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Social metabolism:
A systemic perspective on resource use

Environment
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Haberl et al 2019. Nature Sustainability 2, 173—184
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Social metabolism
encompasses a society's
extraction of biophysical
resources (materials, energy,
substances), their use in
production and consumption
processes, and the ensuing
releases of wastes and
emissions. Flows may be
used dissipatively or
accumulate as stocks,
whose patterns in turn co-
determine future flows.




Social Ecology

regimes, materials required for convergence

Materials extracted by various socioecological | SEC™

Cumulative Material Extraction
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Global stocks of ,,anthropogenic mass“ vs.
biomass
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Linking stocks and flows: The MISO model

Other socic-economic systems

Recycling & down-cycling into secondary materiais® y
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Stock: Mass of
materials existing at
a defined point in
time [kg]

Flow: Mass of
materials used over
time period [kg/yr]

Stocks and flows are
incommensurable.
Inflows augment stocks,
outflows reduce stocks

Wiedenhofer et al. 2019, Ecol Econ 156
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Stock-flow dynamics in
social metabolism

Conceptual diagram of the
requirements for a stabilization of
societal material stocks

- NAS = zero
- GAS = end-of-life outflows

Wiedenhofer et al. 2021. Global Environmental
Change, 71, 102410




Why: ma—terlantocks are |mportant
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Stocks, flows and a glimpse on services

Global data, 1900-2015
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Global Gross Additions To Stock (GAS)

1900-2016

(a) GASprim uncertainty given by +/-25D

35| —— Mean f
— +/-25D :
o . Krausmann et al. fj

Q W) 0 O

Gt/yr (Concrete)

* X o
* *
- *
* *

* ok

5 (b) GASprim in 2016 (uncertainty given by +/-25D) "

SEC*™

Institute of
Social Ecology

40 - F4E
o
b
9
30 4 -3 m
=
[
I E
20 :I: i 18 2%
=
b
10 - 10
T =
Ny -
0 : . : : P e SN saims 1o
L YL A e \o > b
e X c Gl G o 2
o RN 2 g &
§ 1) ‘p@gﬁ ‘EF"B “6‘
@
S

Plank et al. 2022. Resources, Conservation & Recycling, 179, 106122



Stocks, Gt
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Stock-flow dynamics in nine world regions SEC®
1900-2015 KU

Stocks, Gt

a) Material stocks in nine world-regions, from 1900 to 2015 _— b) Global gross additions to stocks (GAS) of primary and secondary materials |
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Global circularity and resource use
1900-2015

Input cycling 43% — 27%
Output cycling 46% — 40%
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The climate challenge | SEC*

What limiting global warming to 1.5° means L KU

CO: emissions must reach net zero ~2050
Rapid reduction required to avoid risky technologies

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways
Fossil fuel and industry AFOLU BECCS
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P1: Ascenario in which social, P2: Ascenario with a broad focus on P3: Amiddle-of-the-road scenario in i P4: Aresource- and energy-intensive :
business and technological innovations sustainability including energy which societal as well as technological | scenario in which economic growth and |
result in lower energy demand up to i intensity, human development, : development follows historical i plobalization lead to widespread :
2050 while living standards rise, i economic convergence and | patterns. Emissions reductions are  adoption of greenhouse-gas-intensive
especially in the global South. A i international cooperation, as well as mainly achieved by changing thewayin | lifestyles, including high demand for
downsized energy system enables shifts towards sustainable and healthy which energy and products are i transportation fuels and livestock
rapid decarbonization of energy supply. |  consumption patterns, low-carbon produced, and to a lesser degree by i products. Emissions reductions are
Afforestation is the only CDR option technology innovation, and reductions in demand. i mainly achieved through technological
considered; neither fossil fuels withCCS | well-managed land systems with { means, making strong use of CDR
nor BECCS are used. limited societal acceptability for BECCS. i through the deployment of BECCS.

IPCC, 2018. Special Report: Global Warming of 1.5° C



The classical approach: Eco-efficiency
Decoupling: can resource use and emissions decline while the
economy is growing?

Relative decoupling: HuET B HbaiH
- Resource use per unit
GDP or impacts Economic activity (GDP)

decline, but total
amount of resources

< Resource decoupling

grows
- GDP grows faster Resource use
than resource use __::i IEEtdatougling

Absolute decoupling: Time
resource use or
impacts decline while

GDP grows

Environmental impact

Most sustainability or climate policies explicitly or
implicitly are focused on decoupling DECOUPLING #=y

V"V

natural resource use and ‘-\

UNEP - International Resource Panel, Decoupling Report (2011) R e UNEP




ocial Eco

logy

The Gospel of Eco-Efficiency is good, but not @KU SEC

nearly good enough
Observed GDP elasticities in the last decade
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Haberl et al., 2020, Environmental Research Letters 15, 065003 Now recognized by IPCC, WGII, AR6 (2022)



Towards sustainability? SEC*™
Reshaping the stock-flow-service nexus

Social Ecology

Stocks Buildings, infra-
structures, machinery

Stocks shape social
practices of everyday

life (mobility, shelter, etc.)

Services
Flows
Energy Contributions
materials Loeisnogmal well-

Fotos: Helmut Haberl

Haberl et al. 2017, Sustainability 9; Kalt et al. 2019, Energy Res. & Social Sci., 53, Haberl et al. 2021, Ecol. Econ. 182



Provisioning systems link resource use to
societal well-being

PROVISIONING

BIOPHYSICAL RESOURCE USE SYSTEMS SOCIAL OUTCOMES
Planetary Natural ' Physical: N_ee.d Human
processes resources Infrastructure, satisfiers well-being
Carbon cycle, technology, Food, - e s
hydrological E\ﬁ:;;gf’ manufacturlng clean water, Life Sﬁ;ﬁ{TiCTIDn’
cycle, €2  aterials, €2 <1 o, <
biogeochemical L Social education,
cycles, Government, relationships,
land-system communities, equality,
change markets employment
L - > L. > \_ > - > - >

O’Neill et al., 2018. Nature Sust. 1, 88—95



Social progress index

Stocks and flows vs. social progress
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The Social Progress Index (SPI) is an outcome-based index of social wellbeing con-sidering
nutrition, shelter, water, sanitation, safety, access to knowledge, freedom, human rights,
environmental quality, but no monetary indicators such as GDP

Haberl et al 2019. NatureSust. 2, 173-184




Social Ecology

Inequality of GHG emissions between @KU SEC®
super-rich and average people et

Fig. 1: The estimated carbon footprint of a typical super-rich household of two
people.

From: Shift the focus from the super-poor to the super-rich

70
60 - 66.5
S 50 - Super-rich:
> 65 tCOaeq/caplyr
g 95 Austrian average:
& 30 - 34.3 9 tCOzq/caplyr
S 20 - 18.9 Global average:
- 9.6 6.5 t COzeq/caplyr
10 y
0 == ﬂT (AT: UBA, Global: PBL)
[ I
Motor House Secondary Air
vehicle energy consumption  travel

Data were derived from four consumption habit surveys, and show the average of four carbon-footprint calculators for each of four consumption
categories. Total emissions are approximately 129.3 tCO;e per year.

Otto et al. 2019. Nature Clim Change 9



Gross additions to stock — income groups
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Scenarios for stock development and GHG
emissions 2050

= GDP-driven scenarios: GDP development taken from IPCC-SSP2, assumptions on
GDP per unit of stock ratio.
= A GDP-driven high: Constant GDP/stock ratio
= B GDP-driven low: Trend GDP/stock ratio, only selected results shown here

= Population-driven convergence scenarios: Population development (UN median)
and assumptions on per capita stocks in 2050.

= C Convergence1970: Contraction-convergence of global per capita stocks at industrial level of
1970

= D Convergence2015: Convergence of global per capita stocks at ind. level of 2015

= Decarbonisation pathways
= Trend: little or no improvements in CO, intensity of TPES
= Full decarbonization of energy system in 2070, 2060, 2050, 2040 & 2030

= C emissions from cement production (calcination) and coke use
in blast furnaces continue (hard to decarbonize)*

Krausmann et al., 2020, Global Env. Change, 61, 102034 * Dauvis et al., 2018, Science 360, 1419



Global Material Stock Scenarios

1970-2050
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Scenario results: ‘SECE
Development of CO, emissions 1970-2050

(without additional decarbonization)
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Krausmann et al., 2020, Global Environmental Change, 61, 102034
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The climate challenge I
Sociometabolic transformation in 20-30yrs

= Current global primary energy mix: 80% fossil fuels, 10% biomass,
5% nuclear energy, 3% hydropower

= Current primary energy mix in Austria: 67% fossil fuels, 17% biomass,
10% hydropower

— Climate-neutral energy needs to replace two thirds (Austria)
to four-fifth (global) of primary energy supply. Hence:

= No new structures with lifetimes >8-10 years that require fossil fuels must be
built or be made operational (buildings, infrastructures, machinery)

= Existing buildings, infrastructures and machinery need to be refurbished
and/or replaced by zero fossil-fuel input options




Social Ecology

Most material stocks are in buildings and @ SEC*
infrastructures
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Global low-energy demand scenario: less energy, SEC®
same services (possible — but how?) |
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» Global final energy strongly reduced until
2050
« Same energy services as in current trend
* Meets 1.5° climate target
» Avoids controversial technologies
(BECCS)
« Completely different investment patterns:
* Low- or zero-energy buildings
* Transport-sparing settlement patterns
» Public transit prioritized over cars
» Resource-sparing as top priority

Grubler et al. 2018, Nature Energy 3
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Example: The SFS nexus of personal
mobility in Vienna

Mobility stocks

Proxy for services: Pedestrian
: 9.9% , 2.1%
# of trips / « Bicycle
- : 18.0% |
Mobility functions: = Public transport
person-km Hx% Motorized individual traffic
Mobility functions Mobility services Material flows  Primary energy flows  GHG emissions
4-42"'0 3.6%

11.1%, 2.3% 1.0%

/ 2.2% /
- 35.0%  22.5% m 70.4% 0.3%

ws.?ufﬂ ?6-0% 23.2 ‘fo 76'5%

Virag et al. 2021, Environm. Develop 10.1016/j.envdev.2021.100628
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Conceptualizing services: the energy service

cascade

: * £ Energydemand context B
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Understanding contributions to social well-being requires
more than just counting contributions to GDP

Y

Kalt et al., 2019. Energy Research & Social Sciences 53, 47-58



Social Ecology

Transforming the SFS nexus as part of @KU SEC®
provisioning systems

‘ identifying & constructing l
==

stocks /
biophysical functions services
structures (physical work) (what Is demanded)
(colonized nature)

benefits interests &

(contribution to values
S (way of life)

resources

' enabling & restricting '

Plank et al. 2021. Ecol. Econ. 187, 107093.



The spiraling constriction of the socio- 1 SEC®
metabolic corridor

Instity
Social Ecology
Clear/al-
ter land Access
Construct, -
‘ Invest/Build i

g

Use. resources, F USE_/PI‘DdUCE ;_:? . . .
emit _ 5 Provisioning systems are
ﬁ Confirm b built in several steps, each
use patterns — — o 0 . . o

— 5 & creating fixes that constrict
Discontinue éi-’ £ . .
requirements S S future sociometabolic

| r  Access j corridors. How long the

— | ensuing legacies last,
—— depends on the durability
of the infrastructures and
institutions created.

Schaffartzik et al. 2021. Sustainability Science, doi.org/10.1007/s11625-021-00952-9



The Stock-Flow-Practice nexus @KU SEC*

Social Ecology

Practices are routine activities

Practices . .
(everyday routines of that are embedded in social
living, eating, moving .. relations, infrastructu-res,

and their regulation .
v ) perception and context.

Consumption happens as part
of practices.

Material and Material stock

energy flows patterns

(fossil fuels, biomass, ‘ ) (buildings, infra-

minerals...) structures,
machinery...)

Fig. 1. The Stock-Flow-Practice nexus (SFP nexus). Own graph, based on the
SFS nexus graph in Haberl et al. (2017).

Haberl et al. 2021. Ecol. Econ. 182, 106949



Infrastructures and buildings in Austria SEC™

i IKU ) | e
outweigh trees by factor >2
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Nexus approaches relating social metabolism
to services and practices

The stock-flow-service nexus:
services are derived from specific
stock-flow combinations. Broadens
concepts of eco-efficiency.

The stock-flow-practice nexus:
focused on interrelations between
the routines of everyday life and
stock-flow constellations. Connects
theories of practice with social
metabolism thinking.

Both approaches provide heuristic
models for analyzing the role of
material stock patterns for
(un)sustainability.
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Conclusions

= Construction of buildings and infrastructures requires
a major part of the physical resources used by societies

= The dissipative use of resources (energy!) is shaped largely by the quantity, quality
and spatial patterns of society’s material stocks

= Meeting ambitious climate targets will not allow any new long-lived (>8-10 years)
structures locking societies into new GHG emissions, plus refurbishing all existing
structures to zero-carbon standards in ~30 years

= As long as stocks grow, full circularity is theoretically impossible. Even if net
additions to stock were zero, full circularity would still be thermodynamically impossible
(downcycling & waste can’'t become zero)

= Alternative development models are needed in which a good life requires much lower
material stocks and resource flows, consistent with the need to reduce GHG
emissions to zero (or below)
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