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Surrogate model performance results showing the overlapping pressure waveforms and the agreement
between the surrogate output and test dataset output when training the surrogate model on different outputs.
Sensitivity indices of a subset of input parameters, representing their contribution to the variance in
the pulse wave velocity, whilst having varying statistical dependency coefficients (Pearson correlation). In
the correlation is defined between various parameters that were expected to be correlated to a low extent. In

the correlation is defined between the aortic radius and length, which were expected to be highly -1 05 0o 0.5 I
correlated Statistical Dependency Coefficient p [

Conclusions

This study involved a methodology of two consecutive parts. The first part, the generation of the surrogate model, resulted in surrogate models that were able to
as that of the one-dimensional pulse wave propagation model. The surrogate models could

. In the second part, the sensitivity analysis was performed and the method, whilst assuming uncorrelated input
parameters, was benchmarked against the established agPCE method by Quicken et al.* Due to the immensely fast evaluation time, the correlated sensitivity analysis
could be , even though it required more than . The correlated sensitivity analysis showed that considering
correlations can significantly affect the computed sensitivity indices. Input parameters that are evidently correlated are affected to a higher extent than uncorrelated
parameters. Therefore, when performing sensitivity analysis within the field of cardiovascular biomechanics it is because they can
significantly alter the parameters their importance ranking and thus seriously affect your decision concerning input prioritization during model personalization.
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