

SEC² Institute of

Social Ecology

Shrinking global social metabolism The role of infrastructure and settlement pattern

Helmut Haberl

Webinar of the Colloque l'ESCA Environmental Sciences Institute Université de Quebec a Montreal. 18.3.2022

This presentation is based on research that has received funding from the the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).

SP

Social metabolism: A systemic perspective on resource use

Social metabolism

encompasses a society's extraction of biophysical resources (materials, energy, substances), their use in production and consumption processes, and the ensuing releases of wastes and emissions. **Flows** may be used dissipatively or accumulate as **stocks**, whose patterns in turn codetermine future flows.

Haberl *et al* 2019. *Nature Sustainability* **2**, 173–184

Materials extracted by various socioecological regimes, materials required for convergence

Cumulative Material Extraction

 $S E C^{\omega}$ Institute of Social Ecology erc

Source: Calculations by Krausmann based on Fischer-Kowalski *et al.* 2014 (*Anthropocene Review* **1**), Krausmann et al. 2016 (in *Social Ecology*, Haberl *et al., eds.*), Krausmann et al. 2020 (*Global Environmental Change* **61**)

Global stocks of "anthropogenic mass" vs. biomass

Material stocks 1:1 coupled with GDP1900: stockbuilding materials ~20% Now: stockbuilding materials ~55%

Elhacham *et al.* 2020, *Nature* **588;** based on Krausmann *et al.* 2017, *PNAS* **114** and Erb *et al.* 2018, *Nature* **553**

Linking stocks and flows: The MISO model

Stock-flow dynamics in social metabolism

Conceptual diagram of the requirements for a stabilization of societal material stocks

- NAS = zero- GAS = end-of-life outflows

Wiedenhofer *et al.* 2021. *Global Environmental Change*, **71**, 102410

Why material stocks are important They transform resources into services such as shelter, nutrition or mobility. Building up and maintaining stocks requi res large amounts of resources. TITLE They shape social practices (including production and consumption), thereby creating path dependencies for future resource use ("lock-in")777 $\frac{1}{L}$ iii

Stocks, flows and a glimpse on services

Global data, 1900-2015

 SEC^{∞}

Institute of Social Ecology

Global Gross Additions To Stock (GAS) 1900-2016

50 Mean $+/-2SD$ 40 Krausmann et al. Gt/yr (Concrete) 30 20 10 Œ θ won-ferr, metals als _{plastics} glass ate phalt Bricks Woodbreaper konferteel Concrete 2000 1980 1960

Plank *et al.* 2022. *Resources, Conservation & Recycling*, **179**, 106122

(a) GASprim uncertainty given by +/-2SD

35

30

25

 6×10^{10} 15

10

5

 $\mathbf 0$

1900

5

a
Gt/yr (other materials)

(b) GASprim in 2016 (uncertainty given by +/-2SD)

Stock-flow dynamics in nine world regions 1900-2015

SEC[®]

Institute of

Wiedenhofer *et al.* 2021. *Global Environmental Change*, **71**, 102410

Haas *et al.* 2020, *Resources, Conservation & Recycl.* **163**, 105076

The climate challenge I What limiting global warming to 1.5° means

CO2 emissions must reach net zero ~2050 Rapid reduction required to avoid risky technologies

Breakdown of contributions to global net CO₂ emissions in four illustrative model pathways

IPCC, 2018. *Special Report: Global Warming of 1.5° C*

The classical approach: Eco-efficiency

Most sustainability or climate policies explicitly or implicitly are focused on decoupling

UNEP – International Resource Panel, Decoupling Report (2011)

The *Gospel of Eco-Efficiency is good,* **but not nearly good enough**

Observed GDP elasticities in the last decade

Haberl *et al.*, 2020, *Environmental Research Letters* **15**, 065003

Current sustainability strategies rely on promoting ^a "decoupling" of GDP from resource use or emissions**The 1.5°C target** requires ^a linear absolute reduction ofCO2 by 3.3%-5% of the emissions in 2020 per year. This requires ^a*qualitatively new approach* for socio-

TPES… total primary energy supply, GHG… greenhouse gas

Now recognized by IPCC, WGII, AR6 (2022)

Haberl *et al.* 2017, *Sustainability* **9;** Kalt *et al.* 2019, *Energy Res. & Social Sci.*, **53**, Haberl *et al.* 2021, *Ecol. Econ.* **182**

Provisioning systems link resource use to societal well-being

Stocks and flows vs. social progress

The Social Progress Index (SPI) is an outcome-based index of social wellbeing con-sidering nutrition, shelter, water, sanitation, safety, access to knowledge, freedom, human rights, environmental quality, but no monetary indicators such as GDP

Haberl *et al* 2019. *NatureSust.* **2**, 173–184

Inequality of GHG emissions between super-rich and average people

Fig. 1: The estimated carbon footprint of a typical super-rich household of two people.

From: Shift the focus from the super-poor to the super-rich

Data were derived from four consumption habit surveys, and show the average of four carbon-footprint calculators for each of four consumption categories. Total emissions are approximately 129.3 tCO₂e per year.

Gross additions to stock – income groups

Plank *et al.* 2022. *Resources, Conservation & Recycling*, **179**, 106122

Scenarios for stock development and GHG emissions 2050

 $S \mathsf{F} \mathsf{C}$ $^{\mathsf{z}}$

erc

Institute of Social Ecology

- **A GDP-driven high: Constant GDP/stock ratio**
- \blacksquare B GDP-driven low: Trend GDP/stock ratio, only selected results shown here
- \blacksquare **Population-driven convergence scenarios:** Population development (UN median) and assumptions on per capita stocks in 2050.
	- C Convergence1970: Contraction-convergence of global per capita stocks at industrial level of 1970
	- D Convergence2015: Convergence of global per capita stocks at ind. level of 2015
- $\mathcal{L}_{\mathcal{A}}$ **Decarbonisation pathways**
	- П ■ Trend: little or no improvements in CO₂ intensity of TPES
	- П Full decarbonization of energy system in 2070, 2060, 2050, 2040 & 2030
	- \blacksquare C emissions from cement production (calcination) and coke use in blast furnaces continue (hard to decarbonize)*

Global Material Stock Scenarios 1970-2050

Krausmann *et al.*, 2020, *Global Environmental Change*, **61**, 102034

Scenario results: Development of CO2 emissions 1970-2050 (without additional decarbonization)

Krausmann *et al.*, 2020, *Global Environmental Change*, **61**, 102034

The climate challenge II Sociometabolic transformation in 20-30yrs

- $\mathcal{L}_{\mathcal{A}}$ Current **global primary energy mix**: 80% fossil fuels, 10% biomass, 5% nuclear energy, 3% hydropower
- F Current **primary energy mix in Austria**: 67% fossil fuels, 17% biomass, 10% hydropower
- **[→] Climate-neutral energy needs to replace two thirds (Austria) to four-fifth (global) of primary energy supply. Hence:**
- $\mathcal{L}_{\mathcal{A}}$ **No new structures with lifetimes >8-10 years** that require fossil fuels must be built or be made operational (buildings, infrastructures, machinery)
- \blacksquare **Existing buildings, infrastructures and machinery** need to be refurbished and/or replaced by zero fossil-fuel input options

Most material stocks are in buildings and infrastructures

Dense urban

Haberl *et al.* 2021, *Env. Sci. Tech.*, **55**, 3368-3379

Global low-energy demand scenario: less energy, same services *(possible – but how?)*

- • Global final energy strongly reduced until 2050
- •Same energy services as in current trend
- •Meets 1.5° climate target
- \bullet Avoids controversial technologies (BECCS)
- • Completely different investment patterns:
	- •Low- or zero-energy buildings
	- •Transport-sparing settlement patterns
	- Public transit prioritized over cars
	- \bullet Resource-sparing as top priority

Grubler *et al.* 2018, *Nature Energy* **3**

Example: The SFS nexus of personal mobility in Vienna

Virág *et al.* 2021, *Environm. Develop* 10.1016/j.envdev.2021.100628

Conceptualizing services: the energy service cascade

SEC^E

Institute of Social Ecology

Kalt *et al.*, 2019. *Energy Research & Social Sciences* **53**, 47-58

Transforming the SFS nexus as part of provisioning systems

 SEC^{ω}

Institute of Social Ecology

Plank *et al.* 2021. *Ecol. Econ.* **187**, 107093.

The spiraling constriction of the sociometabolic corridor

Provisioning systems are built in several steps, each creating fixes that constrict future sociometaboliccorridors. How long the ensuing legacies last, depends on the durability of the infrastructures and institutions created.

Schaffartzik *et al.* 2021. *Sustainability Science*, doi.org/10.1007/s11625-021-00952-9

The Stock-Flow-Practice nexus

Fig. 1. The Stock-Flow-Practice nexus (SFP nexus). Own graph, based on the SFS nexus graph in Haberl et al. (2017).

Infrastructures and buildings in Austria outweigh trees by factor >2

Grafik: EOOS Next / Process Studios **Data**: Haberl *et al.* 2021, *Env. Sci. Tech.* **55**

Nexus approaches relating social metabolism to services and practices

The stock-flow-service nexus: services are derived from specific stock-flow combinations. Broadensconcepts of eco-efficiency.

The stock-flow-practice nexus: focused on interrelations betweenthe routines of everyday life and stock-flow constellations. Connects theories of practice with social metabolism thinking.

Both approaches provide heuristic models for analyzing the role of material stock patterns for (un)sustainability.

 SFC^{∞}

Institute of Social Ecology

Haberl, H., M. Schmid, W.Haas, D. Wiedenhofer, H. Rau, V. Winiwarter 2021. *Ecological Economics*, **182**, 106949. https://doi.org/10.1016/j.ecolecon.2021.106949

Conclusions

- **Construction of buildings and infrastructures** requires a major part of the physical resources used by societies
- $\overline{}$ The dissipative use of resources (energy!) is shaped largely by the **quantity, quality and spatial patterns of society's material stocks**
- $\mathcal{L}_{\mathcal{A}}$ Meeting **ambitious climate targets** will not allow any new long-lived (>8-10 years) structures locking societies into new GHG emissions, plus refurbishing all existing structures to zero-carbon standards in ~30 years
- \blacksquare As long as stocks grow, **full circularity is theoretically impossible**. Even if net additions to stock were zero, full circularity would still be thermodynamically impossible (downcycling & waste can't become zero)
- $\mathcal{L}_{\mathcal{A}}$ Alternative development models are needed in which a **good life requires much lower material stocks and resource flows, consistent with the need to reduce GHG emissions to zero** (or below)

University of Natural Resources & Life Sciences, Vienna

Department for Economic and Social Sciences Institute of Social Ecology

Helmut HaberlFridolin KrausmannDominik Wiedenhofer*et al.*

Schottenfeldgasse 29, A-1070 Wien helmut.haberl@boku.ac.at

Free data download:https://www.wiso.boku.ac.at/en/institut-fuersoziale-oekologie-sec/data-download/

11 1111

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 741950).

