algorithm can be further
implemented effectively in the Rust programming
language, allowing the interoperability between
Rust, Go, and TinyGo.

 7.2 Into Artificial Intelligence
The authors of this paper strongly believe that
once the enhanced algorithm is implemented
across many programming languages, the next
step is to further enhance the algorithm for being
useful in artificial intelligence developments and
applications. Artificial intelligence is powerful and
sophisticated enough to handle complex business
problems in a very effective and efficient manner,
strongly complimenting and potentially replacing
some or most of the programming
implementations in the future.

 8 Conclusion
Working on unit testing software product in
modern programming languages is getting more
cumbersome as the software product is getting
incrementally complex in a very rapid and
demanding pace. While the unit-testing
algorithm is made available, it had quickly
became outdated as new specialized techniques
were developed.

Among the enhancement did to the algorithms
were the ability to compartmentalize and isolate
all test suites from one another; the removal of
assertion affecting the provided test
infrastructure; the ability to use the test Scenario
data structure directly for table-driven scenario
definition list; the deployment of string array for
switches; the capability of exporting test case’s
report data; and the portability across other
programming languages.

The enhanced algorithm is also tested in other
programming languages like TinyGo and Rust for
assuring its advertised product advantage of
being portable and flexible is confidently tested.
Its implementations for Rust can be further
improved and the authors are also looking
forward to deploy the enhanced algorithm in the
artificial intelligence sector. As of this paper, the
authors concluded that the enhanced algorithm
is successfully enhanced and is now named as
“Large Scale Unit Testing Algorithm v2”.

Page 13 of 15

 9 License
The paper is licensed under:

CC-BY-ND

This license lets you distribute; and build your work
commercially and non-commercially upon the
original contents as long as you credit the authors;
and no remix, tweak, and edit upon the original
contents. More info at:
https://creativecommons.org/licenses/by-nd/4.0/

 10 Acknowledgment
We would like to thank LIM LEE BOOI for her
continuous constructive criticism of the manuscript
despite all the hardships and contributing the
development of this algorithm in the past.

ありがとうございました | Dankeschön | 谢谢 |
Thank You

 11 Reference
[1] CHEW KEAN HO, LIM LEE BOOI; 2019; “Large Scale

Unit Testing for Go Programming Packages”; 1st

Issue; 10.13140/RG.2.2.36308.76166;
ResearchGate.net; accessed on October 18, 2022;
Available at:
http://dx.doi.org/10.13140/RG.2.2.36308.76166

[2] CHEW KEAN HO, LIM LEE BOOI; 2018; “Descriptive
Review for Software Testing Algorithms”; 1st Issue;
10.13140/RG.2.2.11325.10724; Researchgate.net;
accessed on October 18, 2022; Available at:
http://dx.doi.org/10.13140/RG.2.2.11325.10724

[3] GO.DEV; 2022; “Go Fuzzing”; Google; accessed on
October 18, 2022; Available at:
https://go.dev/security/fuzz/

[4] GO.DEV; 2022; “Effective Go”; Google; accessed on
October 18, 2022; Available at:
https://go.dev/doc/effective_go

[5] GOOGLE; 2022; “OSS-Fuzz”, Google via GitHub.io;
Accessed on October 18, 2022; Available at:
https://google.github.io/oss-fuzz/getting-started/n
ew-project-guide/go-lang/#native-go-fuzzing-
support

[6] RUSS COX; 2021; “Golang-Standards: This Is Not A
Standard Go Project Layout”; Github Inc.; Accessed
on October 18, 2022; Available at:
https://github.com/golang-standards/project-
layout/issues/117

[7] CHEW KEAN HO, 2022; “GitHub Code Blob:
ZORALab’s Hestia – CPU_test.go”; Experimental
branch; ZORALab via GitHub Inc.; Accessed on
October 18, 2022; Available at:
https://github.com/ZORALab/Hestia/blob/experim
ental/hestiaGO/hestiaNUMBER/hestiaBITS/
CPU_test.go

[8] CHEW KEAN HO, 2022; “GitHub Code Blob:
ZORALab’s Hestia – testlibs_test.go”; Experimental
branch; ZORALab via GitHub Inc.; Accessed on
October 18, 2022; Available at:
https://github.com/ZORALab/Hestia/blob/experim
ental/hestiaGO/hestiaNUMBER/hestiaBITS/
testlibs_test.go

[9] KISHORE KONJETI, AYKE; 2022; “GitHub Issue:
TinyGo.Org - panic: unimplemented:
(reflect.Value).MapRange()”; TinyGo.org via GitHub
Inc.; Accessed on October 18, 2022; Available at:
https://github.com/tinygo-org/tinygo/issues/3104

[10] CHEW KEAN HO, 2022; “GitHub Code Blob:
ZORALab’s Hestia – S8_Length_test.go”;
Experimental branch; ZORALab via GitHub Inc.;
Accessed on October 18, 2022; Available at:
https://github.com/ZORALab/Hestia/blob/experim
ental/hestiaGO/hestiaNUMBER/hestiaBITS/
S8_Length_test.go

[11] MICHAEL KNYSZEK; 2022; “Go Runtime: 4 Years
Later”; The Go Blog; Google via Go.Dev; Accessed
on October 18, 2022; Available at:
https://go.dev/blog/go119runtime

Page 14 of 15

https://creativecommons.org/licenses/by-nd/4.0/
https://go.dev/blog/go119runtime
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/S8_Length_test.go
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/S8_Length_test.go
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/S8_Length_test.go
https://github.com/tinygo-org/tinygo/issues/3104
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/testlibs_test.go
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/testlibs_test.go
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/testlibs_test.go
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/CPU_test.go
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/CPU_test.go
https://github.com/ZORALab/Hestia/blob/experimental/hestiaGO/hestiaNUMBER/hestiaBITS/CPU_test.go
https://github.com/golang-standards/project-layout/issues/117
https://github.com/golang-standards/project-layout/issues/117
https://google.github.io/oss-fuzz/getting-started/new-project-guide/go-lang/#native-go-fuzzing-support
https://google.github.io/oss-fuzz/getting-started/new-project-guide/go-lang/#native-go-fuzzing-support
https://google.github.io/oss-fuzz/getting-started/new-project-guide/go-lang/#native-go-fuzzing-support
https://go.dev/doc/effective_go
https://go.dev/security/fuzz/
http://dx.doi.org/10.13140/RG.2.2.11325.10724
http://dx.doi.org/10.13140/RG.2.2.36308.76166

[12] ROB PIKE; 2011; “The Laws of Reflection”; The Go
Blog; Google via Go.Dev; Accessed on October 18,
2022; Available at: https://go.dev/blog/laws-of-
reflection

[13] TINYGO.ORG; 2022; “Important Build Options”;
Documentations > References > Using TinyGo;
TinyGo.ORG; Accessed on October 18, 2022;
Available at:
https://tinygo.org/docs/reference/usage/important-
options/

[14] STEVE KLABNIK, CAROL NICHOLS; 2022; “Macros”;
The Rust Programming Language Documentations;
Rust Team via rust-lang.org; Accessed on October 18,
2022; Available at:
https://doc.rust-lang.org/book/ch19-06-macros.html

[15] RUST.ORG; 2022; “Rust by Example - Formatting”; The
Rust Programming Language Documentations; Rust
Team via rust-lang.org; Accessed on October 19,
2022; Available at: https://doc.rust-lang.org/rust-by-
example/hello/print/fmt.html

[16] RUST.ORG; 2022; “Rust by Example – Unit Testing”;
The Rust Programming Language Documentations;
Rust Team via rust-lang.org; Accessed on October 19,
2022; Available at: https://doc.rust-lang.org/rust-by-
example/testing/unit_testing.html

[17] CHEW KEAN HO, 2022; “GitHub Code Blob:
ZORALab’s Hestia – execs.rs”; Experimental branch;
ZORALab via GitHub Inc.; Accessed on October 19,
2022; Available at:
https://github.com/ZORALab/Hestia/blob/experimen
tal/hestiaRUST/hestia_testing/execs.rs

[18] MOZILLA, 2022; “GitHub: Mozilla’s GRCOV”; master
branch; Mozilla via GitHub Inc.; Accessed on October
19, 2022; Available at:
https://github.com/mozilla/grcov

[19] CHEW KEAN HO, 2022; “GitHub Code Blob:
ZORALab’s Hestia – s8_length_test.rs”; Experimental
branch; ZORALab via GitHub Inc.; Accessed on
October 19, 2022; Available at:
https://github.com/ZORALab/Hestia/blob/experimen
tal/hestiaRUST/hestia_number/hestia_bits/
s8_length_test.rs

[20] CHEW KEAN HO; 2022; “GitHub Commit:
f0c5602c3d3479373f96b368a786d3af1341a791 :
hestiaGO – purged hestiaTESTING toJSON and
toYAML rendering functions”; ZORALab’s Hestia
Software; ZORALab via GitHub Inc.; Accessed on
October 19, 2022; Available at:
https://github.com/ZORALab/Hestia/commit/f0c56
02c3d3479373f96b368a786d3af1341a791

[21] TINYGO.ORG; 2022; “Packages Supported by Go”;
Documentations > References > Go Language
Features; TinyGo.ORG; Accessed on October 19,
2022; Available at:
https://tinygo.org/docs/reference/usage/importan
t-options/

[22] TINYGO.ORG; 2022; “MISC Build Options”;
Documentations > References > Using TinyGo;
TinyGo.ORG; Accessed on October 19, 2022;
Available at:
https://tinygo.org/docs/reference/usage/misc-
options/

Page 15 of 15

https://github.com/ZORALab/Hestia/blob/experimental/hestiaRUST/hestia_number/hestia_bits/s8_length_test.rs
https://github.com/ZORALab/Hestia/blob/experimental/hestiaRUST/hestia_number/hestia_bits/s8_length_test.rs
https://github.com/ZORALab/Hestia/blob/experimental/hestiaRUST/hestia_number/hestia_bits/s8_length_test.rs
https://tinygo.org/docs/reference/usage/misc-options/
https://tinygo.org/docs/reference/usage/misc-options/
https://tinygo.org/docs/reference/usage/important-options/
https://tinygo.org/docs/reference/usage/important-options/
https://github.com/ZORALab/Hestia/commit/f0c5602c3d3479373f96b368a786d3af1341a791
https://github.com/ZORALab/Hestia/commit/f0c5602c3d3479373f96b368a786d3af1341a791
https://github.com/mozilla/grcov
https://github.com/ZORALab/Hestia/blob/experimental/hestiaRUST/hestia_testing/execs.rs
https://github.com/ZORALab/Hestia/blob/experimental/hestiaRUST/hestia_testing/execs.rs
https://doc.rust-lang.org/rust-by-example/testing/unit_testing.html
https://doc.rust-lang.org/rust-by-example/testing/unit_testing.html
https://doc.rust-lang.org/rust-by-example/hello/print/fmt.html
https://doc.rust-lang.org/rust-by-example/hello/print/fmt.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://tinygo.org/docs/reference/usage/important-options/
https://tinygo.org/docs/reference/usage/important-options/
https://go.dev/blog/laws-of-reflection
https://go.dev/blog/laws-of-reflection

	1 Abstract
	2 Introduction
	3 Background
	3.1 The Problems
	3.2 The Algorithm
	3.3 Test Scope and Approaches

	4 New Challenges
	4.1 New Test Facility
	4.2 Resources Demanding and Unexportable Reports
	4.3 Daunting Scrolling and Searches
	4.4 Assertion Nightmare
	4.5 Not Portable to Other Programming Languages

	5 Enhancements
	5.1 Compartmentalized Test Suite
	5.2 Data Type Assertion and Registration Function Removal
	5.3 Direct Scenario Use
	5.4 Use Array Type for Switches
	5.5 Independent of Programming Language
	5.6 Export Capable Report Data

	6 Results
	6.1 Deployment in Go Programming Language
	6.2 TinyGo Deployment
	6.3 Rust Programming Language Deployment
	6.3.1 Rust’s Format! Macro
	6.3.2 Rust’s Test Functions
	6.3.3 Code Coverage Heatmap
	6.3.4 Approaches

	7 Future Improvements
	7.1 Improvement for Rust Implementations
	7.2 Into Artificial Intelligence

	8 Conclusion
	9 License
	10 Acknowledgment
	11 Reference

