
Future Trends in ICCT and its Applications in IT, Management and Education ISBN: 978-81-949961-8-7

August 26, 2022 doi: https://doi.org/10.5281/zenodo.7227163 Page : 10

Study of the Most Critical Security Vulnerability

of the Decade: Log4Shell
Santosh Pai

Research Scholar
College of Computer Science and Information Science

Srinivas University
Mangalore, India

ORCID ID: 0000000250531673

E-Mail: g.santoshpai@gmail.com

Dr. Srinivasa Rao Kunte R
Research Professor

College of Computer Science and Information Science
Srinivas University
Mangalore, India

ORCID ID: 0000000250621505

E-Mail: kuntesrk@gmail.com

Abstract—Traceability is one of the crucial features of a

software application. Logging is considered one of the essential

features supported by any software. Logging helps debug the

faults in the software by executing the erroneous flows in the

software. Log4j2 is a prevalent Opensource Logging Framework

created and maintained by Apache Foundation. Several popular

Java-based software applications depend on the Log4j2 library

for effective logging. Logging being a non-critical and non-

functional software requirement, the industry was not expecting

a Critical security vulnerability. Different security researchers

discovered five security vulnerabilities. Most of them are

dangerous and actively exploited vulnerabilities. Attackers

actively exploit some of these vulnerabilities. This paper

discusses the security vulnerabilities found in Log4j2 in

2021, popularly known as Log4Shell. The article also suggests

techniques to avoid such security risks.

Keywords— Log4j2, Log4Shell, Logging, Java.

I. INTRODUCTION

Modern Software applications are Cloud deployed. Cloud

adoption has several advantages such as Availability,

Reliability, Resilience, and Reduced Cost compared to

hosting a Data Center by the organization itself. However, a

significant challenge is debugging the application, as the

infrastructure is often not controlled by the application

creator. Logs are tools to identify software issues and

understand events leading to software issues. Traditional

logging involved creating text strings and storing them in the

file. There was a need to develop a standard logging library

to be re-used by other software applications. Log4j was born

to solve this problem for Java applications. Java being a

popular Object-Oriented programming language, Log4j was

adopted quickly after its general availability. Most of the

famous and widely used Java applications use Log4j for

logging. To further enhance the logging functionalities

provided, Apache Foundation launched Log4j2 in 2012. After

its initial proof of concept, the public release happened in

2014. It has revolutionized logging by providing several

features over the years. Log4j2 has done 48 releases since its

initial release in 2012.

II. LOG4SHELL

Chen Zhaojun, an employee of Alibaba Cloud,

discovered a security issue in the Log4j2 library [1]. They

reported the problem to Apache Foundation with the details

of the possible exploits. The Log4j2 team created tickets [2]

[3] to track the issue, and they immediately started to work

on it. Apache Foundation assigned a CVSS score of 10.0 to

the problem and publicly disclosed the case on Dec. 9, 2021

[4]. The vulnerability disclosure came with a workaround to

disable the faulty implementation and a fix to upgrade the

library to the latest version.
Some scholarly articles discuss Log4Shell. The papers

discuss the impacts and how one specific organization

overcomes the effect [5] [6] [7] [8]. We discuss Log4Shell

vulnerability impacts on the organization and the software

development lifecycle, specifically code commits and

releases.

III. WORKING PRINCIPLE

A threat exploits a security vulnerability. A threat actor is

performing actions to exploit a vulnerability. For an attacker

to safely execute the attack, many factors shall be in favor.

An attacker shall be able to trigger an attack with the least

cost and shall remain undetected by the security system

installed. Log4Shell does not require an attacker to

authenticate to the application, and hence it was both easy to

trigger the attack and stay undetected.

Triggering the attack requires the following steps [9].

1. Attacker sets up an LDAP Server.

Complexity: Simple steps taking less than an hour to

install and configure.

Cost: Opensource LDAP Servers are available

without any software license cost [10] [11]. System

perquisites of 384 MB RAM and Java 8 [12] are

basic configurations in a modern computer. The

attack does not need a specially designed computer.

2. The attacker sends a crafted message to the

vulnerable application.
Complexity: Message creation takes less than an
hour.
Cost: Attack is triggered using free tools such as curl
[13]. There is no associated software license cost.

3. The vulnerable application connects to the attacker's

LDAP server to download the malicious payload.

4. The vulnerable application executes the malicious

payload [14].

At this stage, the application is in the control of the

attacker. Figure 1 shows the attack steps.

mailto:santoshpai@gmail.com
mailto:kuntesrk@gmail.com

Future Trends in ICCT and its Applications in IT, Management and Education ISBN: 978-81-949961-8-7

August 26, 2022 doi: https://doi.org/10.5281/zenodo.7227163 Page : 11

Vendor Name
Count of impacted

Products

Thales 13

OxygenXML 12

Atlassian 11

Apache 10

IBM 10

Intel 10

Vendor Name
Count of impacted

Products

VMware 56

HPE 40

Siemens Healthineers 34

Lenovo 33

Cisco 30

Cloudera 30

Avaya 28

Philips 18

Schneider Electric 18

Fortinet 14

Splunk 13

FIGURE 1: LOG4SHELL ATTACK

Using this technique, an attacker could trigger different types

of attacks described below.

Remote Code Execution: The attacker can make the software

application download the commands from the attacker server.

The victim's computer executes the downloaded commands,

allowing a remote code execution opportunity [15].

Privilege Escalation: Applications on the victim server

execute as a privileged operation. Privileged operations can

perform administrative actions on the server, including

switching off other functions and rebooting the servers. An

attacker could execute privileged commands on the server via

the attacked application.

Denial of Service: Availability is one of the crucial

requirements for an application. Using the Log4Shell attack,

an attacker could slow down the victim server by overloading

the server with large computation commands. The server

starts to deny the requests from legitimate clients creating an

availability problem for the business.

IV. IMPACT OF LOG4SHELL

We used National Cyber Security Centrum, Netherlands
data to understand the impacted organizations. The data is
available as a text file in a publicly accessible GitHub
repository [16]. We converted the text file data into tables and
sorted them by the number of products impacted. The list has
98 vendors and 583 products. Table 1 indicates the vendor
with more than ten products affected due to Log4Shell.

TABLE 1. IMPACTED ORGANIZATIONS AND PRODUCTS

There are many other vendors and products not listed in
this. The public cloud service provider, Amazon Web Service,
has reported more than fifty impacted products and services in
their Log4j security advisory [17]. Google Cloud has
documented more than six services impacted [18]. McAfee
disclosed several products affected in their advisory [19], and
so did RedHat [20].

The vulnerability is impacting tech giants and their
products. The organizations create advisories and update them
regularly to provide the latest information to their customers.

V. ROOT CAUSE ANALYSIS

The technical community highly adopts Log4J. In 2013, a
feature titled "JNDI Lookup plugin support" was added to the
library [21]. A typical logging implementation would format
the user input and store it in a file or a database. The newly
added feature allowed the execution of the commands at the
server instead of logging it. The client can craft and submit the
malicious request to the server using simple HTTP requests
[22].

Log4Shell is the feature that allows the execution of
untrusted commands from external clients. The feature is
enabled by default, making all implementations vulnerable.

VI. LOG4SHELL MITIGATION

Contributors of the Log4j2 project and Apache Foundation
quickly published workarounds [23] and fixes for the exploits.
Log4j2 code is available as open source on Github [24]. Using
the known code and related code change history, we collected
data to analyze the impact of Log4Shell on implementation
changes in the code repository. Following sub-sections detail
each factor.

A. Time to fix

We collected data from the vulnerability disclosures and

corresponding code changes in the Log4j2 code base [25].

Table 2 details the vulnerability fix time. Time to Fix is the

days between public disclosure of the vulnerability by

Apache Foundation and the release of correction for the

vulnerability.

TABLE 2. VULNERABILITY TIME TO FIX

CVE Number Qualitative Score Time to Fix

CVE-2021-44228 Critical 9

Observations: It took nine days to fix the issue causing the

Critical vulnerability. The Apache Foundation had published

a workaround used by the organizations to protect their

applications from Log4Shell. Nine days look high

considering the critically of the issue. However, several

Future Trends in ICCT and its Applications in IT, Management and Education ISBN: 978-81-949961-8-7

August 26, 2022 doi: https://doi.org/10.5281/zenodo.7227163 Page : 12

factors that impact fixing a problem, including knowledge of

the codebase, re-producing the issues, testing all regression

cases, etc., are time-consuming. These are extremely

important to avoid breaking some other part of the software.

Overall, the Time to Fix for Log4Shell was handled well by

the contributors from Apache Foundation.

B. Size of Code Change

Another data collected on the vulnerabilities is the size of
change done in the code to remove the security issue from the
Log4j2 library. Table 3 indicates the number of files in the
code base modified by adding and removing new code blocks.
The changes are measured using the output obtained from the
code change history from the GitHub repository [25].

TABLE 3. CODE CHANGE SIZE

CVE Number
Qualitative

Score
Size of code change

 Number
of Files

Modified

Number
of Lines
Added

Number
of Lines
Removed

CVE-2021-44228 Critical 18 187 85

Observations: A security issue can cause harm at multiple
places in the implementation. The single Critical vulnerability
required modification to 18 files with more than 200 code line
changes. The community does not track the effort spent on
such activities, but we believe it was significant.

C. Commit History

We collected the commit history by cloning the repo [24]

to a Ubuntu Linux. The 12108 commits since the project's

inception were screened by Year and Month to obtain the

chart in Figure 2.

FIGURE 2: COMMIT HISTORY

Observations: There have been few commits since the

project's inception from 2010 to 2013. We observe a spike in

commits between 2014 and 2017. In 2014, Log4j was made

available for general use, and hence there is a spike in code

commits. Between 2014 and 2017, many features were added

to the library, making it rich in logging. The commits are

reduced and stable between 2018 to 2021. Around Nov 2021,

we observed a spike in commits. The spike indicates the

Log4Shell commits. Most of the commits were related to

Log4Shell Critical vulnerability. An increased number of

commits means increased test execution, code review, and

gating checks needed to ensure the quality of the code.

D. Release History

We took data from Apache Log4j2 releases from inception

to May 2022 as shown in Figure 3.

FIGURE 3: RELEASE HISTORY

It is evident that After 2014, the spike of four Releases

happened from Dec 2021 to Feb 2022 to remediate the
Log4Shell security issue. Table 4 maps the CVEs to releases.

TABLE 4. LOG4J2 RELEASE HISTORY

CVE Number Release Number Release Date

CVE-2021-44228 2.15.0 6-Dec-2021

CVE-2021-45046 2.16.0 13-Dec-2021

CVE-2021-45105 2.17.0 17-Dec-2021

CVE-2021-44832 2.17.1 27-Dec-2021

Observations: It took the Apache Foundation four releases to
fix the vulnerabilities in the Log4js library. For the first time
since its inception, Apache Foundation made four frequent
releases in a single calendar month. The release cycle indicates
how a security issue in the software can trigger unplanned
releases. Releases require efforts from different teams such as
the Development team, Test team, Integration team,
Performance test team, Release team, and Documentation
team. All the teams work hand to hand to create a successful
release.

VII. AVOIDING LOG4SHELLS

Based on the root cause analysis and mitigations provided
by Apache Foundation, the following are advisable to avoid
security vulnerabilities like Log4Shell. We have provided the
Pros and Cons of each approach.

1. Feature Control: The open-source libraries and
software creators can provide optional features
instead of making everything available by default.
Optional features can be enabled and disabled based
on the consumer requirement [26]. Feature flag
control avoids security vulnerabilities from the
optional features. In the case of events such as
Log4Shell, the consumer can disable the
functionality till the fix is applied.

Pros: Helps control the optional feature. Feature
flags can control the application or the library
functionalities and reduce the application's attack
surface.

Future Trends in ICCT and its Applications in IT, Management and Education ISBN: 978-81-949961-8-7

August 26, 2022 doi: https://doi.org/10.5281/zenodo.7227163 Page : 13

Cons: Requires administrative efforts to manage the
features across different applications. Granular
feature control adds the complexity of enabling and
disabling the features. More implementation to
control features could also create a more complex
application. The more complex application tends to
have security vulnerabilities.

2. Disable External Connections: At the server level,
the Administrator can set firewall rules to allow only
the applications expected to communicate with an
external network. Firewalls help avoid sending data
outside the network boundary. Some of the issues
have used this as a solution in the past [27].

Pros: Firewall rules are easy to configure. It does not
require a change in the application.

Cons: This would not be possible in some cases, as
the application might have use cases such as DNS
resolution or using third-party services. These cases
require external communication enabled at the server
level.

3. Whitelisting External Servers: Applications
communicate with configured servers. Any other
attempts to connect to an unknown server would fail.

Pros: Avoids communicating with the unknown
peer. Easy to create a list and add a new server to the
list.

Cons: Administration of the whitelist is an overhead.
A server added once will be trusted even if it changes
to an attacker-controlled server at a later point in
time.

4. Zero Trust Approach: In this approach, an external
server is always verified cryptographically before
starting the communication. Verifying the server is
possible using TLS [28] and is used by the browsers
to communicate with unknown servers.

Pros: Server verification is a widely used and
standard method and less prone to attacks.

Cons: Run time encryption and decryption signature
verification could lead to performance impacts on the
application.

VIII. OBSERVATIONS

Based on the analysis of the vulnerability and the

fixes provided, following are the observations.

1. Log4j is a popular logging application with rich

features and provides a better logging experience to

the users.

2. Log4Shell security vulnerability impacts most

popular software applications that use specific

versions of the vulnerable software library.
3. A novice attacker can exploit Log4Shell using

simple tools. There is no license cost involved in

using any of the tools.

4. Log4Shell attack had a significant impact on

different industry verticals such as Healthcare,

Telecom, and E-commerce.

5. Apache Foundation quickly provided the necessary

workaround and documentation to overcome the

attacks.

6. Log4Shell required unexpected code changes in the

community contributed repository. The changes

were published using new software releases.

IX. RECOMMENDATIONS

Open-Source Security is a broad topic, and Log4Shell is
one of the most critical security issues of the decade. Research
is required in open-source security to avoid introducing
security vulnerabilities in the software application.

ACKNOWLEDGMENT

We would like to thank Apache Foundation for detailed
documentation on the vulnerability. It has helped us gather
data to analyze the impact and identify the root cause of the
vulnerability.

REFERENCES

[1] “Log4j – Apache Log4j Security Vulnerabilities,” logging.apache.org.
https://logging.apache.org/log4j/2.x/security.html (accessed May 30,
2022).

[2] “[LOG4J2-3201] Limit the protocols JNDI can use and restrict
LDAP. - ASF JIRA,” issues.apache.org.
https://issues.apache.org/jira/browse/LOG4J2-3201 (accessed May
30, 2022).

[3] “[LOG4J2-3198] Message lookups should be disabled by default -
ASF JIRA,” issues.apache.org.
https://issues.apache.org/jira/browse/LOG4J2-3198 (accessed May
30, 2022).

[4] “Apache Releases Log4j Version 2.15.0 to Address Critical RCE
Vulnerability Under Exploitation | CISA,” www.cisa.gov.
https://www.cisa.gov/uscert/ncas/current-activity/2021/12/10/apache-
releases-log4j-version-2150-address-critical-rce (accessed May 30,
2022).

[5] R. Hiesgen, M. Nawrocki, T. C. Schmidt, and M. Wählisch, “The Race
to the Vulnerable: Measuring the Log4j Shell Incident,”
arXiv:2205.02544 [cs], May 2022, [Online]. Available:
https://arxiv.org/abs/2205.02544

[6] D. Everson, L. Cheng, and Z. Zhang, “Log4shell: Redefining the Web
Attack Surface,” doi: 10.14722/madweb.2022.23010.

[7] A. Jones, “Security Posture: A Systematic Review of Cyber Threats
and Proactive Security,” Senior Honors Theses, Apr. 2022, Accessed:
Apr. 27, 2022. [Online]. Available:
https://digitalcommons.liberty.edu/honors/1147/

[8] A. Rudolph, “What is Log4j and Why Did the Government of Canada
Turn Everything Off?,” policycommons.net, Jan. 2022, Accessed: May
30, 2022. [Online]. Available:
https://policycommons.net/artifacts/2327268/what-is-log4j-and-why-
did-the-government-of-canada-turn-everything-off/3087909/

[9] koz, “log4j-shell-poc,” GitHub, Jan. 28, 2022.
https://github.com/kozmer/log4j-shell-poc (accessed May 30, 2022).

[10] “OpenLDAP, Main Page,” www.openldap.org.
https://www.openldap.org/ (accessed May 30, 2022).

[11] “Welcome to Apache Directory — Apache Directory,”

directory.apache.org. https://directory.apache.org/ (accessed May 30,
2022).

[12] “1.3 - Installing and starting the server — Apache Directory,”
directory.apache.org. https://directory.apache.org/apacheds/basic-
ug/1.3-installing-and-starting.html (accessed May 30, 2022).

[13] “curl - Tool Documentation,” curl.se. https://curl.se/docs/tooldocs.html

(accessed May 30, 2022).

[14] "cyber struggle/L4sh," GitHub, May 26, 2022.
https://github.com/cyberstruggle/L4sh (accessed May 30, 2022).

[15] “Remote code execution zero-day exploit in Java logging library
(log4j2) | Synopsys,” Application Security Blog, Dec. 10, 2021.
https://www.synopsys.com/blogs/software-security/zero-day-exploit-
log4j-analysis/ (accessed May 30, 2022).

http://www.cisa.gov/
http://www.cisa.gov/uscert/ncas/current-activity/2021/12/10/apache-
http://www.openldap.org/
http://www.openldap.org/
http://www.synopsys.com/blogs/software-security/zero-day-exploit-

Future Trends in ICCT and its Applications in IT, Management and Education ISBN: 978-81-949961-8-7

August 26, 2022 doi: https://doi.org/10.5281/zenodo.7227163 Page : 14

[16] “Log4shell vulnerabilities (CVE-2021-44228, CVE-2021-45046,
CVE-2021-4104, CVE-2021-45105),” GitHub, May 28, 2022.
https://github.com/NCSC-NL/log4shell (accessed May 30, 2022).

[17] “Update for Apache Log4j2 Security Bulletin (CVE-2021-44228),”
Amazon Web Services, Inc. https://aws.amazon.com/security/security-
bulletins/AWS-2021-006/ (accessed May 30, 2022).

[18] “Apache Log4j 2 Vulnerability Security Advisory,” Google Cloud.

https://cloud.google.com/log4j2-security-advisory (accessed May 30,
2022).

[19] “McAfee Enterprise coverage for Apache Log4j CVE-2021-44228
Remote Code Execution,” kc.mcafee.com.
https://kc.mcafee.com/corporate/index?page=content&id=KB95091
(accessed May 30, 2022).

[20] “Red Hat Customer Portal - Access to 24x7 support and knowledge,”
access.redhat.com. https://access.redhat.com/security/cve/cve-2021-
44228 (accessed May 30, 2022).

[21] “[LOG4J2-313] JNDI Lookup plugin support - ASF JIRA,”
issues.apache.org. https://issues.apache.org/jira/browse/LOG4J2-313
(accessed May 30, 2022).

[22] A. Morag, “Threat Alert: Tracking Real-World Apache Log4j
Attacks,” blog.aquasec.com. https://blog.aquasec.com/real-world-
log4j-attacks-analysis (accessed May 30, 2022).

[23] “ED 22-02: Apache Log4j Recommended Mitigation Measures |
CISA,” www.cisa.gov. https://www.cisa.gov/uscert/ed-22-02-apache-
log4j-recommended-mitigation-measures (accessed May 30, 2022).

[24] “Apache Log4j 2,” GitHub, Mar. 22, 2022.
https://github.com/apache/logging-log4j2 (accessed May 30, 2022).

[25] “Commits · apache/logging-log4j2,” GitHub.
https://github.com/apache/logging-log4j2/commits/release-2.x
(accessed May 30, 2022).

[26] “FeatureHub Documentation :: FeatureHub Docs,” docs.featurehub.io.

https://docs.featurehub.io/featurehub/latest/index.html (accessed May
30, 2022).

[27] “Preventing SMB traffic from lateral connections and entering or
leaving the network,” support.microsoft.com.
https://support.microsoft.com/en-us/topic/preventing-smb-traffic-
from-lateral-connections-and-entering-or-leaving-the-network-
c0541db7-2244-0dce-18fd-14a3ddeb282a (accessed May 30, 2022).

[28] “RFC 5246 - The Transport Layer Security (TLS) Protocol Version
1.2,” Ietf.org, 2022.
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.2 (accessed
May 30, 2022).

http://www.cisa.gov/
http://www.cisa.gov/uscert/ed-22-02-apache-

	Paper 3.pdf (p.14-18)

