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Kinetic Monte Carlo (KMC) simulations in combination with first-principles-based calculations are rapidly becoming
the gold-standard computational framework for bridging the gap between the wide range of length and time-scales
over which heterogeneous catalysis unfolds. First-principles KMC (1p-KMC) simulations provide accurate insights
into reactions over surfaces, a vital step towards the rational design of novel catalysts. In this perspective article,
we briefly outline basic principles, computational challenges, successful applications, as well as future directions and
opportunities of this promising and ever more popular kinetic modeling approach.

I.  INTRODUCTION

Heterogeneous catalysts are capable of accelerating chem-
ical reactions, thereby achieving high conversion and product
selectivity at low cost.! For this reason, this type of catalysis
is at the heart of many processes of critical importance in the
chemical industry.>3 It not only has played a pivotal role in
shaping our current society, but will also play an essential role
in ensuring its sustainable future. This role involves improv-
ing the efficiency of catalytic materials and processes leading
to significant energy and raw material savings, as well as pol-
lution reduction. While the development of novel improved
catalysts has typically been an empirical trial-and-error pro-
cess, computational modeling approaches are playing an in-
creasingly important role in the quest for the “rational catalyst
design”.+7

However, due to the wide range of length- and time-scales
involved in heterogeneous catalysis (Fig. 1), developing per-
tinent computational models is not an easy task. 3 The ele-
mentary processes happening on the catalytic surface are de-
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FIG. 1. The multi-scale nature of heterogeneous catalysis from the
electronic/atomistic level to the macroscopic reactor-scale.
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termined by the structure and composition of sites onto which
the reactants are adsorbed and where the breaking and mak-
ing of chemical bonds occurs (i.e., the active sites).? At the
same time, the structure and composition of active sites evolve
in response to local variations in temperature and concentra-
tions, which are themselves dictated by the overall mass and
heat transport at the reactor scale. In other words, there is a
dynamic interplay between the reactive elementary processes
and the large-scale environment in which they evolve.

First-principles multiscale modeling approaches have been
implemented to tackle this challenge.®'? One of the central
pillars of these approaches is to exploit the disparities in the
time-scales at which processes at different levels unfold, from
the electronic to the reactor level. In doing so, it is possi-
ble to hierarchically couple the different levels of theoretical
descriptions. In its bottom-up version, a first-principles mul-
tiscale modeling approach starts from quantum mechanical
electronic structure calculations towards building the atomic-
scale model for the catalyst and exploring the energetics of
the elementary steps in the reaction mechanism. Then, the el-
ementary steps are used as inputs into either the mean-field
microkinetics modeling (MF-MKM) approach!!~?! or the so-
called KMC framework.?>?> The MF-MKM approach is
computationally efficient but of questionable accuracy.’®> On
the other hand, KMC simulations are very accurate but com-
putationally demanding.>* Finally, the multiscale approach
can integrate either of these two microkinetic modeling ap-
proaches with mass and heat transport models to account for
inhomogeneities in the reactant concentrations and tempera-
ture in the reactor.

It would not be an overstatement to claim that KMC is an
essential computational tool to bridge the gap between the
atomistic and the catalyst scale, towards high-fidelity (pre-
dictive) models of catalytic kinetics. Unlike the more widely
adopted MF-MKM, KMC allows for incorporating spatial in-
homogeneities and correlations in the distribution of reactants
on the catalytic surface, as well as detailed information about
their configurations on different types of active sites. In addi-
tion, it takes into account the discrete nature of the coverage
for nanoparticles or clusters, which expose a small number of
sites. Thus, it is capable of explaining phenomena that are
beyond the limitations of the MF-MKM approach.

This article aims to give a general perspective on the 1p-



KMC modeling approach for heterogeneous catalysis. We
will focus on general concepts, main computational chal-
lenges, and recent progress in implementing this versatile
computational approach. The rest of the article is structured
as follows. First, we briefly present motivations and concepts
behind the 1p-KMC framework for heterogeneous catalysis.
Second, we introduce the general structure of its computa-
tional implementation and give an overview of prominent soft-
ware packages and codes that build upon it. In the third part,
we discuss outstanding computational challenges faced by the
1p-KMC framework. We continue by reviewing applications
to catalytic systems of practical relevance. Lastly, we discuss
future challenges and directions for further research and de-
velopment, and end with our conclusions.

Il. THE KMC FRAMEWORK: WHY IS IT USEFUL AND
WHY DOES IT WORK?

The accurate computational modeling of heteroge-
neous catalysis is certainly a challenging and vital
endeavor.#0:3:10.3542 The acceleration of chemical reac-
tions by the catalyst and its ability to direct the paths to
yield particular products arise as a consequence of a highly
complex interplay between a large number of elementary
events (i.e., adsorption, desorption, diffusion, and reaction
events) occurring at the active sites of the catalytic surface.
A significant challenge in modelling such events is to find
efficient ways to treat the time-scale disparity arising from
the fact that such elementary events are commonly thermally
activated and are thus rare on the typical femtosecond scale
of smallest atomistic vibrations.*> The effective treatment
of such a problem is essential to capture the wide range
of temporal and spatial scales involved in heterogeneous
catalysis, as outlined in Fig. 1.** In this respect, the KMC
framework has been demonstrated to be a powerful and
versatile computational modeling approach that, by taking
advantage of the aforementioned time-scale disparity, allows
us to develop models that couple the electronic, atomistic and
catalytic nanoparticle scales, in a relatively straightforward
way.?>2327-29 This coupling opens the window for the
accurate prediction of catalytic performance metrics (i.e.,
selectivity, activity, and stability) critical for the successful
design of new catalysts and the improvement of chemical
processes at the reactor scale.

The elementary events happening on the catalytic surface
are transformations in which the atoms of a system, including
those of the active sites and their surroundings, rearrange from
one configuration to another by breaking and making chemi-
cal bonds. The characterization of such systems requires, at
the most detailed level, a fully quantum mechanical descrip-
tion. However, obtaining solutions of Schrodinger’s time-
dependent many-body equation remains a challenging task.

Over the years, this practical problem has motivated
the development of several approximations, of which the
Born—-Oppenheimer (BO) one is the most widely used in the
catalysis research community.*=° The BO approximation,
along with the solution of the time-independent quantum me-
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FIG. 2. Tllustration of a PES in the vicinity of two minima (black
circles) separated by a barrier. The initial and final states include the
corresponding minima and the basin of attraction around those min-
ima. The transition state (black oval) and the minimum energy path
connecting these three states (white line) are also noted. A curly line
depicts a representative reactive MD trajectory on the PES. This MD
trajectory undergoes extensive wandering within the state’s basin be-
fore traversing the energy barrier to the other state.

chanical problem for electrons, given different configurations
of the nuclei,’!*? leads to the so-called potential energy sur-
face (PES). The PES provides the energy of the system of
electrons and nuclei as a function of nuclei positions, and thus
contains valuable information about reaction paths, adsorption
energies, vibrational frequencies, and the existence of barriers
for the elementary events.>> A minimum in the PES repre-
sents a stable species, and the basin of attraction around such a
minimum contains all atomistic configurations which will per-
form a vibrational relaxation into that minimum. Moreover, a
transition from a basin to a neighboring one by crossing the in-
termediate energetic barrier constitutes an elementary event of
adsorption, desorption, diffusion, or reaction.’* As in many
other branches of computational chemistry, the PES is a fun-
damental concept in KMC simulations (Fig. 2).

Although this static quantum-mechanical description pro-
vides valuable information about individual chemical trans-
formations in terms of the PES, to understand how a cat-
alytic reaction mechanism proceeds and to calculate the re-
action rate of the entire process, dynamical simulations are
required. However, quantum-dynamical studies are still com-
putationally very costly. To alleviate this issue, it is often a
good approximation to neglect the quantum mechanical ef-
fects in the motion of the nuclei. This approximation entails
treating the system classically by solving Newton’s equations
of motion with suitable boundary conditions for all the nuclei
with the forces calculated from the PES, which in turn is ob-
tained from electronic calculation methods.>!? Such an ap-
proach is the well-known first-principles molecular dynamics
(1p-MD),*=*9 and despite its strong predictive power, it be-
comes computationally inefficient when simulating catalytic
systems for practically relevant timescales and system sizes.

Indeed, a demanding step in this method is the computa-



tion of the PES for every time step of a MD run. Several
efficient methods to obtain good and efficient representations
of the PES during MD simulations have been introduced,¢-6?
each having its advantages and drawbacks. However, the main
obstacle in this approach is that, for catalytic systems, the en-
ergetic barriers of the PES are typically much higher than the
system’s thermal energy. Therefore, if only thermal energy
drives the dynamics, the system performs many unsuccessful
attempts before the corresponding barrier is crossed due to a
large enough energy fluctuation (see Fig. 2 for an example of a
typical MD trajectory). In many cases, the time between two
successful elementary events can reach several nanoseconds
or even longer time-scales. Under these circumstances, the
MD algorithm, with its time steps of the order of femtosec-
onds, spends most of the time resolving irrelevant thermal
vibrations inside the basin of the PES before a catalytically
relevant barrier crossing occurs. Although the barrier cross-
ings per se happen quickly and could be in principle followed
by 1p-MD simulations,®>%* the infrequent occurrence thereof
means that the full functionality of a catalytic system cannot
be currently studied by this computational method. Develop-
ing frameworks to extend the accessible timescale of MD sim-
ulations has been a long-standing challenge for the atomistic
simulation research community.®3-¢7

The KMC framework is specifically tailored to address the
time-scale problem just discussed, and in doing so, it allows
us to access the long time dynamics necessary to explore het-
erogeneously catalyzed reactions.?+?8->433-68 Ag its name in-
dicates, KMC combines the Monte Carlo (MC) method with
a kinetic approach that focuses on the time-scale of the barrier
crossings and uses transition state theory (TST)® arguments
to describe the statistics of the transitions between basins of
the PES. Therefore, in contrast to traditional equilibrium MC
simulations where the time variable is absent,’®’! in KMC,
the temporal evolution of the catalytic system is taken into
account but just in a coarse-grained sense, namely the simu-
lations pertain to the timescale of the barrier crossings rather
than that of atomic vibrations, as in MD.

KMC simulations in combination with density functional
theory (DFT)-based calculations have grown in popular-
ity in the catalysis research community over the past few
decades.!02224.28.72-74 This 1p-KMC approach can cover
temporal scales ranging from ms to hours, and spatial scales
from nm to um. Let us provide the fundamental basics of such
a 1p-KMC simulation approach in the rest of this section.

1. The temporal coarse-graining underlying KMC simulations

In KMC simulations, the long-term time evolution of the
catalytic system is said to be governed by successive state-to-
state transitions, with a state corresponding to a single basin
of the PES. A key observation is that because the system stays
inside each basin (or KMC state) for a very long time (relative
to the timescale of the fastest atomistic vibration), it “forgets”
how it got there. Then, it is possible to assume that such state-
to-state dynamics is Markovian.>*>>7>=77 This assumption al-
lows assigning to each elementary event leading from a state
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FIG. 3. Representation of the state space for a catalyst surface with
3 active sites. (a) Coordinate transformation from the state @ to the
adsorbates’ number and positions @,;,. The active sites of the sur-
face are labeled 1, 2, 3 and there are two adsorbates occupying sites
2 and 3, while site 1 is vacant (empty). This state can be represented
as a binary 3-element vector with 0 denoting a vacant site, and 1 an
occupied site (w). Alternatively, one can report the number of ad-
sorbates (in this case 2) and the sites they occupy (@,y). (b) There
are 8 possible states that can be represented in terms of @ or @;.
(c) The states with the same number of adsorbates v belong to dis-
crete (hyper)planes. The planes for v = 0 and 3 have each only one
point. In a KMC trajectory, the transition between states is dictated
by the elementary events of the catalytic system under consideration.
Although, not shown in this figure, the state-space encompasses not
only all the possible adsorbate configurations on the lattice but also
the associated numbers of gas-phase molecules (produced or con-
sumed during elementary events), which are specified up to an addi-
tive constant.?30

o to a different state @' a rate constant kg that represents
the probability, per unit time, that the transition to state @’
occurs.”” This hopping probability is independent of the pre-
vious history of state @ and is calculated via TST taking into
account the properties of the PES.”8

Therefore, during a KMC simulation, the system passes
through a large number of states. The collection of all pos-
sible such states define the state-space, Q, to which © and @’
belong, and thus, a KMC trajectory is simply a random walk
on Q. In Fig. 3, we present an example of a KMC state-space
together with two possible ways to mathematically represent
it. If all elementary events are known for every state the KMC
trajectory goes through, the rate constant expressions are ex-
act, and the Markovian approximation is valid, a state-to-state
trajectory generated by KMC simulation will be statistically
identical to the trajectory generated by the MD method pro-
jected onto the states — provided of course both methods use
the same PES.”°

The Markovian approximation underpinning KMC is typi-
cally valid because, once the catalytic system reaches a partic-
ular PES basin, it equilibrates very rapidly within that basin,
which represents a KMC state. This equilibration breaks any
connection between the state visited before the current state,
and any state the system will visit next. Moerover, as the sys-
tem vibrates within a basin it also repeatedly loses memory
about where it was vibrating before. As a result, the proba-



bility of waiting for a certain amount of time until a transition
occurs to another new state is the same at every moment spent
in the current state (assuming of course no prior information
about how much time has passed since the last transition).
This behavior gives rise to a Poisson process with exponen-
tial decay statistics.*>>75-77

In a KMC simulation, we are interested in all possible ele-
mentary events that may bring state @ to a new possible state.
Thus, under Poisson statistics, the probability that the system
has escaped from state @ at some time less than or equal to
7T (i.e., the cumulative probability of the time to escape from
state @ to any other state) is given by:

pescaped(r) =1—exp (_klot T) , (D
where
kior = Z koo s ()
' #0

is the total escape rate constant from state @ due to all possible
transitions (elementary events). Then, the probability density
function that a transition will occur at time ¢ 4 7, given that
the system is at state @ at time ¢, is given by the following
exponential distribution:

P(T) = kiorexp (_kl()t T) . 3)

Since the elementary events bringing the system from state @
to another new state @’ are uncorrelated, the escape time of
each separately follows an exponential distribution, given as:

wa’(T) = kg €xp (_kwa)’f) . 4

We are now in the position to generate random escape times
by properly sampling from these distributions. After invoking

the inversion generation method,”®”” one obtains:
In(1—u)
Tow = —k77 &)
[ol0d

where u € (0,1) is a random number from the uniform dis-
tribution and 7T, is the escape time sought. In KMC par-
lance, these random times are also referred to as occurrence,
waiting, or inter-arrival times. Although at a given state each
possible elementary event has its own individual escape time,
the first event to happen is of course, the one with the shortest
time.35.76.77

It is well-established that the distribution of the minimum
among several exponential random variables is also exponen-
tially distributed with a rate constant given by the sum of the
rate constants of the individual random variables (see Eq. 3).
Therefore, it is possible to advance time either by calculating
the minimum escape time among all elementary events, or by
sampling a random time from Eq. 3. The latter implies that
the time advancement is given as:

ln(l —Ml)

, 6
Koo ©

Tadv = —

where u; € (0, 1) is also a random number from a uniform dis-
tribution. In this case, however, the escape time only depends

on the total rate constant and is independent of the elementary
event that brings the system out of state ®. Such an elemen-
tary event, which propagates the system to a new state @', is
picked with probability

kww’
(7N

Py o = ko’
tot

by mapping a second uniformly distributed random number
u> into an integer that indicates the next event,>*>>.76.77.80

We can extend the previous discussion to the case of time-
dependent rate constants, which is useful e.g. for modeling
temperature programmed desorption (TPD).%>8! In this case,
the escape time for each elementary event is obtained by solv-
ing the following non-linear equation:

Tow , ’
/ ko (1 +7)dT = —In(1 —u), ®)
0

where kg, is now changing over time. The time advancement
and the next elementary event to occur are then given by the
minimum escape time among all events. Alternatively, one
can obtain the time advancement from:

Ta v !
/0 Y kot (14 7)dT = —In(1—uy), )

where k;,; is also changing over time. Then, the integer ran-
dom variable indicating the next event to happen would follow
a probability distribution similar to that of Eq. 7, but with the
the rate constants integrated over time. If the rate constants
do not change over time, Eqs. 8 and 9 reduce to Egs. 5 and 6,
respectively.

It is now evident that both the random selection of an es-
cape time and the identification of the associated elementary
event are the foundation of any KMC algorithm. This infor-
mation is almost all that we need to discuss the computational
implementation of the KMC framework. However, before do-
ing that, let us discuss in the following section important as-
pects required for implementing KMC in combination with
first-principles methods.

2. Detailed balance, rate constants, and lattice energetics

A KMC simulation provides the temporal evolution of the
number and location of molecules (i.e., adsorbates) bound
onto a catalyst surface. The latter is conveniently repre-
sented as a lattice whose nodes mimic the ensemble of active
sites on which the elementary events take place (Fig. 4).2>%4
Given that these elementary events are treated as indepen-
dent Poisson processes, the evolution of the catalytic sys-
tem is described by the so-called Markovian master equation
(MME):7>

dPy(t)
ke Y kowPo()+ Y kaowPw(t),  (10)

[or04 [orod

where kg, represents, as mentioned above, the rate constant
for a transition from state @ to state @' due to an elemen-
tary event, and ky, represents the rate constant of the reverse
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FIG. 4. Example of a KMC implementation for the simulation of CO oxidation on Pd(111). The model simulated is as in Fig. 8 of Ref. 82 for
an 81 x 81 lattice, with a total of 13122 sites (see also Ref. 83). (a) Lattice for the Pd(111) surface used in the KMC simulation. Two kinds
of adsorption sites are considered (i.e., active sites): face-centered cubic (fcc) and hexagonal close-packed (hcp). (b) Snapshot showing the
spatial arrangement of the absorbates in a portion of the lattice during a KMC simulation. (c) Time evolution of the O, CO, and O, coverages
on the surface. These coverages reach a stationary state, after some initial transient due to initializing the simulation with an empty lattice.
(d) Time evolution of the O, CO, and CO, molecule numbers in the gas phase. Since the system is far from equilibrium and the gas phase
is assumed to be a large reservoir with a fixed composition, there is a continuous depletion of CO and O;, with the production of CO;. (e)
Frequency of occurrence of the simulated elementary events. Plotted are the forward, reverse, net-forward and net-reverse frequencies per fcc
site. The net-forward frequency is the difference between forward and reverse frequencys; if that difference is negative, its absolute value is
plotted as the net-reverse frequency. For all of the diffusion steps, the forward direction is from the fcc to the hep site (conversely for the reverse
direction). The event “O2_dissociation_fcc” starts with O, on an fcc site and yields two O adatoms on neighboring hcp sites (conversely, for
“O2_dissociation_hcp”, the initial state is O, on the hcp site, and the final state is two O adatoms on fcc sites). The vertical dashed line
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transition. The sums in the right-hand side of this equation
are taken over all possible states of the state space €2, keeping
always in mind that if there is no elementary event connecting
two states, the corresponding rate constant is zero.>

The state-space Q encompasses all the possible adsor-
bate configurations on the lattice and the associated num-
bers of gas-phase molecules (produced or consumed during
elementary events), which are specified up to an additive
constant.?*3% The MME is a set of coupled differential equa-
tions whose solution gives the probability of being in state @
at time . However, obtaining analytical or even numerical so-
lutions of this set of equations is a challenging task, due to
the high-dimensional state space of typical catalytic systems.
Instead, it is more convenient to perform a sampling of trajec-
tories that adhere to the MME via KMC simulation. One can
then obtain the correct probability P,(¢) by averaging over
many KMC trajectories, or if the system is ergodic, by time-
averaging over a long enough KMC trajectory.

The MME imposes constraints on the rate constants. If the
system reaches stationarity (the equivalent of the deterministic
steady-state for random processes), it is clear from Eq. 10 that

Y kowPy =Y. kewPi (11)

[orand [orand

where the symbol s¢ indicates stationarity. This equality ex-
presses that, under stationary conditions, the total probability
flux leaving a state must be balanced by the total probability
flux towards that state. Moreover, if this stationary solution
corresponds to a state of thermodynamic equilibrium, micro-
scopic reversibility imposes the even stronger constraint of de-
tailed balance. The detailed balance condition demands that
each microscopic process has a corresponding reverse process
and that the average rate of every elementary event is equal to
the average rate of its reverse event. This, together with the
fact that the system at thermodynamic equilibrium in a partic-
ular state follows a Boltzmann distribution, allows us to con-

clude that
koo o — €
= - 12
2 = exp ( ) (12)

where kp is the Boltzmann factor and T is the temperature,
&p and g,y are the free energies associated with states (or PES
basins) @ and @', respectively.?*?® Because the free energy
contains contributions for the electronic and vibrational en-
ergies of the lattice species, and the rotational, vibrational,
translational, and electronic energies from the gas species, Eq.
12 can be rewritten as:

ko)a)’ Qa)’ ( AErxn )
= exp | — , (13)
kw/ ® o P kgT

where Qg and Oy are quasi-partition functions for the initial
and final states, respectively.”* Each of these partition func-
tions incorporates the vibrational contributions of adsorbates,
as well as the translational, rotational, and vibrational con-
tributions of gas species. Regarding the vibrational contri-
butions, we are assuming that the vibrational energy levels
are with respect to the bottom of the potential energy well; if

the ground state is chosen as a reference, zero-point energy
corrections need to be accounted for in the activation and re-
action energies (but not in the vibrational partition functions
anymore, to avoid double-counting). AE,,, is the change of
electronic energy of the system due to a transition from ® to
@' brought about by removing all the reactant molecules from
the lattice and the gas phase (depending on the nature of the
elementary event), as well as adding the product molecules
onto the lattice and gas phase. In other words, AE,,,, is the
reaction energy:

AE;q = (Ea)’ - Eco) + (Ef;/“ - Eﬁ,as) y (14)

where E and E$% denote the electronic energy of the given
lattice configuration and gas species, respectively.

Because the reaction energy, AE,.,, is obtained from Eq. 14,
the task is to find the electronic energies of the initial and fi-
nal states. To achieve this, we need an appropriate energetic
model of the system. Accounting for the contributions of the
gas species is straightforward because the gas reservoir is typ-
ically assumed to be an ideal gas.>* However, modeling the
lattice energetics (e.g., electronic energy of the lattice con-
figuration) is a more delicate issue.”>%>86 In this respect, the
so-called cluster expansion Hamiltonian (CEH) approach has
gained much popularity in recent years.3*“8723 CEHs are typ-
ically fitted to a limited data set derived from DFT calcula-
tions, which however, can become costly and tedious. How-
ever, in recent years, efforts have been dedicated to reducing
the computational cost of getting accurate CEHs.”*% Hence,
Eqgs. 12-14 enable the implementation of thermodynamically
consistent models in 1p-KMC, and we now turn our attention
to the calculation of the rate constants.

The rate constant of an elementary event leading to a tran-
sition from the initial state @ to the final state @’ is calculated
from TST,2428:69

¢
KT QO E

kioy = K——= — o0 |, 15

oo = K n Qa)exp KsT (15)

In the above equation, parameter x is known as the dynamic
transmission coefficient. It is a correction term, typically cal-
culated from short MD simulations, that captures the pos-
sibility of trajectories recrossing the transition state region
of the PES back to the initial state.! 4 is Planck’s constant,
Q; is the quasi-partition function of the transition state, and

E7 . is the activation energy barrier of the elementary event
(i.e., the difference in the potential energy between the tran-
sition and initial states). The latter is typically computed
from the PES using DFT calculations combined with efficient
methods for locating the transition state. Examples of these
methods are the dimer method and the nudged elastic band
method.*3%® In most studies, the partition functions are ob-
tained from first-principles calculations within the harmonic
TST (hTST) approximation.'-3* However, recent efforts to ac-
count for anharmonic effects, either directly or via the hin-
dered translator and rotor models, have been put forward in
the literature.’*°7-1% Invoking the detailed balance condition
together with the TST rate constants for the forward (@ — @')
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FIG. 5. Conceptual plot of the energy with respect to reaction co-
ordinate. The blue solid line pertains to the reaction energy profile
in the limit of zero coverage (absence of spectators on the surface).
The red dotted line pertains to the reaction energy in the presence of
spectators which destabilise the initial state due to lateral interactions
with the reactants. E}:W d and Efev are the activation energies of the
forward an reverse transitions and AE,, is the reaction energy. The
parametrization with 0 and o classifies the transitions into reactions
in the absence of spectators (zero coverage limit) and reactions in the
presence of spectators (finite coverage). Reproduced with permission
from Ref. 87. Copyright 2013 AIP Publishing.

and reverse (@’ — ®) elementary events gives:>*

AE,,, = Eiw/ - Ei

o' ®’

(16)

where E; o and Ei, «» are the activation energies of the for-
ward and reverse transitions . Eq. 16 implies that any vari-
ation of the energy change of an elementary event brought
about by attractive or repulsive interactions between adsor-
bates and spectators (i.e., lateral interactions) must also affect
the kinetics of the elementary events (see Fig. 5).2%37 How-
ever, since there may be several different configurations of the
spectators, it is impractical to calculate distinct DFT activa-
tion energy barriers for every possible configuration. Instead,
a convenient way to model the impact of lateral interactions
on the activation energy is by using so-called Brgnsted-Evans-
Polanyi (BEP) relations, which represent a linear correlation
between the activation barrier and the reaction energy of an
elementary step in a reaction mechanism.®”-#® Such BEP rela-
tions are obtained by linear fitting to appropriate DFT calcu-
lations.

Having described critical aspects behind the 1p-KMC ap-
proach, we now proceed to briefly discuss how the KMC
framework works and how one can implement it.

Ill.  FROM KMC ALGORITHMS TO CODES

Let us now briefly outline the computational implementa-
tion of the KMC framework, as well as software packages
and codes specially devoted to simulate catalytic surface reac-
tions.

A. The general flowchart of KMC algorithms

KMC is a computational framework that generates stochas-
tic trajectories fulfilling the fundamental premises of the
MME (see Sec. II 2).7> The general flowchart of a KMC al-
gorithm is presented in Fig. 6. To begin with a KMC simula-
tion, it is necessary to specify in advance the lattice structure
of the catalytic surface, the chemical processes that can hap-
pen on the lattice (i.e. reaction mechanism), the energetics of
the system (i.e., lateral interactions), and the simulation pa-
rameters (i.e., pressure, temperature, and composition of the
gas phase). Once the simulation setup and parameters are es-
tablished, one can start the KMC simulation from a desired
initial lattice configuration and the number of gas molecules
specified up to additive constants. Then, at each time step of
the simulation, the KMC algorithm scans the lattice and de-
tects all the elementary events that can happen on it. Based
on this detection, a lattice queue of lattice processes/events is
created, and the next elementary event is selected. The execu-
tion of such an event is accompanied by the appropriate update
of the lattice configuration and time clock. The lattice process
queue is then updated so that the elementary events that cannot
happen anymore are deleted and newly appeared events are
added. The simulation ends once a predetermined termination
criterion is fulfilled (e.g. the KMC simulation time exceeds
a target value). The information contained in a KMC trajec-
tory can be post-processed to obtain, for instance, catalytic
performance metrics, calculate surface coverages, or perform
reaction pathway analysis (see Fig. 4 for examples of some

Specify simulation process & its
parameters & settings time of occurrence

2 v

Initialize lattice state I Update time I
& simulation
data-structures

v

| Sett=0 |

L

Choose a lattice

I Report observables I

Execute process:
update lattice state &
data-structures

Terminate

FIG. 6. The general structure of a KMC algorithm presented in as a
flow chart. The event selection procedure and the update of the data-
structures varies, depending on the particular algorithm implemented
(see Sec. IITA).



typical KMC outputs).>*

A large part of the computational cost in a KMC simula-
tion comes from selecting the elementary event to be executed
and updating the data structures carrying information about
the possible lattice events and lattice configuration. The way
to decide which event will happen next and when gives rise
to two broad algorithms, namely the null-event and rejection-
free algorithms.z“’ss’101 In the former, not all selected elemen-
tary events are realizable, and if a non-realisable event is se-
lected, the KMC time is advanced but no event is executed.
On the contrary, in the latter, all selected elementary events
are executed. Although these algorithms are in principle ex-
act and yield statistically equivalent results, they typically do
so at different computational costs, as will be discussed in
more detail later (see section IV A).1%! The null-event algo-
rithm has minimum bookkeeping and was one of the early
approaches employed to simulate catalytic surface reactions.
However, it becomes quite inefficient when the number of null
events is significant, which is quite likely when dealing with
realistic systems having multiple site types, many-site events
and mechanisms with several elementary steps. Additionally,
KMC clock updates in a null-event algorithm are complicated
in the presence of lateral interactions, since one would have to
consider all possible spectator arrangements for each reaction
event. Due to these issues, the null-event method has given
way to the rejection-free method, which has become, over the
years, the gold standard in modeling the kinetics of heteroge-
neous catalysts.

The rejection-free algorithm is implemented either by
the direct method (DM) or the first reaction method
(FRM).24>3102 The DM generates the next elementary event
and its occurrence time directly from Eqs. 6 and 7. On the
other hand, the FRM generates a putative time for each pos-
sible elementary event using Eq. 5, and selects, as the next
event, the one having the shortest time of all. Both methods
are equivalent and reproduce the statistics of the master equa-
tion exactly (up to numerical accuracy, of course).>>101:102
However, their efficient implementation depends heavily on
the data structure employed to handle the selection of the
elementary event, the execution of this event, and the post-
execution updates. The latter can also be computationally in-
tensive, especially for systems with long-range lateral interac-
tions or, more generally, complicated energetics.

Detailed discussions on KMC algorithms have been carried
out by several authors.?*>>191 Therefore, rather than extend-
ing our discussion here, let us move on to comment on some
of the KMC software packages and codes that build on these
algorithms, in the next section. Readers interested in practical
guides for constructing and evaluating KMC models for the
simulation of catalytic surface reactions, are referred to e.g.
the recent tutorials by Andersen et al.?® and Prats et al.?’

B. Computational codes

KMC simulations of surface reactions have been steadily
gaining popularity since KMC was coupled with first-
principles calculations in the late 1990s.”23 Although the

computational packages that perform first-principles calcula-
tions are more numerous and mature, several general-purpose
KMC software packages are nowadays at the disposal of re-
searchers working in the areas of heterogeneous catalysis and
surface science.

To the best of our knowledge, the first two general-
purpose KMC software packages that were developed are
CARLOS*>!% and SPPARKS'**!1%5 (Stochastic Parallel
PARticle Kinetic Simulator). CARLOS was probably the
first user-friendly KMC code primarily devoted to simulat-
ing molecular phenomena on catalytic surfaces.>'%3 CAR-
LOS employs null-event and rejection-free algorithms and
is optimized for memory and speed utilization. The influ-
ence of lateral interactions on the system’s catalytic perfor-
mance is treated by explicitly defining the different rate con-
stants for the various configurations of the lattice. On the
other hand, SPPARKS has been mostly implemented to in-
vestigate material science problems and biochemical reaction
networks.!*+105 This KMC code was the first to implement
parallelization techniques and spatial decomposition of the
simulation domain. SPPARKS uses null-event and rejection-
free algorithms as well, and is designed to facilitate its modifi-
cation and extension. The code has been sporadically used to
study catalytic systems. Examples include the hydrogenation
of benzene on Pt(111)!9 and the catalytic CO oxidation on Pt
surfaces.!?’

The last decade has witnessed the appearance of new pow-
erful KMC software packages and codes. We briefly de-
scribe some representative such tools, noting that our list is
not intended to be exhaustive. The first in this list is the
versatile software package Zacros,'%® which was developed
at University College London (UCL) and made available in
2013. Zacros is written in Fortran 2003, implements the FRM,
and couples the so-called graph-theoretical KMC (GT-KMC)
framework with CEHs for the adlayer energetics.?>2426-30.84
Moreover, to deal with the environment-dependent activa-
tion energies of elementary events, the code uses BEP rela-
tions, which enable the calculation of rate constants on-the-
fly (OTF). With Zacros one can perform simulations that con-
sider species which bind to more than one active site, com-
plex reaction patterns, spatial correlations and ordering aris-
ing from lateral interactions involving many-body contribu-
tions, as well as changes in the activation energies of ele-
mentary events due to interactions of reactants and spectators.
Zacros applies OpenMP parallelization along with a sophisti-
cated caching scheme to tackle the high computational cost
arising from the presence of lateral interactions, especially
when the CEH involves long-range interactions or a large
number of contribution terms.8”-1% In addition, the code im-
plements domain decomposition and lookahead-rollback par-
allel algorithms, built on the MPI framework, to enable the
distributed simulation of very large domains.®?> Zacros can
be used for KMC simulation but is also capabe of perform-
ing equilibrium MC simulations.''%!'!" An interactive post-
processing and visualization tool is also available (Zacros-
post graphical user interface), and a Python wrapper has been
developed and is made available independently by Vlachos
and co-workers.!'>!13 This wrapper can run multiple simu-



lations with parallel processing, rescale rate constants of fast
equilibrated reactions to accelerate the simulation, and per-
form parametric sensitivity analyses.

About a year after the release of Zacros, the software pack-
ages kmos and KMCLib were introduced. kmos uses the DM
to generate KMC trajectories.”®!!41!5 The code is an appli-
cation programming interface (API) that simulates reactions
involving multiple active sites and species that bind to more
than one site. Although the standard backend of kmos handles
lateral interactions in a way similar to CARLOS, to run com-
plex catalytic systems containing lateral interactions, kmos
also implements the OTF backend, which uses BEP relations
to modify rate constants during runtime.!'* On the other hand,
KMCLib is a general KMC framework that can simulate the
time evolution of systems of up to millions of particles in one,
two, or three dimensions.''®11® The code uses MPI paral-
lelization to detect elementary events on the lattice and cal-
culate the associated rate constants. KMCLib uses the DM as
well.

The software package MoCKA (Monte Carlo Karlsruhe)
also appeared around the same time as Zacros, kmos, and
KMCLib.'"” MoCKA provides a general KMC framework
combining graph-theoretical and lattice-based approaches to
model molecular phenomena on nanoparticles. The code can
efficiently handle the simulation of nanoparticles exposing
several nanofacets, which may exhibit different chemical en-
vironments. To this end, the code uses multiple lattices to
represent the nanofacets and handles the communication ef-
fects between catalytic particle nanofacets or between support
and particle facets. MoCKA uses an efficient implementa-
tion of the DM and makes the FRM also available. MoCKa
addresses only pair-wise lateral interactions but in principle
could be extended to three-body and higher-order interactions
as they can be derived from CEHs.

A recent addition to the list of user-friendly software pack-
ages is MonteCoffee.!?’ This code is an open-source object-
oriented programmable (OOP) application, which exploits
similar ideas to the graph-theoretical (or GT) approach and
has the advantage of quick extension. Several challenging
tasks are possible with this code, such as evaluation of lateral
interactions, sensitivity analysis, and descriptor-based energy
landscapes. The code uses neighbor lists to represent the lat-
tice connectivity. The FRM is the primary KMC simulation
driver, but the code can be extended in a straightforward way
to incorporate other algorithms.

Moreover, Excimontec!2!122 is a recent KMC software
package developed in modern C++ and optimized for effi-
cient execution on high-performance computing clusters us-
ing MPL It allows users to create simulation models on a
cubic lattice and combines the DM and several variations
of the FRM. This software package uses object-oriented de-
sign and extends the KMC_Lattice framework.!>3 Finally,
software package SuSmoST (SUrface Science MOdeling and
Simulation Toolkit)!?* consists of computer programs and li-
braries intended to support surface investigation, focusing on
adsorption systems and phase transitions. The code imple-
ments mainly transfer-matrix and tensor-network methods, as
well as Metropolis Monte Carlo simulations, with KMC sup-

port as a recently added feature.

The computational codes and software package just de-
scribed are broadening the adoption of 1p-KMC simulations
for heterogeneous catalysis. Although this could indicate cer-
tain maturity reached by this simulation technique, several
computational challenges still have to be overcome to fully
exploit its predictive power. Key such challenges and recent
attempts to address them are the subjects of the following sec-
tion.

IV. COMPUTATIONAL CHALLENGES AND
METHODOLOGICAL DEVELOPMENTS

KMC is a numerical simulation framework, and as such,
it faces computational challenges when dealing with realistic
catalytic systems. These challenges, but also the increasing
popularity of 1p-KMC as a tool for understanding and pre-
dicting catalytic performance metrics, have motivated the de-
velopment of novel methods, as discussed in this section.

A. Scheduling and executing elementary events

As mentioned in Sec. IIT A, at every step of a KMC sim-
ulation (i.e., KMC iteration), we have to create a list of all
of the possible elementary events that may occur on the lat-
tice. Then, we need to randomly select one of these events
and its time of occurrence and execute it. Finally, we conduct
the necessary updates on both the list of possible events and
the lattice configuration. These procedures are at the heart of
any KMC simulation and can become a significant computa-
tional bottleneck for systems with many elementary events.
The bookkeeping of these procedures depends on the KMC
method implemented and is usually performed employing ap-
propriate data structures.

In a series of early studies aiming at finding efficient
KMC methods for the simulation of catalytic surface reac-
tions, Jansen and co-workers implemented binary trees and
binary search to store the elementary events of the KMC
simulation. 81125129 1y 3 gimilar effort, Reese et al.!39 ex-
plored the implementation and efficiency of rejection-free
and null-event approaches with local and global search-and-
update algorithms. In a global such algorithm, the entire li-
brary containing the information of interest is sequentially
searched and updated, whereas in a local one, only a portion
of the library is searched and updated. Reese et al. concluded
that when the reaction mechanism involves events occurring
at disparate frequencies, e.g. fast diffusion, slow reactions
rejection-free algorithms can be much faster than null-event
ones (this disparity of frequencies/timescales is referred to as
“stiffness”; see Sec. IV D for more details). However, Reese
et al. also found that null-event algorithms could, under some
conditions, outperform rejection-free approaches due to the
fewer operations per KMC iteration that the former entails.
Along similar lines, Dooling and Broadbelt explored a KMC
tool which maintains detailed information about the current
state of the catalytic surface and only updates the informa-



tion locally, thereby greatly increasing the efficiency of the
simulations.!3!

In a general context beyond heterogeneous catalysis, Gib-
son and Bruck employed a dependency graph for locally up-
dating only the rate constants that are actually affected when
a particular event is executed.!”?> Furthermore, they imple-
mented an indexed priority queue to identify the elementary
events with the least waiting time when using the FRM. Such
an indexed priority queue enabled the retrieval of an arbi-
trary elementary event in constant time (though, of course,
updates are more costly). Moreover, for both the DM and
FRM, a complete tree data structure was proposed in which
the amount of time per KMC iteration is proportional to the
logarithm of the number of elementary events on the lattice,
not to the number of events itself.

More recently, Chatterjee and Vlachos'®! reviewed sev-
eral KMC simulation methods and explored the implementa-
tion and efficiency of several search and update algorithms.!?8
They concluded that rejection-free approaches, which use ef-
ficient search and update algorithms, are very efficient but
require much more complicated coding than null-event ap-
proaches. They reported that implementations involving lin-
ear search on the data structure scale as O(Nqueue), where
Ngyueue 1s the total number of elements in the queueing data
structure. They also found that extensions of the linear search
such as the two-level and n-level linear searches scale as

O(+/Nyueue) and nO({/Ngyeue), respectively. The so-called

binary and hash-table searches®®!?® were also discussed in
this review. This work also discussed techniques for up-
dating the lattice configuration, lattice energetics, and rate
constants, 02130

In a latest effort, Savva and Stamatakis implemented
and compared four data structures (i.e., the unsorted list,
the binary heap, the pairing heap, and the one-way skip
list),128-133.134 a5 alternative queuing systems to handle the el-
ementary event queue during the implementation of the FRM,
and further developed the two-way skip list-based queueing
data structure (see Fig. 7(a) for the schematic representation
of three of the data-structures implemented by Savva and
Stamatakis).!3> These five approaches were implemented in
the Zacros software package and benchmarked against one
another using a CO oxidation model adapted from the sem-
inal work by Ziff, Gulari and Barshad (the ZGB system),135
a simplified model of the water-gas shift (WGS) reaction on
Pt(111),'3% and a TPD model of CO on Cu(111).137 They also
investigated the effect of compiler optimizations on the perfor-
mance of these data structures. This work found the unsorted
list to be, as expected, impractical. However, as presented in
Fig. 7(b), they observed a 3 x speedup of the binary or pairing
heaps compared to the one-way skip list. They also found that
compiler optimization delivers a speedup of up to 1.8x.

Since a KMC simulation involves the iterative scheduling
and executing elementary events, efficient implementations of
these operations are of paramount importance. A fundamental
part of this endeavor consists in adopting the latest approaches
or developing novel ones. In this respect, and to the best of
our knowledge, data structures such as the Brodal queue or
the Fibonacci heap, have not yet been implemented for ki-
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2020 American Chemical Society.

netic simulations of catalysts. Both approaches are known to
have better time complexities than the binary or pairing heaps,
though large memory requirements and high constant factors
might make them competitive for only specific applications.
Therefore, these non-trivial considerations might represent an
opportunity for further algorithm development and optimiza-
tion.

B. Treating complicated energetic models of non-ideal
adlayers

In reaction mechanisms for which adsorbate-adsorbate lat-
eral interactions are significant, the non-ideal mixing in the
adlayer could result in the formation of islands and ordered
structures on the catalytic surface. Such phenomena can dra-
matically affect the observed reaction kinetics and should be
properly taken into account when performing 1p-KMC simu-
lations (see Sec. II 2).



The incorporation of lateral interactions into a comprehen-
sive kinetic modeling framework has been a long-standing
challenge. Even nowadays, for simplicity and computa-
tional efficiency, such interactions are often disregarded al-
together with the use of a “hard-sphere” (lattice) model, also
referred to as “site blocking” model.?® The minimum-effort
approach beyond this approximation considers simple pair-
wise additive nearest neighbor (1NN) interactions within a
lattice-gas model.!313% In a more elaborate approach, early
1p-KMC simulations implemented various versions of the
so-called bond-order conservation (BOC) method to account
for INN and longer-range interactions in a realistic way.”>%
Currently, a popular methodology to accurately treat lat-
eral interaction within the 1p-KMC framework is the CEH
approach,3%87-93.140 which is based on a general formalism
for representing a real-valued function of a lattice configura-
tion variable.

In this approach, the electronic energy of the lattice of a
state is represented by a sum of interaction clusters (patterns).
Each of them represents an energetic interaction pattern or fig-
ure in which the adsorbates are arranged, for instance, single
body, two-body, three-body, and larger contributions. Interac-
tion patterns typically included in the different CEH models
are presented in Fig. 8(a). While this approach enables in
principle the most accurate modelling of lateral interactions,
it dramatically increases the computational cost (or run-time)
of KMC simulations. For this reason, a number of strategies
to reduce such computational burden have been implemented
in recent years.

Parallelizing the detection of the interaction clusters has
been a successful approach to this end. For instance, Nielsen
et al.3” developed an implementation of this idea, which uses
open multi-processing (OpenMP)!*! in the update of kinetic
constants after the execution of a reaction event. By simulat-
ing a kinetic model for NO, oxidation/reduction on Pt(111) as
a benchmark, this approach was found to significantly reduce
computational time by about 10x for 16 threads with a CEH
containing up to 8th-NN (8NN) interactions. However, the re-
sults of these benchmarks also revealed that the performance
improvement reaches a plateau as the number of threads in-
creases. This plateau was attributed to a synchronization over-
hand when collecting the updated rate constants from the dif-
ferent threads. Motivated by the need for further improve-
ment, Ravipati et al.'® recently developed a novel and exact
scheme that implements a sophisticated caching data struc-
ture along with OpenMP for faster updating of the rate con-
stants. The approach is based on caching information about
the energetic interaction patterns associated with the prod-
ucts of each possible elementary event. The scheme was also
benchmarked for the same NO, oxidation/reduction system,
and yielded acceleration factors of up to 20x when compar-
ing single-thread runs without caching to runs on 16 threads
with caching, for simulations with up to 8NN interactions
(Fig. 8(b)). The two approaches just mentioned have been
implemented in the software package Zacros. It is worth not-
ing that OpenMP parallelization alone merely distributes the
workload to several threads (with the unavoidable overhead),
while only the second approach (caching) actually reduces it.
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FIG. 8. (a) Energetic interaction patterns typically taken into ac-
count in the CEHs. Filled blue circles represent sites occupied by
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be occupied.8” (b) Comparison of performance without and with
caching enabled for simulations considering CEHs of different com-
plexity. The dashed line represents the ideal linear scaling with the
number of threads used in the absence of caching. A model for
the NO, oxidation/reduction on Pt was used for this performance
analysis.!® Panel (a) adapted with permission from Ref. 87. Copy-
right 2013 AIP Publishing.

However, due to the complicated nature of the caching algo-
rithm, no formal estimates of computational complexity have
yet been derived.

Aiming at reducing the computational complexity of 1p-
KMC simulations with lateral interactions, Hess recently pro-
posed the supercluster approach, subtraction schemes, and the
supersite algorithm.’ The supercluster approach improves the
computational performance of evaluating the CEH, by essen-



tially reducing the number of terms in the CEH, and when
tested on several compilers and CPU architectures, it showed
a significant speedup compared to the traditional CEH ap-
proach. The subtraction scheme was introduced to optimize
the calculation of the sum of rate constants when implement-
ing the DM. This scheme exploits the well-established strat-
egy of performing local updates, i.e. recomputing rate con-
stants only in the vicinity of an elementary event and within
lateral interaction range. This way, the recalculation of the to-
tal rate constant scales as O(1) with the number of sites of the
lattice. Finally, the supersite search implements Maksym’s
two-level algorithm,'#?> as opposed to the traditional linear
search implementation of the DM, !°! in which the sites of the
lattice are visited successively. Overall, it was demonstrated
that one must combine the three algorithms to reach the best
performance. In such a case, it was found that the compu-
tational cost when including lateral interactions increases by
less than a factor of 3 as compared with the case without lat-
eral interactions. The performance studies were mainly car-
ried out with simple models, However, simulations of a full
model of HCI oxidation over RuO;(110) confirmed the im-
provements in computational savings.

Lateral interactions are nowadays an integral part of most
of the existing KMC software packages. However, the com-
putational burden associated with its implementation remains
quite high. Although, a number of acceleration schemes
have appeared in recent years,37-919 further developments
are necessary.>3:36.90.91.94,143,144 Along these lines, further im-
provements in the efficiency of lateral interaction pattern de-
tection, e.g. via fingerprinting and precomputing, could be a
way forward.

C. Treating large surface domains with distributed
simulations

Conventional KMC algorithms are sequential in the sense
that they handle one elementary event at a time. For this rea-
son, KMC does not scale well with the lattice size. In particu-
lar, even if the execution of a KMC event happens at constant
time (i.e. is independent of the lattice size), thermodynamic
scaling laws imply that the number of events needed to reach
a target/final KMC time scales linearly with system size. This
poor scalability has limited the application of 1p-KMC simu-
lations to relatively small lattices, typically on orders of up to
10 nm x 10 nm. Although KMC simulations of such lattices
can yield good estimates of catalytic performance metrics, un-
derstanding long-range spatio-temporal phenomena, such as
pattern formation in the context of surface reconstruction ne-
cessitates the simulation of larger lattices. The size of these
lattices is dictated by the wavelength of the pattern, which
could be in the order of um to mm.!43-147 These large-sized
lattice simulations pose challenges in terms of computational
time and memory footprint.!°! With the hardware available
at present, using the sequential KMC framework to simulate
complex chemistries on catalytic surfaces that span pm in size
is impractical or infeasible.

A way to address this challenge is by implement-
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ing distributed parallelization techniques for discrete event
simulation.!*8-158 Applications of these techniques are possi-
ble because of the typically localized character of the elemen-
tary events on the catalytic surface. Among these approaches,
we note as representative the synchronous, '*® the synchronous
relaxation,'*” the optimistic synchronous relaxation,3%13! the
optimistic Time-Warp,'>° and the semi-rigorous synchronous
algorithms.!>?-157 In general terms, they rely on domain de-
composition and event execution protocols that either keep the
different processors synchronized as the simulation proceeds,
thereby avoiding boundary conflicts, or carry on simulating in
an “optimistic spirit” until such conflicts arise, at which point
they employ roll-back and re-simulation procedures to rectify
the pertinent causality violations. Thus, in the latter approach,
provisional KMC trajectories are progressively amended and
finally incorporated into the global simulation history, pro-
vided they are mutually consistent.

Although, an approach similar to the semi-rigorous
synchronous algorithm is already implemented in
SPPARKS!04-106.154 and features of the Time-Warp al-
gorithm have also been incorporated into the software
package SPOCK (Scalable Parallel Optimistic Crystal
Kinetics),'? it was only recently that a general and validated
approach was made available to the computational physics
community, by the coupling of the optimistic Time-Warp
algorithm with the GT-KMC framework, as implemented
in Zacros®? In the Time-Warp-GT-KMC framework, the
lattice is decomposed into domains that are assigned to
different “processing elements” (each of which may be
handled by a single CPU core or involve several threads).



Each processing element carries out the KMC algorithm for
the assigned domain and communicates with the neighbor
domains, if necessary. This way, elementary events that
occur far from domain boundaries are handled privately
and asynchronously, while events close to those boundaries
must be appropriately communicated. The communication
among processes is handled by using the message passing
interface (MPI) framework.'®! Because each processing
element follows its own simulation time, when boundary
events happen, causality violations may arise. Such violations
are resolved using the protocols of the Time-Warp algorithm
(i.e state-saving, rollback, and message/anti-message sending
protocols).  Further protocols for the computation of the
collective KMC time of all processing elements (or global
virtual time) and the corresponding termination of the dis-
tributed run are implemented as well. Scaling benchmarks
of the Time-Warp-GT-KMC framework revealed that the
overhead associated with the Time-Warp-related procedures
can be significant. However, the approach was found to scale
well with the lattice size and outperformed the sequential
KMC for large lattices. The simulation runs were performed
for two simple models and a more realistic one that captured
CO oxidation dynamics on Pt(111) and made use of an
elaborate CEH energetic model (Fig. 9).83 Crucially, Ravipati
et al.3? devised a serial simulation protocol that delivers, by
construction, the same results as the Time-Warp-GT-KMC,
thereby validating the implementation in a general way.

Approaches like the Time-Warp-GT-KMC are very promis-
ing and will allow the investigation of heterogeneous cataly-
sis at spatial and temporal scales of unprecedented magnitude.
The research topic of distributed parallel KMC for heteroge-
neous catalysis and surface science applications is still in its
infancy, and we envision further exciting developments, both
from a method development and from an applications stand-
point, in the years to come. Thus, the development and im-
plementation of more efficient exact simulation protocols, as
well approximate schemes whose accuracy can be assessed by
comparisons with exact ones, could pave the road for unravel-
ling the molecular origins of emergent behaviors at the macro-
scale, such as pattern formation on catalytic surfaces,'#® and
lead to novel applications in the area of spatio-temporal con-
trol of reactive systems.!6?

D. Treating event frequency disparity

By performing simulations on the long time-scale of the el-
ementary events, KMC achieves an enormous speedup over
MD simulations. However, a time-scale disparity problem
can emerge even at that level of description because, in many
cases, these events can occur at vastly different time-scales
(i.e., their rate constants can span multiple orders of magni-
tude). For instance, it is common to encounter surface reaction
mechanisms that involve very fast surface diffusion events but
also slow reactions. Then, because in KMC simulations, €l-
ementary events are selected based on their relative rate con-
stants (see Sec. II 1), it is far more likely that a diffusion
event will occur at each KMC step. Typically, these slow re-
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actions are the events of interest (i.e., the ones directly related
to the catalytic performance metrics). In contrast, the fast dif-
fusion events lead to a quasi-equilibrated adlayer but do not
contribute to the net evolution of reactants and products. Fur-
thermore, because these fast (frequent) diffusion events are
the limiting factor in the advancement of the simulation, nu-
merous KMC steps will be needed in order to sample over
a sufficient number of reactions, so as to obtain accurate es-
timates of catalytic activity or other metrics. This problem,
which is also known as KMC stiffness (similar to stiffness in
differential equations),*® can severely undermine KMC sim-
ulation performance, and has motivated the development of
acceleration schemes that address it.

An early such scheme is the so-called absorbing Markov
chain KMC (AMC-KMC) framework.!03-165 Fundamental to
this scheme is the concept of a superbasin, i.e. a set of
basins (KMC states) connected by fast (low energy-barrier)
quasi-equilibrated elementary events. The AMC-KMC frame-
work formulates the escape from a superbasin as an absorbing
Markov chain, with the repeatedly visited states within the su-
perbasin referred to as “transient states”, and the states outside
the superbasin, to which the system exits, called “absorbing
states”. This framework is exact and relies on creating the so-
called Markov matrix to describe the transitions among tran-
sient and absorbing states. The determination of the absorbing
state that the system enters (thereby escaping the superbasin),
as well as the time when this happens, requires the diagonal-
ization or inversion of the Markov matrix. AMC-KMC works
well with and without time scale separation and has been im-
plemented in the software package EON for off-lattice (adap-
tive or OTF) KMC simulations.*3-190-171 However, a downside
of this approach is that the matrix operations can become com-
putationally intensive when dealing with large Markov matri-
ces (i.e., large superbasins). Moreover, the method does not
explicitly specify how to group states to form a superbasin.

An approximate method that does not require expensive
matrix manipulations is the accelerated superbasin KMC (AS-
KMC) introduced by Chatterjee and Voter.!”> AS-KMC relies
on the construction of a database of elementary events and
counting the number of times each event has occurred. A
larger number of occurrences for an event indicates that a su-
perbasin may be present. If the system is considered to be in
a superbasin, the rate constants of all quasi-equilibrated ele-
mentary events that connect the basins of the superbasin are
lowered (by e.g. raising the activation barriers). This scal-
ing increases the probability for a non-equilibrated elementary
event to be selected, leading to a transition to a new superbasin
(see Fig. 10). In doing so, AS-KMC offers a significant com-
putational speedup over “standard” KMC simulations, incur-
ring an error that has been shown to increase asymptotically
linearly with the factor used to downscale the fast events.!”*
This factor can be taken such that the error of the approxima-
tion is negligible compared to the error of the KMC sampling.
However, a potential drawback of this method is that the iden-
tification of even a single superbasin can be computationally
too expensive for complex catalytic systems, where the state
space is typically so large that many states may only be visited
very infrequently during the entire simulation.
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FIG. 10. Schematic example of the (a) unscaled and (b) scaled rates
for a set of simple isomerization reactions occurring on disparate
time scales. The final isomerization (D — E) is the rate-limiting
reaction with a rate equal to r;. This reaction is rarely sampled in
a "standard" KMC simulation due to the fast rates of the other re-
actions. In an accelerated KMC scheme, the rate constants of the
quasi-equilibrated reactions are scaled to give rates of r, = Nyry, so
that the slow reactions will be sampled more frequently during the
course of simulations.'”2 N ' is a adjustable parameter, referred to as
the equilibration parameter. (c) PES for a hypothetical system with
processes occurring at disparate time scales due to larger differences
in the activation barriers. As illustrated, a set of states connected
by fast (low-barrier), quasi-equilibrated processes constitutes a su-
perbasin. The escape from one superbasin to another occurs through
occurrence of slow (high barrier), non-equilibrated process. A KMC
simulation is accelerated by scaling the rate constants (e.g., increas-
ing the barriers) of fast, quasi-equilibrated processes.?® Panels (a)
and (b) adapted with permission from Ref. 172. Copyright 2017
American Chemical Society. Panel (c) adapted from Ref. 28. Copy-
right 2019 Andersen, Panosetti and Reuter, published by Frontiers.

More recent KMC acceleration methods are essentially
based on the fundamental concepts and approximations just
discussed, and largely focus on overcoming the computa-
tional shortcomings of the AS-KMC framework. For in-
stance, Dybeck et al.!”2 introduced a method that automat-
ically partitions the elementary events into equilibrated and
non-equilibrated, and scales down the rate constants of the
quasi-equilibrated ones (i.e., the elementary events inside the
current superbasin). The partitioning and scaling are applied
collectively to all lattice events in a given reaction channel
rather than to the individual lattice events (a reaction channel
includes all the events of e.g. adsorption of some species at
a given site type that have been detected on the lattice, inde-
pendently of where they occur). The classification of events
according to reaction channels allows identifying those events
efficiently. Once a transition to a new superbasin is executed,
the rate constants are unscaled again to their original values to
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allow for sufficient sampling of the new superbasin. This ap-
proach was used to model the complex Fisher-Tropsch synthe-
sis reaction over ruthenium nanoparticles and exhibited com-
putational saving spanning several orders of magnitude. In
this work, for simplicity, surface diffusion and lateral interac-
tions were not taken into account.

Following the development of the AS-KMC framework by
Dybeck et al.,'”> Andersen et al.!3?® implemented it on the
software package kmos and applied it for the simulation of
CO methanation over stepped transition metal surfaces using
scaling-relation-based rate constants. Although, the scheme
was found to perform quite well, some challenging cases were
encountered, for which the scheme exhibited artifacts. For
instance, problems may arise when simulating reactions be-
tween two low-coverage species, which are both produced
by independent quasi-equilibrated elementary events. In this
case, the method may scale the rate constants of the quasi-
equilibrated events too aggressively for an adequate sampling
of states where the two low-coverage species are found at
neighboring lattice sites for their reaction to proceed. The
problem was linked to the fact that the method does not track
system states and therefore cannot verify if all states within
a superbasin have been sufficiently sampled. To address the
breakdown, Andersen et al.'> proposed a correction to the
original version of the scheme that takes into account lattice
configurations of the nearest neighbor sites in the definition of
the reaction channels. However, such a corrected version was
shown to work well only for the simple case of a reaction be-
tween two low-coverage species formed directly at neighbor-
ing sites. The correction does not apply if the low-coverage
species are created at distant lattice sites and rely on diffusion
events in order to “meet” and react.

Other methods, similar to the ones described above, have
appeared in the literature. For instance, Nufiez et al.!'? ad-
dressed the challenge by employing rate constant rescaling
techniques. Motivated by the problem of establishing a di-
rect correspondence between the MF-MKM and KMC, Hoff-
mann and Bligaard presented a KMC acceleration scheme in
which, before rescaling the rate constants of the fast elemen-
tary events, the algorithm automatically makes sure the sys-
tem is at steady-state.!”> A common feature between these
two schemes is that the rate constants of fast elementary
events are not restored (“unscaled”) once the system enters
a new superbasin.

The “staggered quasi-equilibrium rank-based throttling for
steady-state” (SQERTSS) algorithm is another recent exam-
ple, in which the idea of rate constant rescaling is imple-
mented to accelerate KMC simulations.!’® The SQERTSS
algorithm was designed to decrease the occurrence of the
rapid elementary events which do not significantly progress
the system toward a steady-state and increase the occurrence
of slower but relevant ones. A variant of SQERTSS is the
“staggered quasi-equilibrium rank-based throttling geared to-
wards transient kinetics” (SQERT-T) algorithm, which deals
with ameliorating the time disparity problem in the context of
transient kinetics simulations.!”” The SQERT-T algorithm is
helpful in the context of simulating temperature programming
desorption and temperature programming reaction.



The accelerated KMC algorithms described above automat-
ically treat the time-scale disparity problem (to the extend that
this is feasible). However, a manual adjustment and verifica-
tion of the fast elementary events is also possible, provided
the catalytic surface reaction is simple enough.3>178179 There
exist also algorithms that require the user to supply in advance
information about fast and slow elementary steps or identify
the quasi-equilibrated ones.'8% 18! For surface reaction mecha-
nisms with a small number of fast diffusion elementary events
coexisting with slow reactions, such a piece of information is,
in principle, easy to establish. However, having such infor-
mation in advance does not always help because the quasi-
equilibrated elementary events may change as the simulation
progresses. In other cases, the system can be too complex for
the user to correctly classify the elementary events into fast
versus slow.

A method that adopts the strategy of separating in ad-
vance fast diffusion events and slow reaction events is the
recently introduced “extended phenomenological kinetics”
(XPK) approach.'82-187 This approach is a hybrid between
a diffusion-only KMC explicitly taking place on the lattice,
which enables the evaluation of the reaction propensities for
elementary events, and a subsequent implicit-lattice KMC that
evolves the number of species on the surface. Another method
that addresses the problem of fast diffusion is the recently in-
troduced fast species redistribution (FSR) method.!88:189 The
FSR-KMC method builds on the idea that fast diffusion steps
hardly affect the system’s time evolution but result in the re-
distribution of the fast diffusive species. A prerequisite for ap-
plying the FSR-KMC method is the identification of the fast
and slow diffusion elementary events, which is performed au-
tomatically. The FSR-KMC method takes into account de-
tailed spatial and energetic information to ensure a proper
species redistribution. Lastly, accelerated KMC algorithms to
address KMC stiffness in the presence of catalyst deactivation
by site blocking have been also introduced in the literature.'*

Although we have focused our discussion on accelerated
KMC frameworks within the context of heterogeneous catal-
ysis, the time-scale disparity problem is a generic computa-
tional challenge of the KMC framework. It is also important
to reiterate that, with the exception of the AMC-KMC, the
schemes discussed are approximate and due to the heuristics
involved it is quite difficult to estimate the magnitude of the er-
ror incurred in the simulation observables. Thus, even though
progress has been made and several numerical approaches and
algorithms have been developed to tackle the issue of event
frequency disparity, important issues remain unresolved. The
challenge remains to develop an acceleration approach that
provides approximate solutions within pre-specified error tol-
erances, and that is also robust and generic or transferable, i.e.
applicable to in principle any (type of) KMC simulation.

E. Steady state detection, sensitivity analysis, and
uncertainty quantification

In KMC simulations of catalytic surface reactions, we are
typically interested in estimating observables at steady-state.
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Typical examples of such observables are the average surface
coverage of certain species and the average rate of produc-
tion of a certain molecule per lattice site, referred to as the
turnover frequency (TOF). We are also often required to iden-
tify the most influential rate constants of the system and un-
derstand how the uncertainty in the rate constants influences
the estimates of the observables of interest; these aims are
achieved via sensitivity analysis (SA) and uncertainty quan-
tification (UQ), respectively. These two aspects are important
in assessing the accuracy of 1p-KMC simulations, and since
the pertinent analyses have to be done at “steady-state” condi-
tions, identifying the latter is also important in this context.

It is important to stress that the term “steady-state” is used
somewhat loosely in our discussions (and in the cited litera-
ture), and such a “state” should not be confused with any of
the KMC states visited during the simulation. The mathemat-
ically acceptable term referring to time-invariant conditions in
the context of random processes is “stationarity”, and several
definitions thereof exist, capturing different levels of rigor.
For instance, if the mean and autocovariance are constant, and
the 2"¢ moment is finite at all times, then the stochastic pro-
cess is referred to as “wide-sense stationary”. The much more
restrictive definition of a “strictly stationary” processes, re-
quires all joint probability distributions, Py (1), Po(s).0(n)s -
to be time-invariant. Of interest, in practice, is the probabil-
ity of the state variable at stationary conditions, P;,, which is
known to be the long-time limit of Fy(), at least for “well-
behaved” random processes.

Thus, for an ensemble of KMC runs starting from the same
state (e.g. empty lattice), the sharp probability corresponding
to the initial condition evolves towards the stationary proba-
bility. Once “steady state” (stationarity) has been reached, it
is possible to invoke the assumption of ergodicity to calculate
an average quantity of interest as a time average from a single
KMC run, instead of an ensemble average. This is the strat-
egy typically followed in practice; however, when performing
multiple simulations, e.g. for parametric analyses, verifying
that the system has reached steady-state can be tedious. In-
deed, the “steady state” behavior of the system depends on
the pressure, the temperature, and the composition of the gas
phase in contact with the catalyst. Given the large number of
possible such conditions, the number of KMC steps required
to reach steady-state can extend over a wide range, and man-
ual verification of steady-state behavior for each simulation
would be impractical. What would be needed is to imple-
ment parallel processing for simultaneously conducting large
numbers of simulations, coupled with automated algorithms
able to decide with enough confidence when a KMC simula-
tion has reached steady-state and exclude the transient period
from the sampling. As an example, Fig. 4(c) shows a fluc-
tuating KMC trajectory exhibiting a transient up to about 10
s, before approaching what appears to be a “statistical steady-
state” behavior. Multiple types of different fluctuating profiles
like that can be produced by KMC simulations.

It is only very recently that attempts to develop robust
and computationally efficient steady-state detection (SSD) al-
gorithms for KMC simulations have been made, based on
the implementation of appropriate statistical tests. For in-



stance, Nuiez et al.!!3!°! implemented a criterion for having
achieved steady-state, which uses a batch means test comple-
mented with a t-test. In another work, Nellis et al.'92 devel-
oped the F-t-Pj-RG method, which relies on the subsequent
application of an F-test, a t-test, and a projection test on ad-
jacent windows of the time series while rolling and growing
the windows when any of the tests fail. Passing the F-t-Pj-RG
test requires that all three individual tests pass. Upon passing
the test, a statistical steady-state is considered to have been
detected within a confidence level and tolerances provided by
the user. The F-t-Pj-RG method determines the appropriate
window size on the fly and does not require advance empiri-
cal knowledge of the system under consideration. The com-
putational cost of the method was proved to be on average less
than one percent of the computational cost of the KMC simu-
lations, and it was also shown to be suitable for various types
of data trends that can occur in real KMC applications. De-
spite all that, further testing will be needed to verify whether
the F-t-Pj-RG method can be applied in more general settings.

In recent years, the development of comprehensive and ac-
curate SA and UQ approaches to 1p-KMC simulations of cat-
alyzed surface reactions has also gained attention. This de-
velopment is motivated by the high computational cost of cal-
culating rate constants from DFT calculations. Ideally, one
would like to know in advance how those rate constants in-
fluence the simulated behavior of the catalytic system. Then,
one could dedicate computational resources to the accurate
calculation of the most influential kinetic constants, using ex-
pensive electronic structure methods, while the remaining ki-
netic constants could be estimated by low-cost methods. In
addition, such analyses can help us quantify the propagation
of errors from the electronic structure calculations of choice
to the quantities of interest.'>3 In this respect, both local and
global SA and UQ approaches have been advocated.

One of the most popular methods of local SA in hetero-
geneous catalysis is the Campbell’s degree of rate control
(DRC) which evaluates the partial derivative of the average
reaction rate with respect to a rate constant parameter, while
keeping other parameters constant.'* Despite its successful
application to first-principles MF-MKM (1p-MF-MKM), the
implementation of such a local SA method is computation-
ally demanding in KMC simulations. In this respect, Mesk-
ine et al.!® were among the first to explore the usefulness of
implementing various definitions of the DRC to understand
the propagation of errors from electronic structure calcula-
tions to 1p-KMC simulations. Although the results of this
seminal work were encouraging, the application of DRC to
perform SA has been hampered by the high computational
effort required to accurately sample numerical derivatives of
quantities obtained from stiff KMC simulations. To address
these issues, Hoffmann et al.!%° proposed an efficient and ro-
bust approach which was proven capable of performing a re-
liable evaluation of the sensitivity measures for stiff KMC
simulations. Moreover, local SA of KMC simulations based
on log-likelihood estimators have been recently carried out.
For instance, Nufiez and Vlachos introduced the singularly
perturbed steady-state likelihood ratio (SP-SSLR) method to
address the problem of SA in stiff KMC simulations.!'!1%!
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Techniques based on the likelihood ratio reduce the compu-
tational cost of sensitivity analysis by obtaining all gradient
information in a single KMC run. A novel element of this
method is also that it enables the study of how parameter in-
fluences propagate from fast time-scales to slow dynamics.

In the local SA approach, the results of sensitivity mea-
sures are valid locally in the input parameter space (i.e. an
assumption of linearity is made). However, kinetic models
of catalytic surface reactions often exhibit highly non-linear
behavior and strong parameter correlations. For such cases,
global approaches that focus on the entire parameter space
of the system are needed. These approaches have been ap-
plied mostly to 1p-MF-MKM models, but also to KMC sim-
ulations. For instance, by performing a correlative derivative-
based global sensitivity analysis, Sutton et al.'”7 showed that
neglecting correlations in reaction and species’ energies can
lead to incorrect identification of key reaction intermediates
and influential parameters when performing KMC simula-
tions. However, the drawback of such an approach is again
that derivatives are difficult to estimate from 1p-KMC simu-
lations. In this respect, Dopking and Matera proposed a prob-
ability distribution-based approach, which allows quantifying
the error propagation in 1p-KMC simulation with reasonable
cost.!98

The development of ever refined approaches that assess
how errors from electronic structure calculations propagate to
essential outcomes of 1p-KMC simulations like catalytic ac-
tivity and selectivity is an active and vital topic of research.
The challenge is to develop dynamical schemes that tune the
rate constants’ accuracy depending on the kinetic importance
of the associated chemical pathways in the reaction mecha-
nism.

F. Coupling with larger scales

Chemical kinetics has a central role in the modeling of re-
actors and chemical processes; yet, in practice, simplistic ap-
proaches based on empirical kinetic models are typically em-
ployed. Over the last decade, the vision of bottom-up reac-
tor design has been steadily gaining attention; to this end, the
equations describing mass transport need to be coupled with
high-fidelity kinetic models, and it is attractive to use 1p-KMC
for the latter. The coupling of 1p-KMC simulations to compu-
tational fluid dynamics (CDF) or continuous models described
by partial differential equations (SDEs) is a relatively young
area of research that opens up interesting new avenues for
method development. The ultimate goal of such a coupling
is to properly integrate the descriptions of the momentum,
heat, and mass transport phenomena occurring in either small-
scale laboratory reactive chambers or industrial reactors, with
the molecular-scale processes occurring on the catalyst sur-
face. To this end, continuous models are used to simulate
the gas-phase reaction mixture while the KMC-derived reac-
tion rates (or TOF values) are used in the boundary conditions
of the problem. However, the stochastic character and com-
putational cost of KMC simulations poses challenges. For
instance, the noise in the KMC outputs could negatively af-



fect the stability of the numerical methods used to model the
transport phenomena and the computational costs for obtain-
ing those outputs may render the coupling challenging. The
situation is complicated further by the inherent computational
burden of CFD simulations.

This coupling can be carried out in a direct or an indirect
way.3:10.138.199-214 1 the direct coupling, at each time-step of
the simulation, the KMC outputs are used as the in situ bound-
ary conditions for the continuous model. The temperature and
pressure obtained from the continuous model simulations are
used as the operating conditions for the KMC simulations in
the next time-step. Thus, this approach establishes a concur-
rent coupling with a direct exchange of information between
the two scales. The direct coupling has been achieved for sim-
ple continuous models and/or surface reaction systems. 99204
Most of them follow a domain decomposition approach in
which the entire heterogeneous catalytic reaction system is de-
composed into the catalyst surface domain, which is simulated
with the lattice KMC framework, and a gas phase domain,
which is captured by a continuous model. If the descriptions
of these two domains are simple enough, the direct coupling is
relatively straightforward.!?%-20%:202 However, KMC simula-
tions of the whole surface domain may become computation-
ally prohibitive for complicated spatially heterogeneous sys-
tems with strong concentration gradients. For such scenarios,
patch dynamics approaches have been proposed, such as the
so-called gap-tooth scheme.?1203:204 In this framework, the
entire surface domain is subdivided into periodically-spaced
patches, referred to as “teeth”, separated by spaces referred to
as “gaps”. Each “tooth” is simulated as an independent KMC
lattice which gives the surface coverage at its location within
the domain. Then, the surface concentration across the gaps
is approximated using interpolation. Such attempts for direct
coupling have been carried out for steady and non-steady-state
conditions in the fluid phase.!**-2%* Several methods to reduce
the impact of the noise of KMC simulations on the numerical
stability of the schemes employed have also been proposed for
this type of coupling.?**

In recent years, interesting indirect coupling attempts have
also been carried out, most based on the so-called steady-state
approximation. !38-205-214 The Jatter relies on the fact that upon
a change of the gas-phase conditions (pressure, temperature,
and gas species molar fractions), the surface kinetics typically
relaxes rapidly to the steady-state corresponding to those con-
ditions. Thus, under this approximation, the KMC reaction
rates required at each time-step for the boundary conditions
of the continuous model, can be replaced by the steady-state
KMC reaction rates for the current gas-phase conditions. The
drawback of this approach is that the constant generation of
steady-state KMC simulations is a computationally demand-
ing task for most systems of interest. A strategy to address
this issue is to construct surrogate models from several pre-
calculated data-points obtained via independent KMC simu-
lations. To this end, KMC simulations are first carried out
to determine the steady-state reaction rate for a wide range
of surface conditions. Different interpolation schemes, such
as splines or Shepard interpolation variants are then applied
to the resulting data towards the development of a continu-
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FIG. 11. 1p-KMC and reactor modelling analysis of laser-induced
florescence (LIF) experiments of the CO oxidation reaction over
Pd(100) at near-ambient reaction conditions.2!? (a) Schematic of the
experimental reactor employed in the LIF measurements. (b) (top
panel) The LIF measurements reveal the production of CO;, concen-
tration in the gas-phase inside the indicated sheet above the catalyst.
The white circle in the center of the image indicates the area over
which the LIF signal is analysed for other operation conditions. (bot-
tom panel) Simulated CO, concentration profile for the same feed
conditions. Adapted with permission from Ref. 210. Copyright 2015
American Chemical Society.
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ous representation, which in turn provides the required nec-
essary boundary conditions for the continuous model.?0%-212
This methodology has been successfully used to compare sim-
ulations with experiments (Fig. 11),13%210 and has allowed
the integration of KMC into several CDF software packages
(e.g., CatalyticFOAM and Multiphase Flow with Interphase
eXchanges (MFIX)).!38209 However, traditional interpolation
techniques typically suffer from accuracy and efficiency is-
sues as the number of variables increases. In this respect, ma-
chine learning techniques, such as random forests, are already
making a game-changing contribution.?!3

The coupling of 1p-KMC simulations to transport models,
in order to capture the local environment experienced by the
catalytic surface, is still at a relatively early stage of develop-



ment. Although progress has been accomplished, direct cou-
pling approaches are still only applicable to simple systems,
while indirect coupling ones necessitate advanced surrogate
modelling techniques able to handle noisy datasets and high-
dimensional spaces. The generation of the training dataset
for the surrogate model by pre-computing can also be chal-
lenging in such cases, and it may happen that a large portion
of the dataset corresponds to conditions that are never actu-
ally realized in the reactor-level CFD simulation. As a po-
tential remedy, OTF training of the surrogate model (while
the CFD simulation is running), could reduce the number of
samples needed for training and focus on the relevant con-
ditions, thereby improving efficiency. However, this could
introduce computational challenges if the KMC simulations
needed to generate new datapoints are quite slow. The accel-
eration methods discussed in previous sections could address
such issues. Overall, the efforts towards the efficient cou-
pling between 1p-KMC simulations and full CFD descriptions
are expected to draw from multiple fields, including machine
learning, software engineering and high-performance comput-
ing.

V. CHEMICAL MECHANISMS AND PHYSICAL
PHENOMENA UNRAVELED BY KMC SIMULATIONS

The 1p-KMC framework has played a key role in helping
to elucidate the underlying chemical mechanisms and physi-
cal phenomena of many heterogeneous catalytic reactions of
practical relevance. We will briefly discuss some of these con-
tributions in this section, with special attention to the last five
to six years. Readers interested on older contributions can
consult Refs. 22 and 24.

A. Adlayer non-ideality and effects of lateral interactions

As discussed in sections II 2 and IV B, lateral interactions
typically lead to the formation of non-ideal adlayers which
strongly influence the kinetic behavior of catalytic surface re-
actions. Such interactions are nowadays mostly modeled by
the CEH approach, and CEH-based 1p-KMC (1p-CEH-KMC)
models have already demonstrated the accurate simulation of
surface reactions of increasingly complexity. In this section,
we will comment on some representative works which have
implemented such models to rationalize phenomena induced
by non-ideal adlayers and lateral interactions.

Recent studies by Stamatakis and Piccinin explored the
impact of lateral interactions on the CO oxidation on
Pd(111),33178215 3 model catalytic reaction with various prac-
tical applications, including the treatment of automotive gas
exhausts. These studies rationalized the different reaction or-
ders with respect to oxygen coverage at different temperatures
that were observed in the context of titration experiments.?!6
In the latter, oxygen-precovered Pd(111) surfaces were ex-
posed to gas CO, and the CO oxidation rates as well as the
adlayer ordering were monitored as the reaction progressed
(see Fig. 12 for a schematic of the process). The reaction was
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FIG. 12. Schematic of the CO oxidation reaction over an O-
precovered Pd(111) surface exposed to a CO atmosphere. The sur-
face exhibits a (\/§ X \/§) R30° oxygen adlayer structure which is
treated by CEHs. Adapted with permission from Ref. 215. Copy-
right 2016 American Chemical Society.

shown to exhibit half order kinetics with respect to O coverage
at high temperatures, and first order kinetics at low tempera-
tures, a behavior that was explained on the basis of island for-
mation at high temperatures. This explanation was, however,
somewhat counter-intuitive, since, if island formation were
possible, it should be favored at the low temperature range.
The 1p-CEH-KMC simulations were shown to reproduce the
experimental orders with remarkable accuracy, and analysis
of the results demonstrated that subtle coverage effects due to
lateral interactions are responsible for the observed reaction
orders, contrary to the previous explanation, based on island
formation.

The role of lateral interactions on the catalytic oxidation of
NO to NO,, another model reaction and a key step in NO,
elimination from exhaust gases, has also been recently ex-
plored by the CEH approach.”® In this work, adlayer structure
and lattice size effects on catalytic rates were explored in de-
tail and, among others, it was found that highly ordered over-
layer structures due to short-range lateral interactions were
responsible for lattice size effects on the catalytic rates. As
shown in Fig. 13, it was also found that, if the lattice was
non-commensurate to the lowest energy adlayer structure, de-
fective regions and anti-phase boundaries emerge which give
rise to short-lived, highly reactive configurations that promote
catalytic activity.

1p-CEH-KMC simulations have also shed light on the role
of lateral interactions on the experimentally observed promot-
ing effect of O, on the HCL oxidation reaction over RuO;
(i.e., the so-called Sumitomo-Deacon process).”!”-218 This re-
action is a green chemistry route to recover high purity Cl,
from HCL waste. Extensive KMC simulations revealed that,
in contrast to previous suggestions, neither the adsorption
of Oy nor the associative desorption of chlorine are rate-
determining during typical reaction conditions. Instead, hy-
drogen transfer in the water formation step is likely to deter-
mine the rate of the overall reaction. It was found that such hy-
drogen transfer processes are not highly activated but they are
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FIG. 13. Snapshots from 1p-CEH-KMC simulations of the catalytic
oxidation of NO to NO, on Pt(111) at 480 K.?3 Panels (a) and (b)
show the adlayer structure of a 42 x 42 and a 44 x 44 lattice, respec-
tively; oxygen adatoms are represented by black circles and empty
sites are represented by gray circles. The close-up shot on the left of
panel (a) indicates a phase domain local configuration, while close-
ups on the left and right of panel (b) show the local anti-phase bound-
ary and point defect configurations, respectively. Note that the size of
the 44 x 44 lattice is not commensurate to the stable (\/?: X \/§) R30°
adlayer structure. Panels (c) and (d) show the same snapshots but col-
ored according to the local O, dissociation activation energy where
low values and high values are shown in blue and red, respectively.
Because O, dissociation is the rate determining step of the reaction,
regions with low values of this activation energy have high catalytic
rates. Adapted with permission from Ref. 93. Copyright 2018 Pa-
panikolaou and Stamatakis, published by AIP Publishing.

strongly configuration controlled. Such configurations were
found to be strongly determined by lateral interactions.

Recently, Chen et al.'® implemented a protocol that com-
bines the XPK method for accelerating KMC simulations (see
Sec. IV D) with the CEH approach, to investigate how the mi-
croscopic surface nonuniformity affect the syngas (CO+H,)
conversion on Rh(111) under operando conditions. Experi-
mental observations of this reaction show that the selectivity
towards acetaldehyde can increase with pressure, while the
selectivity of methane exhibits the opposite trend (decreases
with pressure).?!%-222 Increasing the pressure increases the
surface coverages and the impact of lateral interactions on
the reaction mechanism. The operando theoretical analysis
of Chen et al.'® was found to agree with the experimental
findings and demonstrated the power of 1p-CEH-KMC sim-
ulations in elucidating how the dynamic and intermediate-
specific local coverage controls the selectivity. In a sepa-
rate article, the same authors successfully implemented the
methodology to elucidate the role of lateral interactions on
the bistable region of the catalytic CO oxidation on platinum
group metals. 86

Catalytic surface reactions typically occur under condi-
tions in which lateral interactions affect activity and selectiv-
ity. Therefore, the accurate modeling of these interactions is
of paramount importance in obtaining a detailed mechanis-
tic understanding of the catalytic reaction mechanism. Such
a relevance appears to be progressively more appreciated, as
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demonstrated by the fact that an increasing number of studies
incorporate lateral interactions into their KMC simulations.

B. The complexity of chemical pathways

1p-KMC simulations are excellent for validating reac-
tion mechanisms, identifying dominant pathways and rate-
determining steps, and calculating species coverages to de-
tect the most abundant reaction intermediates. These analyses
are of paramount importance because surface reactions can be
complex, and mechanisms with parallel or competing path-
ways are common. Moreover, understanding the surface re-
action mechanisms provides insight into how changes in the
operating conditions affect the overall reaction outcome and,
hence, the catalyst’s performance. In this section we discuss
how 1p-KMC simulations have helped elucidate the complex-
ity of chemical pathways in reactions of practical interest.

Let us start our discussion with the industrially impor-
tant water-gas shift reaction (WGSR).?23-225 This reaction in-
volves carbon monoxide and water vapor as reactants towards
hydrogen and carbon dioxide, and thus provides a route for the
production of high-purity hydrogen. Hence, it is involved in
several critical industrial and technological processes related,
for instance, to the synthesis of ammonia and methanol. The
interest in this reaction is also linked to the tight requirements
of high purity hydrogen needed in fuel cells. The mechanism
of the WGSR has been a subject of intense study during re-
cent years; it is, however, still widely debated. Examples of
reaction pathways include the redox or regenerative mecha-
nism and the associative or carboxyl mechanism.??>2%* In the
redox mechanism, the adsorbed water molecule is dissociated
into H and O atoms; the resulting adsorbed oxygen atom then
interacts with the adsorbed CO to form CO,. In the associative
mechanism, the adsorbed water molecule partially dissociates
into OH and H adspecies. The resulting OH reacts with ad-
sorbed CO to give a carboxyl (COOH) intermediate, which
then decomposes to CO, and an H adatom.

Although several theoretical and experimental studies have
been carried out to identify the most efficient WGSR catalysts,
Cu-based catalysts are still the most widely used industrially.
For this reason, a lot of effort has been devoted to understand-
ing the mechanism of the WGSR catalyzed by Cu-based cata-
lysts. In one of these studies, experimental evidence was pre-
sented that the activity of the CuO/ZnO/Al, O3 catalyst on the
WGSR can be closely correlated to the Cu surface area.??° In
such a catalyst, large Cu particles were present, predominantly
exhibiting (111) facets. This finding motivated Prats et al.??’
to perform a comprehensive 1p-KMC study of the WGSR on
the Cu(111) surface. This study revealed that the reaction pro-
ceeds predominantly through the associative mechanism via a
carboxyl intermediate and that the rate-limiting steps change
at higher temperatures. Furthermore, a surface coverage anal-
ysis indicated that H,O and H are the main adsorbed species
at low temperatures, whereas OH and O are dominant at high
temperatures. The simulations also revealed that reactant mix-
ture compositions with high CO proportion enhance the pro-
duction of Hj.



Recently, Chutia et al.??® performed a 1p-KMC study of
the WGSR on the Pd(100) surface. Their focus on the Pd sur-
face was motivated by the fact that Pd-based membranes are
known to be able to isolate hydrogen in large quantities while
maintaining stability during the WGSR. On the other hand,
the choice of the Pd(100) surface was based on the fact that it
is well characterized, relatively active, and sufficiently stable.
1p-KMC simulations allowed Chutia et al. to probe a reaction
mechanism in which the redox and associative pathways op-
erated simultaneously. These simulations indicated that HyO
and OH decomposition are the most common events. The split
of the H,O is followed by the production of an H adatom and
an OH species on the Pd(100) surface. Then, the OH molecule
either reacts with the CO molecule to form carboxyl, which
subsequently generates CO,, or it may break down to oxy-
gen, which then reacts with CO to form CO; via direct CO
oxidation. Thus, the study indicated that the proposed redox-
associative mechanism progresses via both direct oxidation
and carboxyl pathways that occur in parallel.

Decomposition of formic acid (HCOOH) to H, is another
catalytic reaction relevant to hydrogen production, storage,
and transportation which has been recently explored with the
1p-KMC approach.??>23% The selective release of H, from
this reaction is a challenge because formic acid can either
(1) dehydrate into CO+H;O or (ii) dehydrogenate to CO,+H;.
In this regard, some recent experimental and theoretical stud-
ies have found that Au supported nanoclusters decompose
formic acid with complete selectivity toward H.?! However,
the reasons behind this selectivity and activity remain unclear.
Intending to clarify these Au nanoclusters properties, Chen
et al.?? recently performed KMC simulations of formic acid
decomposition over Au;g. The objective was to determine the
nature of the active sites and the reaction mechanism. Their
simulation results showed that indeed Au;g is highly active
and selective for formic acid decomposition, with triangular
ensembles of atoms with a coordination number (CN) of five
being the likely active sites (see Fig. 14) . Interestingly, it was
found that, even though there are two of these active sites on
Auyg, only one HCOOH molecule can be dehydrogenated at
a time. This is because the strong stabilizing interactions be-
tween the adsorbates when they occupy both active sites lead
to poisoning of the active sites by a pair of H and HCOO. Dis-
sociation of additional HCOOH molecules is prohibited be-
cause of this transient poisoning of the cluster. These results
constituted one of the first examples of heterogeneous cataly-
sis by clusters one molecule at a time. The KMC simulations
were also consistent with the selectivity of Hp by the HCOO
pathway, in agreement with aforementioned theoretical and
experimental studies.

1p-KMC simulations have also delivered insights
into the heterogeneously catalysed CO, hydrogenation
reaction.”!4232.233 This reaction has gained attention as an
approach to mitigate the greenhouse effect of CO;, and as an
economical source of single carbon (C;) products (e.g., CO,
methane, methanol, and formic acid).?* By choosing the
metal and type of support, it is possible to direct this reaction
towards a particular product. For example, CO is mainly
obtained through the reverse WGSR (RWGSR) using Rh-,
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Pt-, or Ni-based catalysts, methane can be produced using
Ru-, Ni-, Pd-, or Pt-based catalysts via the so-called Sabatier
reaction, and methanol is generated via CO; partial reduction
using Pd-, Au-, or Cu-based catalysts.>>> Among all these
catalysts, Ni is one of the most commonly used because
of its low price compared to noble metals and its relatively
high activity. Much investigation has been directed towards
the hydrogenation of CO, on the ideal Ni(111) surface
because it constitutes the most stable extended Ni surface.
However, despite many efforts, the overall mechanism of this
reaction is not fully understood, with opposing theoretical
and experimental results regarding selectivity toward the
RWGSR or the Sabatier reaction.?3223

Thus motivated, Lozano-Reis, et al. 232 recently carried out
1p-KMC simulations to investigate the molecular mechanism
of CO, hydrogenation on a Ni(111) surface. This investi-
gation aimed to determine the leading products and give in-
sights regarding the dominant pathways governing the re-
action under relevant operating conditions. The study con-
sidered several mechanisms for both the RWGSR and the
Sabatier pathways. In contrast to the suggestion of early DFT
calculations,?*® the KMC simulations showed no methane
formed on Ni(111) for any operating conditions investigated.
The same simulations also showed that the RWGSR domi-
nates mainly through the redox mechanism but also through
the carboxyl mechanism to a lesser extent. Furthermore, the
simulations identified the CO, dissociation step as the only
rate-determining step. These results led Lozano-Reis, et al.
to speculate that the methane production typically observed
experimentally on Ni-based catalysts is not due to the pres-
ence of Ni(111) facets of the Ni nanoparticles but the result
of other contributions, like for instance, the interplay between
the nanoparticle and the support or the presence of other active
sites.

The mechanism behind the CO; reduction to methanol over
Cu-based catalysts has also been investigated by using the 1p-
KMC approach.?3? This work focused on pure Cu(111) cata-
lysts and KMC simulations were performed at various pres-
sures and temperatures to study the selectivity, conversion,
and TOF dependence at multiple conditions. The simulations
demonstrated that methanol production is favored at low tem-
peratures and high pressures, selectivity is highly dependent
on pressure, and conversion and TOF are low. These results
showed qualitative trends as obtained from experiments.

Similarly, the possibility of alcohol synthesis from syn-
gas on Cu(111) supported defect-rich molybdenum disulfide
(MoS;) has also been studied by the 1p-KMC framework.??’
The purpose of this work was to understand the role of metal
support which affects the electronic structure and geometry
of defect-rich MoS,. The combination of first-principles ther-
modynamics with 1p-KMC simulations showed that the sup-
port boosts the reactivity and product selectivity of defect-rich
MoS,, making it promising for ethanol synthesis. In particu-
lar, while thermodynamics appeared to favor reaction path-
ways whereby the Cu(111) support promotes both methanol
and ethanol production, KMC simulations actually suggested
a high selectivity towards the formation of ethanol.

The catalytic conversion of alcohols, an essential step in
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the valorization of biomass, 28240 has also been investigated
through 1p-KMC simulations. For instance, Réocreux et
al.>*! recently performed KMC simulations of temperature
programmed oxidation (TPO) spectra to investigate the role
of oxygenated species in the mechanism of methanol oxida-
tive coupling towards methyl formate (HCOOCH3) on O pre-
covered Au(111), with CO; being a key by-product due to
overoxidation. In this study, a detailed comparison of the
simulations with experimental TPO spectra enabled the val-
idation of the proposed mechanism and the identification of
rate-determining steps. Moreover, the simulations reproduced
well the desorption temperatures of CO, and HCOOCH3, and
demonstrated the importance of considering van der Waals
forces and adsorbate—adsorbate lateral interactions for the ac-
curate modelling of the system.

The conversion of alcohols over oxide catalysts has also
been the subject of attention. For instance, Sutton et al 242
predicted below-room-temperature release of formaldehyde
from methanol over CeO,. KMC simulations showed that C-
H bond breaking occurs via the disproportionation of adjacent
methoxy species at such low temperatures. This finding is im-
portant because the conversion of alcohols by C-H activation
is typically difficult to achieve at low temperatures, and CeO;
is an inexpensive and abundant natural oxide. The mechanism
behind the catalytic conversion of ethanol over the reducible
Lag 7Sr93Mn0O3_,(100) surface to acetaldehyde and ethene
was also recently investigated by 1p-KMC simulations in con-
junction with pre-exposure temperature-programming reac-
tion (PE-TPR) experiments.’*> A branched mechanism was
revealed by which ethene is produced by a 3-dehydrogenation
reaction and acetaldehyde is produced by a previously un-
known disproportionation reaction.

Due to the increasing demand for light alkenes, catalytic de-
hydrogenation of light alkanes has received a lot of focus in re-
cent years.?4-243 It constitutes an environmentally friendly al-
ternative route to the energetically costly and unselective pro-
duction of alkenes by the traditional cracking of oil products.
The pertinent mechanisms can be classified as direct (non-
oxidative) or oxidative, depending on whether an oxidant is
used or not.>**?4 Direct dehydrogenation (DH) is currently
used in industry, and conventional catalysts are platinum and
chromium oxide. A problem with DH is the deactivation of
the catalysts by the coke formed during the reaction.?*+?3° On
the other hand, the oxidant used in oxidative dehydrogenation
can help prevent coke formation.?** However, oxidative de-
hydrogenation is not commonly implemented due to its low
selectivity toward desired alkenes. In this context, 1p-KMC
simulations were recently implemented to investigate the ox-
idative C-C and C-H bond cleavage of ethane with CO, as soft
oxidant on a bimetallic PtNi(111) model surface.2’! The sim-
ulations were used to explore the selectivity of PtNi(111) to-
ward syngas (CO+Hj) and ethylene (CH,CH>) under typical
experimental reaction conditions. It was shown that oxidative
ethane dehydrogenation to ethylene primarily occurs by two
successive C-H bond scissions. The propane DH on Pt(111)
was also recently studied by Lian et al.>>? In this work, KMC
simulations were used to reveal the dominant reaction path-
way to propylene formation and the origin of coke formation.
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It was found that the availability of active sites crucially af-
fects both propylene and coke formation and that the quick
deactivation of the catalysts occurs because most of the ac-
tive sites are occupied by cracking products that are difficult
to remove from the surface.

The DH of propane and butane on Cr,O3(0001) has also
been investigated by 1p-KMC simulations.?>*~2>3 Chromiun
oxide catalysts are used in the so-called CATOFIN pro-
cess for the production of olefins, such as propylene (from
propane) and iso-butylene (from iso-butane).>> Such stud-
ies have delivered insights into the most abundant products of
the reaction pathways investigated, unwanted pathways lead-
ing to side-products or poisons, and the nature of catalyst
deactivation by coking. In the case of DH of propane on
Cr,03(0001),2>* it was found that the accumulation of propy-
lene and propyne in the reaction mixture adversely affects
the reaction rate and selectivity. It was also reported that
higher pressures increase the reaction rate and coke forma-
tion rate. The simulations also revealed that the deactivation
of the catalyst has a strong temperature dependence and is
caused by the accumulation of coke and coke-like interme-
diates. On the other hand, 1p-KMC simulations of butane
DH on Cr,03(0001)%3 demonstrated that 2-butene is the most
abundant product of dehydrogenation. KMC simulations were
also used to investigate the rate at which the modelled catalyst
gets deactivated. In particular, it was shown that coking is
negligible at low temperatures and becomes relevant at higher
temperatures and that deactivation of the catalyst was caused
by the formation of coke deposits.

Finally, let us briefly comment on two new “frontier top-
ics” in catalysis research to which the 1p-KMC framework
has also been successfully applied. The first is single-atom
catalysts (SACs), whereby one reduces the active site of the
heterogeneous catalyst to a single isolated precious metal, typ-
ically coordinated to an oxide support.'89256-261 In this re-
spect, Alexopoulos et al.%%! recently performed 1p-KMC sim-
ulations of CO oxidation over Pd atoms on «-alumina as a
test case to provide insights into this area of research. The
results of this investigation demonstrated that KMC analysis
can help discriminate between different mechanisms, as well
as between different active sites. It was also shown that KMC
can be a complementary tool to current spectroscopic methods
typically implemented to investigate the active site(s) on reac-
tions over SACs. In another interesting study, Su et al.>*? im-
plemented 1p-KMC simulations to show that Pt atoms doped
into a CeO; surface exhibit a very high CO oxidation activity
and thermodynamic stability in comparison to models involv-
ing Pt single atoms on terrace and steps of CeOs,.

The second “frontier topic” is single-atom-alloy (SAA) cat-
alysts. SAAs are another type of SACs in which catalytically
active components like Pt, Ni, Pd, Ru, and Rh are atomically
dispersed in more inert, but more selective, host metals such
as Cu, Au, and Ag.7’256’262‘271 In this regard, 1p-KMC simu-
lations in conjunction with surface science experiments have
shed light into the mechanisms behind the efficient and selec-
tive C-H activation on coke-resistant PtCu SAAs?%* and C-C
coupling on coke-resistant PdAu and NiAu SAAs.263267 A
similar approach was recently implemented to explore how



to control hydrocarbon (de)hydrogenation pathways with bi-
functional PtCu SAAs.2%6

The works described in this subsection are just a represen-
tative sample of a larger number of studies that have success-
fully implemented the 1p-KMC approach to validate and elu-
cidate complex chemical pathways in heterogeneous catalysis.
Let us now move onto the next to last section of this article,
where we will discuss the first-principles multiscale modeling
of structure sensitive catalytic reactions.

C. Structural changes of the catalyst surface and structure
sensitivity effects

It is widely recognized that the structural complexity of real
catalysts can often affect the catalytic performance. Real cat-
alysts are highly dynamic materials that adapt their morphol-
ogy (geometric structure) to the constantly changing chem-
ical environment and operating conditions. In doing so,
they may exhibit a variable number of active sites (i.e., low-
coordination sites and defects) at which the elementary steps
of the reaction considered might proceed. Such spatial and/or
temporal variability, may affect the active pathways of so-
called “‘structure sensitive” reactions, whose investigation is a
persistence challenge.?’? In this section, we briefly comment
on recent 1p-KMC investigations devoted to obtaining a fun-
damental understanding of the role of structural sensitivity on
heterogeneous catalytic systems.

The structure sensitivity in catalytic activity and selectiv-
ity is typically approached from a reductionist perspective in
which the catalyst is divided into isolated facets. Such an ap-
proach has being recently implemented, in conjunction with
1p-KMC simulations, to investigate several relevant structure-
sensitive catalytic reactions. For instance, Prats et at.,”’?
compared the catalytic activity of the WGSR on the stepped
Cu(321) surfaces with the one on a flat Cu(111) surface. Their
simulations revealed that, in contrast to the prevalence of the
associative mechanism for Cu(111), both the redox and asso-
ciative mechanism are possible for Cu(321). It was also found
that, despite exhibiting lower activation energies, stepped sur-
faces (i.e., low coordinated sites) do not necessarily have an
overall high catalytic activity. This unexpected observation
was rationalized based on a detailed investigation of the cov-
erage effects due to lateral interactions and the relative contri-
bution of several elementary steps to the overall TOF.

The effect of the structure of Cu catalyst surfaces on the
catalytic CO, hydrogenation to methanol,?’* under experi-
mental conditions, was also recently investigated using 1p-
KMC simulations by Kopa¢ et al.?’> Flat Cu(111) and stepped
Cu(533) surfaces were considered in this work. As expected,
the stepped Cu(533) surface enhances the activity and se-
lectivity towards methanol compared to the Cu(111) surface.
Surface coverage studies revealed information about the most
abundant intermediates. At steady state, HCOOH is the most
abundant on Cu(111), while hydrogen is the most abundant on
Cu(533). Furthermore, this study also gave a clear perspective
on which reactions on the methanol synthesis pathway are fa-
vored on both surfaces. In this respect, the event frequency per
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active site indicated that Cu(533) enables the otherwise sup-
pressed HCOH hydrogenation, resulting in a higher CH3;OH
yield.

The industrially important ethylene epoxidation reaction on
silver catalysts has also been investigated by extensive 1p-
KMC simulations by Hus et al.>’®?”7 The reaction was mod-
eled on three pristine silver surfaces: Ag(100), Ag(110), and
Ag(111), as well as on the missing-row reconstructed Ag(110)
surface. One of the objectives was to understand how oxygen
coverage affects selectivity and activity. The simulation re-
sults revealed that Ag(111) maintains very low oxygen cover-
age while being the least active surface with a moderate selec-
tivity, Ag(100) exhibits the highest selectivity at high oxygen
coverage, and both pristine and reconstructed Ag(110) sur-
faces lack any appreciable selectivity but are the most active.
These observations were compared with previous experimen-
tal reports, and were found to be in good agreement with the
data for Ag(111) and Ag(100). The agreement between pre-
dicted results and experimental data for Ag(110) was less sat-
isfactory due to the fact that the model did not take into ac-
count reconstruction as a dynamic phenomenon. It turns out
that, on this surface, reconstruction can be brought about by
the adsorption of oxygen.

The reductionist approach has also been used to investi-
gate the structure sensitivity of several prototypical catalytic
reactions.?’281 For instance, Fajin et al.>’® conducted 1p-
KMC simulations to clarify the role of the silver facets in the
catalytic CO oxidation on nanoporous gold (NPG) catalysts
obtained by dealloying an AuAg alloy. This catalytic system
is important for cleaning hydrogen before feeding it into fuel
cells. Fajin et al.”’® thus performed computer simulations for
the reaction on both Au(110) and Ag(110) surfaces and, based
on their results, it was proposed that the small silver micro-
facets can be responsible for the CO activation on such NPG
catalysts.

The reductionist approach of dividing the catalysts into sep-
arate components, which are studied individually, delivers sig-
nificant insights into the role of the structural complexity of
real catalysts, but certainly has limitations. To properly unveil
synergistic effects due to such complexity, a holistic approach
is needed. In this respect, the 1p-KMC framework is also
proving to be a valuable computational tool, for instance, the
work of Guo and Vlachos is an interesting example of such a
holistic 1p-KMC simulation approach.?®? This work entailed
1p-KMC simulations of ammonia decomposition on patched
bimetallic Ni/Pt surfaces, a prototypical system for structure
sensitivity. By varying the size and/or shape of Ni clusters on
Pt, the bifunctional behavior of such patched bimetallic sur-
faces was elucidated. Among other things, it was shown that
the Ni terrace sites catalyze N-H bond scission and the (110)
edges of the Ni patches catalyze N, association. Further-
more, the computational analysis revealed that such a dual-
site behavior is responsible for the higher activity of patched
bimetallic surfaces compared to full Ni monolayers on Pt, or
the pure metal surfaces of Ni and Pt. Interestingly, it was also
found that the structure sensitivity of the reaction was rather
weak on these patched surface bimetallics under the chosen
reaction conditions. In an interesting follow-up work, Nufiez



and Vlachos?®* combined KMC simulations with active learn-
ing to optimize the Ni/Pt catalysts surface microstructure to
enhance reaction rates of the ammonia decomposition reac-
tion.

1p-KMC simulations have also been recently implemented
to understand the mechanism behind the enhancement of the
catalytic activity and/or selectivity due to the so-called strong
metal support interactions (SMSIs).?%4 In several cases, SM-
SIs lead to catalyst deactivation. However, it has been found
experimentally that SMSIs make Au nanoparticles dispersed
on molybdenum carbide (MoC) a highly active catalyst for the
low-temperature WGSR.?% In this respect, KMC simulations
have unraveled the origin of the experimentally observed high
activity and have provided strong evidence for a cooperative
effect between the different regions of the catalysts. In par-
ticular, it was found that the clean MoC regions are responsi-
ble for adsorbing and dissociating water molecules, and that
the interface regions between the nanoparticles and support
act as attractors for CO molecules. The latter subsequently
react with OH molecules produced in the clean MoC region
to form COOH, which then produces CO; via the associative
(carboxyl) mechanism.

The structure sensitivity of the RWGSR in SrTiOs-based
perovskite-supported copper catalysts was also recently inves-
tigated by Kopag et al.?®¢ Their KMC simulations revealed
that considering copper and the support sites in addition to
the interface sites results in higher predicted rates for the re-
action compared to the case in which the interface alone is
modeled. In a separate work, 287 the same authors explored
the synergistic effect of bifunctional Cu/perovskite catalysts
on the catalytic hydrogenation of CO, to methanol. In this in-
vestigation, KMC simulations were performed on a Cu phase
with four perovskite substrate materials (i.e., Cu/CaTiO3,
Cu/SrTiO3, Cu/BaTiOs3, and Cu/PdTiOs3). It was found that
all systems outperformed the pure Cu, with Cu/PbTiO3 and
Cu/SrTiz being the most promising copper/perovskite cata-
lysts.

Nanometer-sized particles dispersed on oxide supports are
generally ill-defined with respect to size and shape, and ex-
pose a range of different interconnected active sites from
which complex kinetic behavior could arise. 1p-KMC sim-
ulations demonstrating genuine nanoscale effects on catalytic
activity have also been performed. For instance, Nikbin et
al.?8 carried out a 1p-KMC analysis to elucidate the experi-
mentally observed “magic number” behavior of sub-nanoscale
Au clusters towards CO oxidation. Traditionally, low coordi-
nated sites are thought to be highly active, and thus it would
be expected that all types of Au nanoparticles would be effec-
tive catalysts. However, experimental observation on small
Au, clusters (n = 2 - 20 atoms) on a O-defective MgO sup-
port revealed that the most active clusters were Aug, Auyg,
and Au20.289’290 Thus motivated, Nikbin et al. investigated
the catalytic behavior of Au,, clusters with n =6, 8, and 10
atoms. They used negatively charged clusters because Au
clusters up to the Aujz size, when supported on MgO with
O vacancies, are known to be negatively charged. Apart from
unraveling a high degree of complexity in the catalytic behav-
ior of these Au clusters, the simulation results were in good
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FIG. 15. KMC simulations of CO oxidation on sub-nanoscale Au
clusters.?88 Left panels show the number of CO, molecules produced
as a function of time. Right panels show the KMC lattice structures
of the corresponding Au nanoclusters. (a) Average number of CO,
molecules produced per Au, nanocluster in an ensemble of 100 clus-
ters. After exhibiting some transient activity, Aug is deactivated
(poisoned by carbonate). (b) Number of CO, molecules produced
per site in an ensemble of 10 Aug clusters; the average number is
denoted by the thick black line. (c) Number of CO;, molecules pro-
duced per site in an ensemble of 10 Auj clusters; the average num-
ber is denoted by the thick black line. Adapted from Ref. 288 with
permission from the Royal Society of Chemistry.

agreement with the experimental observations that Aug is in-
ert, Aug is active, and Auj, is less active than Aug (Fig. 15).
More specifically, the KMC simulations predicted that Aug
gets poisoned by carbonate, while Aug and Auj, exhibit sus-
tained activity, via pathways involving CO-O, intermediates.

To further enrich our understanding of structure-sensitive
catalytic reactions over nanoparticles, it is of paramount im-
portance to “map out” complex reaction energy landscapes,
by considering all catalytically relevant pathways on a poten-
tially large number of inequivalent active sites. A full treat-



ment of such landscapes is as of yet impractical or even infea-
sible. Instead, the problem has recently been tackled by con-
structing KMC models incorporating DFT-based structure-
sensitivity scaling relations.'?®?! In such scaling relations,
generalized coordination numbers are used as descriptors for
adsorption energies and reaction barriers. In doing so, one
can efficiently and accurately address the structural complex-
ity of nanoparticles and the synergistic effects emerging from
assemblies of active sites. This first-principles scaling rela-
tion KMC (1p-SR-KMC) approach has been successfully ap-
plied to model structure-sensitivity features of the archety-
pal CO oxidation reaction on nanoparticles.!?%292-2% Tt has
also been implemented to study more complex surface reac-
tion systems, such as the selective acetylene hydrogenation
over SAA nanoparticles,”®” and oxygen reduction on oxide-
supported PtNi nanoalloys.?%

Motivated by the need to understand the performance
of subnanometer catalysts and explain how catalyst treat-
ment and exposure to spectroscopic probe molecules change
the structure, Wang et al.'** developed a 1p-KMC frame-
work, which incorporates machine learning-based Hamilto-
nians. This framework was used to follow the evolution of
subnanometer clusters at experimentally relevant time-scales.
Wang et al. choose Pd (n = 1 - 40) on CeO,(111) in a CO at-
mosphere as a case study, since CO is the most common probe
molecule in infrared (IR) spectroscopy.??” The approach gave
important insights into the effect of temperature, CO partial
pressure, metal loading, and initial catalyst state on cluster
formation at that scale.

A catalytic phenomenon also addressed to some extent by
the KMC framework, is the so-called surface morphological
rearrangement (or surface reconstruction). Such a dynami-
cal behavior can have a significant impact on the observed
catalytic activity and selectivity. Thus, recently, Hoffmann et
al.3% introduced a multi-lattice 1p-KMC approach to describe
the dynamics of morphological transitions on solid surfaces
in the special case whereby the reconstructed and the pris-
tine structures can be captured by commensurate lattices. As
a case study, they modeled the reduction of surface oxide on
Pd(100). The simulation results reproduced the observed ex-
perimental trends in the reduction rates and revealed the cru-
cial role of elementary steps at the boundary between oxide
and metal domains.

In a recent work, Hus et al.”*" investigated how Cr,O3 cat-
alyzes the propane dehydrogenation reaction in oxidative and
reducing environments. An interesting contribution of this
work is that the catalytic system was studied on a mixed sur-
face, consisting of equal parts of oxidized and reduced areas.
It was shown that this mixed surface exhibits considerably bet-
ter performance than each individual surface. Furthermore,
investigation of the surface with varying degrees of oxidation
showed that there exist an optimal degree of surface oxidation
with respect to propene yield.

In this section, we have discussed several representative
studies showcasing the versatility of the 1p-KMC approach
in exploring structural changes of the catalyst surface and
structure sensitivity effects. Even though much progress is
being made in this area, challenges remain, which motivate
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exciting developments. Thus, prohibitive remain the compu-
tational expense and the amount of effort required towards de-
veloping comprehensive models of complex chemistries (in-
volving numerous pathways) on realistic catalysts (exposing
various types of active sites). In addition, a general frame-
work for modelling complex catalytic reconstruction effects
is still lacking. Descriptor-based approaches facilitated by the
implementation of machine-learning could be critical in over-
coming these challenges.

VI. FUTURE CHALLENGES

KMC simulations in combination with first-principles-
based calculations are becoming essential in modeling hetero-
geneous catalysis. As highlighted in this Perspective, such a
computational approach enables us to explore the wide range
of length and time-scales over which structure-function rela-
tionships unfold. Here, we briefly introduced this versatile
modeling framework, discussed the main outstanding com-
putational challenges, and commented on successful appli-
cations. The latter clearly demonstrate the power of 1p-
KMC in delivering insights into reaction mechanisms and
rate-determining steps, the role and interplay of different ac-
tive sites, as well as the impact of operating conditions and the
reaction micro-environment on catalytic performance metrics
(observables).

1p-KMC is a bottom-up simulation framework, and as
such, its capacity to generate reliable results depends on the
accuracy and efficiency of the first-principles methods em-
ployed to obtain the rate constants fed into it. At present,
the first-principles method widely used for this purpose is
DFT. However, using DFT in building detailed KMC models
can become computationally expensive because the number
of rate constants to be obtained can be very large, particularly
when lateral interactions are taken into account. To this end, a
common approach is to implement CEH-based BEP relations
to calculate activation energies and hTST to get prefactors.’’
The quest for efficient and accurate ways to obtain rate con-
stants from first-principles is thus of paramount importance to
eventually reach the full potential of this powerful computa-
tional tool.

Another challenge in obtaining rate constants via DFT cal-
culations is that the errors arising from such calculations may
lead to rate constants that are potentially inaccurate by sev-
eral orders of magnitude. This issue underlines the need for
more reliable DFT (or, in general, first principles) methods,
but also efficient approaches for estimating the sensitivity of
the model predictions on the rate constants and quantifying
the uncertainties on these predictions. In this Perspective, we
have discussed recent progress in developing such methods
for KMC simulations. The ultimate goal of such SA and UQ
approaches is to direct computational efforts into improving
the truly relevant first-principles calculations.

A major problem in modeling heterogeneous catalysis by
1p-KMC is that elementary events often happen at vastly dif-
ferent time-scales. The development of algorithms to over-
come this issue is an active area of research. While progress



has been (and is being) made, the current algorithms are still
not robust or reliable enough for “out-of-the-box” usage. Hav-
ing generic and easy-to-use algorithms to tackle this issue is
paramount for performing direct comparisons of KMC predic-
tions with experimental data and for expanding the applica-
bility of 1p-KMC simulations to more complex catalytic sys-
tems.

The poor scalability of KMC with respect to the lattice
size has prevented its implementation in simulating large cat-
alytic surface domains, relevant to catalytic reaction systems
that exhibit pattern formation. Previously proposed approx-
imate methods have seen limited adoption, potentially due
to the fact that the errors incurred by these approximations
have not been thoroughly studied and quantified. Ideally, for
simulations of spatio-temporal pattern formation, exact KMC
schemes would be preferable, ensuring simulations free of
artefacts due to numerical error. Latest research efforts have
started to address this challenge by implementing distributed
parallelization techniques that properly handle causality errors
arising from boundary conflicts due to the domain decomposi-
tion of the lattice.3> The development and application of such
distributed KMC approaches is quite an exciting research area
with lots of scope for further efforts in algorithm development.
Equally important is developing and improving algorithms for
event search and execution, as well as KMC state update, in
order to evolve the state-to-state dynamics in KMC simula-
tions more efficiently.!0%132

The 1p-KMC framework discussed throughout this Per-
spective is based on a rigid lattice representation of the cat-
alytic surface. This representation poses challenges when
modeling situations in which dynamical reconstruction or
other morphological changes of the catalyst take place. Al-
though some authors have addressed the kinetics of such
transformations within the rigid on-lattice KMC approach,3%
there is a growing demand for new tools and methodologi-
cal developments to investigate the effects of such dynam-
ical changes on catalytic kinetics. The so-called off-lattice
or adaptive KMC approach could in principle be useful for
this purpose.!’® However, its implementation is currently
computationally too expensive. A boost to solve this chal-
lenge could also be provided by integrating machine learn-
ing approaches into the 1p-KMC-based multiscale modeling
framework.3-38-302

The bottom-up modeling approach for heterogeneous catal-
ysis aims to bridge the gap between the supported metal
nanoparticle, the catalytic pellet, and the reactor. From a com-
putational standpoint, the goal is thus to reach a direct cou-
pling between CFD models and 1p-KMC simulations. This
topic is a rather new area of research also full of many excit-
ing challenges.

VIl. CONCLUSIONS

In the past decade, the KMC approach has steadily matured
in the computational catalysis field. An indicator of this matu-
rity is the emergence of several user-friendly software applica-
tions/packages devoted to 1p-KMC simulations for heteroge-
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neous catalysis. These software packages have contributed to
the impressive growth in the number of studies employing this
computational framework. This growth will continue, driven
by the need for kinetic simulations in catalysis, which enable
detailed comparisons of theoretical predictions with experi-
mental data. Moreover, this growth will potentially accelerate,
facilitated by advances in algorithm development for the effi-
cient computational implementation of the KMC framework
itself, but also advances in the generation, processing, sharing
and re-use of large amounts of data on catalyst-adsorbate in-
teractions and reaction mechanisms. This impetus is expected
to spread to other branches of heterogeneous catalysis not cov-
ered in this article, like for instance electrocataxlysis,303’308
and photocatalysis.3?-3!! The KMC approach will thus (con-
tinue to) drive exciting breakthroughs in the quest towards un-
derstanding and predicting catalytic materials for niche appli-
cations.
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