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ABSTRACT
Computer game is a billion-dollar industry and is booming. Testing
games has been recognized as a difficult task, which mainly relies
on manual playing and scripting based testing. With the advances
in technologies, computer games have become increasingly more
interactive and complex, thus play-testing using human partici-
pants alone has become unfeasible. In recent days, play-testing
of games via autonomous agents has shown great promise by ac-
celerating and simplifying this process. Reinforcement Learning
solutions have the potential of complementing current scripted and
automated solutions by learning directly from playing the game
without the need of human intervention. This paper presented an
approach based on reinforcement learning for automated testing of
3D games. We make use of the notion of curiosity as a motivating
factor to encourage an RL agent to explore its environment. The
results from our exploratory study are promising and we have pre-
liminary evidence that reinforcement learning can be adopted for
automated testing of 3D games.
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1 INTRODUCTION
The video game industry continues to grow and is very compet-
itive [16]. Releasing excellent quality games and ensuring a top-
notch user experience is of utmost importance in such a competitive
environment.

Until recently game testing mostly relied on a manual or some
scripted approach. As games grow in size and complexity, testing
games using human participants or script based approaches face
difficulty. Moreover, the diverse characteristics of video games [2]
makes the design and development of a generic technique and
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tool for testing of relevant content and identification of potential
anomalies extremely challenging. Complementing play-testing via
autonomous agents seems to be promising as it has the potential
to accelerate game testing at scale & breadth. Even though there
is existing research toward developing automated play testing of
games, there is still a need for continued research addressing the
major difficulties [21].

One of the difficulties concerns achieving high coverage because
of the large combinatorial space of possible events and transitions,
which makes testing all possible scenarios time-consuming and
ineffective. Another difficulty is in achieving a wide range of ap-
plication functionalities, because some functionalities can only be
reached through a specific sequence of events. To exercise such
functionalities, we would need to deploy smart exploration strate-
gies that go beyond a simple random exploration, as is done in
random testing. While random testing is widely used in traditional
software testing, in the context of 3D games we would need a better
exploration strategy that can interact with the game intelligently.
The use of autonomous test agents comes in with an advantage
from this point of view. With the appropriate guidance and sup-
port, test agents have been shown to be effective in exploring 3D
games [9, 22, 24].

Model-based approaches present an effective alternative where
a formulation/modeling of game play testing is performed in such
a way that different strategies, e.g., search-based testing, can be
applied to generate tests automatically. In this case, high-quality
models are extremely important to achieve good results. However,
as is typical of model-based testing, producing such high-quality
models is by itself challenging.

On the other hand, Reinforcement Learning (RL) based approaches
have the potential to significantly improve automated game test-
ing as they have the capability of learning directly by interacting
with the dynamic and uncertain game environment without the
explicit need of modeling it. Recent research on RL in computer
games has mainly focused on constructing intelligent agents that
can adapt to the behavior of players and to dynamically changing
environments. RL agents have achieved great success in automated
game playing, starting from totally random trials and finishing with
sophisticated tactics and superhuman skills, including the ancient
board game Go [26], classic Atari games [15], multiplayer online
battle arena game Dota 2 [6], first-person shooter game [14], and
real-time strategy (RTS) game StarCraft II [30]. Inspired by this re-
markable result in game playing (also known as play testing), some
research work [10, 32] has investigated the potential of using RL
solutions beyond game play or play-testing, towards the direction
of coverage.
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In this paper, we focus on the suitability of using RL solutions for
automated testing and providing functional coverage of computer
games. The goal here is not to optimize a behaviour policy or obtain
sophisticated game play skills, but rather to deploy an agent that
learns how to advance in playing the game, and also to explore the
game environment. Both abilities, to explore and to learn to play,
are essential: with exploration, the agent will reveal enough game
area and functionalities leading to better coverage, and with the
ability to finish the game-play the agent will be skillful enough to
survive and eventually to further explore the game.

The use of RL algorithms in automated testing of complex 3D
environments (such as a 3D maze, first-person shooter game, real
time strategy game, multiplayer online battle game, etc.) is more
challenging than playing most Atari and board games as it involves
a vast amount of critical thinking, problem-solving, and path plan-
ning. Unlike board games where a single frame of the environment
provides an agent all the information needed to maximize its re-
ward, in these games, the imperfect information of the agent due
to its partial visibility of the environment makes efficient learning
non-trivial [30]. Moreover, the large state-action space, long time
span of the games, and delayed or sparse reward assignment pose
challenges to effective RL solutions. To address these issues, careful
attention is needed to represent states and actions and to define
effective reward mechanisms in the environment.

We have used a curiosity-based reward scheme that has the abil-
ity to become a powerful exploration mechanism to facilitate the
discovery of solutions for complex, sparse or long time span tasks.
Specifically, the scheme is beneficial in this context where we aim to
maximize the coverage. It is to note that defining a common notion
of coverage for 3D games itself is a difficult job due to the diverse
characteristics and complexity of games. Hence, recent research has
mainly focused on revealing larger game space with the assumption
that a good exploration indicates higher game space coverage and
also higher possibility of discovering anomalies [5, 10, 32]. In this
work, we concentrate on identifying coverage metrics significant
to provide functional coverage of a 3D maze game and the strategy
to measure them.

The approach is implemented in a prototype tool RLbT that ap-
plies the curiosity-based RL solution for automated testing of games
by maximizing coverage. Empirical evaluation is carried out by ap-
plying RLbT on a 3D game called Lab Recruits and comparing
the curiosity-based approach with a couple of alternative baselines.
Results are promising where the curiosity-based RL is effective in
achieving reasonable levels of coverage, in particular on larger and
complex game scenarios/levels.

The main contributions of this work is:

• an approach showing the feasibility of using RL in automated
testing of games with the aim of maximizing coverage (eval-
uation is performed through two research questions defined
in Section 5);
• publicly available artifacts (tool, data) that enable repro-
ducibility of results and facilitate further research.

The rest of the paper is organised as follows: Section 2 intro-
duces the running example used throughout the paper. Section 3
presents the background concept, Section 4 shows our proposed

Figure 1: Level buttonDoors in Lab Recruits.

reinforcement learning based approach in game testing. Experimen-
tal results are presented in Section 5 and related work is discussed
in Section 6. Section 7 concludes, and outlines future work.

2 ENVIRONMENT EXAMPLE
This section introduces Lab Recruits1, a 3D game developed for
experimenting with intelligent agents. Lab Recruits allows the
definition of mazes, a set of rooms and corridors connected by doors.
Each door is opened/closed by one or more buttons, and each button
activates one or more doors. Scenarios could further be enriched
by adding different furniture (e.g., tables) as well as simulating fire
hazards. The player’s goal is to find a path to reach a certain room
by opening doors in the correct order. The game can be played
by both humans and artificial agents [23]. Lab Recruits levels
are defined as csv (comma-separated value) human-readable files
allowing researchers to specify levels of variable complexity.

As a running example, Figure 1 shows a level of Lab Recruits
named buttonDoors. The level consists of three doors, door1,
door2, and door3, and four buttons, b0, b1, b2, and b3. Door door1
is activated by buttons b1, b2, and b3, while door2 and door3 are
connected only to b2. b0 is not connected to any door, therefore
pressing it has not effect in the game. The goal of the Agent agent1
is to reach the room marked with a star, and therefore to open
door3. A possible path requires agent1 to press b1 to open door1
and then b2 to open door3. Since b2 also acts on door1, at this
point agent1 is not able to reach door3, but need to traverse door2
and press b3 to open door1. Now, agent1 walks through door1
and door3, finally reaching the destination. Even if the layout of
the level is simple, the path to reach the final room is non trivial, in
particular for automated testing.

3 BACKGROUND
3.1 Reinforcement Learning (RL)
Reinforcement Learning [27] approach is amachine learningmethod
suitable for solving problems where the decision making is succes-
sive and the goal/objective is long-term. RL concerns about learning
the optimal behavior in an environment to obtain maximum re-
ward. This optimal behavior is learned through interacting with
the environment and observing of the responses/feedbacks. In RL,
the sequential decision-making problem is defined as a Markov
decision process (MDP) which is defined as a four-tuple (𝑆,𝐴,𝑇 , 𝑅),

1https://github.com/iv4xr-project/labrecruits
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where 𝑆 is a set of states, 𝐴 is a set of actions,𝑇 is a transition func-
tion (probability of transitioning from state 𝑠 to state 𝑠′ after taking
action 𝑎), R indicates the reward function 𝑅(𝑠, 𝑎) which specifies
the reward of choosing action 𝑎 in state 𝑠 .

3.2 Q-learning Algorithm
Q-Learning [31] is a value-based, model-free Reinforcement Learn-
ing algorithm that finds the optimal policy indirectly by training
a value or action-value function (i.e., Q-function) that knows the
value of each state or each state-action pair. The simple form of
storing the optimal Q-function is in a tabular form known as a
Q-table. The Bellman Equation [8] is used to determine/update
the value of an action in a particular state (i.e., the goodness of an
action). From state 𝑠 , a choice of an action 𝑎 leads to a new state 𝑠′
with a reward 𝑅(𝑠, 𝑎). The value function 𝑄 (𝑠, 𝑎) is updated using
the following equation which uses the current state, the reward
associated with that state, and, the maximum expected reward of
the new state for all actions. Discount factor 𝛾 determines the im-
portance of future rewards. The learning rate 𝛼 determines to what
extent newly acquired information overrides old information.

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + [𝛼 (𝑅(𝑠, 𝑎) + 𝛾max𝑄 ′ (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎))]

4 METHODOLOGY
Play testing involves finding a sequence of actions to achieve a
desired goal in the game. This can be framed as a reinforcement
learning task where an agent learns an optimal policy to achieve
its goal by trial-and-error to maximize the expected reward as a
result of its interaction with an unknown environment. Here, the
environment is what an agent interacts with (e.g., the game under
test), a state is the agent’s observation of the environment, the
action is a set of possible decisions that the agent can make in a
given state, and the reward is the feedback by which the success
or failure of an action can be measured with regard to achieving
some goal (e.g., reaching the treasure room, achieving points, etc.).

As mentioned in Section 1, use of RL solutions in play testing of
complex 3D environments (e.g., 3D maze as Lab Recruits game) is
challenging. The imperfect/partial information of the agent regard-
ing the environment complicates effective learning. For example,
in buttonDoors level (as shown in Figure 1) of Lab Recruits,
determining the state and reachable entities are based on the ob-
servation range and position of the agent, something that changes
constantly with the agent’s movements. At any time 𝑡 , an agent
only has partial information of the level according to its observation
range. Thus, the agent is not always immediately aware of the im-
pact of its action (i.e., a door is open due to the pressing of a button)
simply because the entity is out of its visibility range. In such a
context, there is a risk of not assigning a reward to a space-action
pair accordingly, which hinders the learning procedure.

Another key challenge is the large state-action space due to
the long time span and complexity of the game. To address this
issue, the definition of what comprises a state and an action in the
environment is significant. Specifically, abstractions are needed to
represent states in a complex game environment, but not to the
degree that we lose control and observability of the environment.
In some research work, states are defined as the 3D position of the
agent at a given point in time. Keeping track of these visit counters

on a continuous space, however, quickly becomes intractable. Here,
we propose to keep state space discrete by staying at a higher level
of abstraction while representing states and actions. Thus, a state
should consist of relevant features only; i.e., entities that can be
controlled/interacted by the agent and entities that can affect an
agent.

Delayed or sparse reward assignment is also a hurdle for effec-
tive use of reinforcement learning in many 3D game environments
where rewards extrinsic to the agent are extremely delayed, sparse,
or even non-existing. Usually, in environments with dense rewards,
the rewards are received fairly frequently during the training time,
making it easy to learn an optimal policy. While, in sparse reward
environments, rewards may only be received after many sub-goals
are completed, making it difficult or impossible for an agent to learn
an optimal policy based on the reward signals alone. For example,
in the buttonDoors level of Lab Recruits (Figure 1), an agent is
only rewarded if it reaches the room marked with a star. However,
that room is far away from the agent’s starting point, so most of the
rewards will be zero. As rewards act as feedback for the RL agent, if
it does not receive any, the knowledge of which action is beneficial
(or not) will not be updated and it will take much longer or forever
to learn an optimal policy. A common solution to this problem is
reward shaping/crafting meaning to make rewards dense and more
suitable for learning. However, reward shaping requires complete
knowledge of the environment. Hence, annotating each environ-
ment with hand-designed dense rewards is not scalable and generic.
One way of tackling this sparse reward problem is to use the notion
of an intrinsic curiosity, an agent’s natural desire to explore the
environment to understand how things work and reduce the uncer-
tainty about the environment [4, 19]. This tactic of using curiosity is
more generic as it can be applied to diverse environments. Here, we
have proposed to use curiosity as a motivating factor for the agent
to explore the environment. Along with the intrinsic reward an
agent receives from the game environment, we propose to provide
incentives to the agent for exploring new states while penalizing it
for exploiting previously visited states only. The notion of curiosity
encourages the agent to explore the environment which leads to
better coverage and at the same time helps to learn useful skills or
achieve environmental specific goals.

As it is extremely difficult to construct a sufficiently accurate
environment model for complex games, we have used Q-learning
algorithm, a model free RL strategy which is applicable in different
environments and can readily react to new and unseen states.

4.1 Curiosity based Q-Learning solution
This section details using RL algorithms in testing of Lab Recruits
and similar 3D games. We have used an agent based testing infras-
tructure [23] to interact with Lab Recruits, where the intelligent
agent can follow goal driven planning and reasoning which helps
it towards effective navigation in complex interaction space. Thus
we can rely on the navigation capability of the agent and provide it
with high-level RL goals (e.g., open door3) to solve.

We have used the Q-learning algorithm that intends to find the
optimal policy by training a action-value function containing the
value of each state-action pair. We have focused on using a tabular
Q-learning solution to keep the design simple. Such modeling is
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Entity Property
door1 id=door1, type=door, isOpen=false...
door3 id=door3, type=door, isOpen=false...
b0 id=b0, type=button, isOn=false...
b1 id=b1, type=button, isOn=false...

Table 1: A state from agent’s observation

not trivial, in particular, it requires special attention to reduce the
state space as well as consideration to ensure convergence of the
learning process which are described in the following subsections.

4.1.1 Representation of States and Actions. In defining a state of
Lab Recruits game we propose to stay at a high level of abstrac-
tion to limit the state space. Hence, a state in Lab Recruits game
environment is constructed from the agent’s observation of the en-
vironment at a certain moment. An agent has a visibility range and
its observation of the environment at time 𝑡 includes Lab Recruits
game features/entities according to the agent’s position and visi-
bility range. A state at time 𝑡 comprises a set of entities from the
agent’s observation including their properties. For example, the
buttonDoors level in Figure 1) contains 7 feature entities: three
doors, door1, door2, and door3, and four buttons, b0, b1, b2, and
b3. Each entity has some properties such as its type (e.g., entity
type, dynamic/static, interactable/not interactable, etc), status (e.g.,
position, velocity, etc), and history (e.g., change of status). In this
level, entities like buttons and doors have properties to indicate if
they are interacted with or not (e.g., for a button, property ’isOn’ is
false if it is not pressed, and for a door, property ’isOpen’ is false if it
is closed). From its current position (as in Figure 1), the agent (here,
name “agent1”) can only see door1, b0, b1, and door3. It cannot
see the entities door2, b2, and b3 as they are out of the visibility
range of the agent residing behind door1. At this point the state 𝑠
obtained from the agent’s observation of the environment is shown
in Table 1. Given a state 𝑠 , the set of possible actions for the agent
consists of the interactable entities such as buttons (e.g., a table
maybe present in the environment but it is not an interactable en-
tity). From the state 𝑠 in Table 1, the set of actions includes: {press
b0, press b1, check door1 status (open/closed), check door3 sta-
tus (open/closed)}. Executing an action leads to the next state. For
example, pressing b1 will open door1 and door2 and b3 will be-
come visible to the agent. Thus, this action will lead the agent from
state 𝑠 = ⟨b0(isOn = 𝑓 𝑎𝑙𝑠𝑒), b1(isOn = 𝑓 𝑎𝑙𝑠𝑒), door1(isOpen =

𝑓 𝑎𝑙𝑠𝑒), door3(isOpen = 𝑓 𝑎𝑙𝑠𝑒)⟩ to reach state 𝑠1 = ⟨b0(isOn =

𝑓 𝑎𝑙𝑠𝑒), b1(isOn = 𝑡𝑟𝑢𝑒), door1(isOpen = 𝑡𝑟𝑢𝑒), door3(isOpen =

𝑓 𝑎𝑙𝑠𝑒), door2(isOpen = 𝑓 𝑎𝑙𝑠𝑒), b3(isOn = 𝑓 𝑎𝑙𝑠𝑒)⟩. One thing to
note regarding the interaction with an interactable entity is that an
agent can only do that if the entity is physically reachable from its
current position.

4.1.2 Reward Function. Given an action that causes a transition
from state 𝑠 to 𝑠1, we formulate the reward proportional to the
transition’s novelty. Here, along with the intrinsic reward that the
agent receives from the environment, the agent is also provided
with incentives for its curiosity in exploring the environment. This
formulation of the reward function will help the agent not only to
figure out how to maximize the environment reward but also to be
curious about the environment. We provide a low and decreasing

reward (e.g., penalty) for revisiting previously explored states, while
a high reward is for reaching new areas or triggering new actions.
Therefore, we keep track of the game states that have been visited
by an agent and their frequency. The reward is computed based
on how distant the current observation is from the most similar
observation in the memory. The agent receives a higher reward
for seeing observations which are not yet represented in memory.
An agent is only considered to have entered a new state once
its dissimilarity to any previously visited state is larger than a
threshold. We have used the Jaccard coefficient [13] to measure the
similarity between states.

4.1.3 State similarity. A state in Lab Recruits game consists of
the observation of an agent at time 𝑡 . As the observation of the
agent relies on its position and visibility range, the agent rarely
sees the same state twice. For example, even if the agent returned
to the same room, it may see this room from a different angle
compared to an already stored state in the Q-learning table. Hence,
checking for an exact match could be meaningless. Also, making a
new state entry for each observation will soon make the Q-table so
large that it will take a long time to converge, i.e., to learn values
for each state-action pair. To this end, we adopt a state similarity
measure while updating the Q-table. When an agent gets a new
observation/state, instead of making a new entry, it first looks for
a similar existing state in the Q-table. In the case when a similar
state is observed in Q-table, the agent considers it as current state
and chooses action accordingly.

4.1.4 Q-learning algorithm. Though Q-learning an off-policy algo-
rithm, during the learning process, an agent may follow a learning
policy which leads towards an optimal policy. An agent may greed-
ily select actions based on the information that it has acquired,
i.e, performs what is known as exploitation. While exploitation is
useful, it could lead to premature results as the agent will be biased
by what it has observed and not be able to effectively explore the
environment. Hence, striking the right balance between exploration
and exploitation is crucial. Considering this, we have used Decayed
Epsilon-Greedy as the initial policy to balance exploration and ex-
ploitation. In particular, it allows the agent to explore more when
it does not have enough information about the environment, i.e., at
the beginning of the learning. Once the agent does gather enough
information for interacting optimally with the environment, the
policy allows it to exploit the information. The process is controlled
by the 𝜖 parameter which we set initially to a value and at each
episode we decay it by a factor, hence allowing the agent to ex-
ploit the knowledge it has learned so far. The decaying factor is
calculated by the number of learning episodes. The algorithm for
curiosity based Q-learning is presented in Algorithm 1 and 2. With
sufficient amount of training, the output of this algorithm is the
optimized Q-table that is the reference table for the agent to select
the best action based on the highest Q-value from a state.

5 EVALUATION
In this section, we present the exploratory experiment we carried
out to get insight into the feasibility of the proposed reinforcement
learning solution and the prototype tool RLbT which we used for
the experiments.
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Algorithm 1 Curiosity based Q-learning algorithm

1: Input : Learning rate, 𝛼 ∈ (0, 1], Discount factor, 𝛾 ∈ (0, 1],
Epsilon-greedy policy, 𝜖 ∈ (0, 1], numofEpisode, maxAction

2: Initialize Q table, 𝑄
3: decayfactor← 𝜖/numofEpisode
4: for each episode do
5: while not reached final destination or maxAction do
6: Observe current state 𝑆
7: Choose action 𝐴 from 𝑆 using learning policy
8: Execute action 𝐴, observe new state 𝑆 ′
9: Get reward, 𝑅 ← GetReward(S,A, S’)
10: Update Q table : 𝑄 (𝑆,𝐴) ← 𝑄 (𝑆,𝐴) + 𝛼 [𝑅 +

𝛾 max𝑎 𝑄 (𝑆 ′, 𝑎) −𝑄 (𝑆,𝐴)]
11: Set 𝑆 ← 𝑆 ′

12: end while
13: Set 𝜖 ← 𝜖 − decayfactor
14: end for

Algorithm 2 GetReward(S,A, S’)

1: Input : State 𝑆 , Action 𝐴, new State 𝑆 ′, statevisitthreshold
2: if 𝑆 ′ is final state then
3: Get Max reward
4: end if
5: if 𝑆 ′ is not final state then
6: Calculate similarity of 𝑆 ′ and 𝑆
7: Calculate visitcount of 𝑆 ′
8: Get reward for visiting new state or penalty for visitcount >

statevisitthreshold
9: end if

5.1 Prototype
The proposed approach is implemented in the prototype tool RLbT
relying on the BURLAP2 library for reinforcement learning. The
agent based testing infrastructure used to interact with Lab Recruits
is based on the openly available agent interface implementation3
which in turn relies on an agent programming library4 of the iv4xr
framework. Our implementation of RLbT is open source5.

5.2 Environment - Systems under test
We carried out our experiments on five levels of Lab Recruits
with different characteristics that allow us to get insight into the
applicability of reinforcement learning.
• buttonDoors: a small maze shown in Figure 1.
• 4-room: this level contains 16 buttons and 8 doors distributed
across 4 rooms. The layout of the level is in such a way that
the agent can fairly easily spot the buttons and eventually
observe their effects (i.e., doors that open/close) as well.
• 8-room: similar to 4-room but with eight rooms, hence in-
creasing the complexity in terms of the entities to be inter-
acted with. Here, 32 buttons and 16 doors are distributed
across the 8 rooms (see Figure 2). The goal is to open the

2http://burlap.cs.brown.edu/
3https://github.com/iv4xr-project/iv4xrDemo
4https://github.com/iv4xr-project/aplib
5https://github.com/iv4xr-project/iv4xr-rlbt

Figure 2: 8-room level of Lab Recruits

Figure 3: LargeMaze_1 level of Lab Recruits

door in the last room (the room at the far end opposite to
the agent position in Figure 2).
• LargeMaze_1: a randomly generated level where the number
of entities is comparable to 8-room (19 buttons and 14 doors
distributed across 14 rooms connected by long corridors)
but the physical space covered by the level is significantly
larger, as shown in Figure 3. This means that the agent needs
to travel a long distance to get from one entity to another.
This level poses a different type of difficulty to reinforcement
learning also because observing the effect of an action (e.g., a
button pressed) is difficult as the corresponding door that is
opened/closeds may not be immediately visible as it resides
in a different room across a long maze of corridors.
• LargeMaze_2: a randomly generatedmaze like LargeMaze_1
with 29 buttons and 19 doors distributed across 19 rooms.

5.3 Experimental Setup
The experiment aims to assess the feasibility of reinforcement learn-
ing for the automated testing of 3D games. Consequently, we for-
mulate the following research questions to guide our experimental
evaluation:

RQ1 - Suitability of RL how suitable is RL based approach for
automated testing of 3D games?

RQ2 - Coverage how suitable is RL for providing functional cov-
erage in the context of game testing?

To assess the feasibility and effectiveness of reinforcement learning
solutions in automated game testing and coverage, we compare
the proposed curiosity-based RL solution with two alternative
baseline solutions. First is sparse-reward RL, a classic RL approach
with only intrinsic sparse reward, where an agent receives positive
feedback only when it reaches its goal, otherwise nothing. The
second baseline approach is the pure random solution, where the
agent takes decisions randomly.

5.3.1 Parameter Settings. Several parameters control different as-
pects of RLbT. Some of the parameters are related to reinforcement
learning, and some are related to the SUT (Lab Recruits) and
the test agent used to interact with it. We have performed a set of
preliminary experiments to determine suitable values for some of
the important parameters. Based on the preliminary experiments,

http://burlap.cs.brown.edu/
https://github.com/iv4xr-project/iv4xrDemo
https://github.com/iv4xr-project/aplib
https://github.com/iv4xr-project/iv4xr-rlbt
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Parameter button
Doors

4-
room

8-
room

Large
Maze_1

Large
Maze_2

num. episodes 100 300 500 500 500
action per episode 40 80 120 130 130
cycles per action 20 60 90 90 90
initial 𝜖-value 0.5 0.5 0.5 0.5 0.5
learning rate (𝛼) 0.25 0.25 0.25 0.25 0.25
discount rate (𝛾 ) 0.6 0.6 0.6 0.6 0.6

Table 2: Parameter settings RL solutions

we selected parameter values that represent a reasonable trade-
off between effectiveness and efficiency without much loss in the
generalizability of RLbT. We report the values of the important
parameters used in our experiments in Table 2.

5.3.2 Experimental protocol. For both the RL solutions, Curiosity-
based and Sparse-reward, we train an agent over a level with iden-
tical parameter settings as presented in Table 2. After the train-
ing/learning period, a Q-Table is obtained containing all the state-
action pair values that the agent observed during the learning
process. After training, we performed a test game-play session on
a level of Lab Recruits, where the agent is guided by the Q-table
regarding the best action to take from a state to maximize reward to
achieve its goal. We have measured the performance and coverage
based on the results of the test game-play sessions. For the random
solution, we allow the agent to play the game for each level of
Lab Recruits for an identical number of episodes as mentioned
in Table 2. Here, the agent follows a random policy, thus choosing
an action randomly from any state.

5.4 Results
In this section, we present the results of our experiments. As stated
earlier, our experiments are exploratory and the results reported
here have to be interpreted accordingly. We first discuss the results
related to the goal oriented exploration followed by the coverage
oriented exploration.

5.4.1 Goal Oriented. With goal oriented exploration, the aim is to
learn the best way to achieve the specified goal in the game. For
the levels of Lab Recruits we used in our study, this translates
to activating a sequence of buttons that open various doors until
the specified target goal is reached, in our case a specific door is
opened. We have run the experiments on buttonDoors and 4-room
level. For buttonDoors the goal is to open door3 and for 4-room
level the goal is to open door16. It is noticed that the agent is able to
effectively learn the optimal sequence of actions needed to achieve
the goal. For example, in 4-room level the agent learns to reach the
destination within 4 action sequences.

5.4.2 Coverage Oriented. In this work, we have focused on pro-
viding functional coverage for 3D games. In our experiments, we
concentrate on identifying coverage metrics important for Lab
Recruits game and the approach to measure the quantitative value
of coverage achieved by our explorative agent.

• Entity coverage - percentage of observed/interacted enti-
ties (with all possible properties) in a level of Lab Recruits

Entity Properties
b0 pressed not-pressed
b1 pressed not-pressed
b2 pressed not-pressed
b3 pressed not-pressed

door1 open closed
door2 open closed
door3 open closed

Table 3: Properties of entities available in level
buttonDoors in Lab Recruits

Buttons Connecting Doors
b0 not connected
b1 door1
b2 door1 door2 door3
b3 door1

Table 4: Entities interaction in level buttonDoors in Lab
Recruits

game. For example, the buttonDoors level (as shown in Fig-
ure 1) of the Lab Recruits game features seven entities (i.e.,
three doors and four buttons). A door can be observed in
two statuses, thus having two properties Open and Closed.
A button can have two properties, pressed and not-pressed.
Table 3 presents the entities with all possible properties in
buttonDoors level of the Lab Recruits game. Hence, the
ratio of entity coverage for a level in Lab Recruits game is
measured by the entities observed by an agent during testing
with the total entities with all possible properties.
• Entity Connection Coverage- In a level of Lab Recruits
game, doors are usually connectedwith buttons. For example,
Table 4 presents connections between doors and buttons in
the buttonDoors level. This metric measures the ratio of
connection satisfies in a level.

With the coverage oriented mode, we aim to maximize the ratio
of entity coverage metric. In this mode, the RL agent is not geared
towards reaching a specific entity, but rather towards covering all
the entities in a level. For example, in coverage oriented mode in
buttonDoors level of Lab Recruits, the goal of the agent is to
cover entities shown in Table 3 with all their possible properties.
Measuring the coverage ratio in Lab Recruits game is not straight
forward. Particularly, measuring the quantitative value of Entity
Connection Coverage is difficult due to the partial observability
issue of the agent. To this end, we follow a probabilistic approach
to measure the Entity Connection Coverage ratio.

Figure 4 and 5 show the per episode entity coverage achieved
during the training phase for 8-room and LargeMaze_1 level. Note
that curiosity-based RL shows good coverage result in a small and
straightforward level like , while it shows significant improvement
in achieving entity coverage compared to sparse-reward RL and
random solution in LargeMaze_1 level.

We have run a test game-play session to measure the quantitative
value of coverage. The result is compared only between two RL
solutions as the test session is guided by the respective learned
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Figure 4: Per episode entity coverage on 8-room level

Figure 5: Per episode entity coverage on LargeMaze_1 level

Q-table. The random solution is not included here as there is no
learning process involved in random exploration. For the game-play
testing session we also use the same budget (i.e., action per episode,
and cycle per action) as training as shown in Table 2. Our goal
is to observe the coverage ratio obtained by both RL solutions in
limited budget. Coverage results obtained from our experiments
are presented in table 5. It is noticed that for a simple and small
level like buttonDoors both curiosity-based and sparse-reward RL
achieve high/full coverage. While curiosity-based has shown high
potential to obtain better coverage ratio in a large and complex level
like LargeMaze_1. Though both RL solutions obtain low coverage
for LargeMaze_2 level, this may be because the learning duration
was not enough to acquire an optimal Q-table.

Overall, with the results that we observed on the five levels of Lab
Recruits, we can confirm that the proposed approach for mapping
the game environment into a reinforcement learning problem is
promising. Given the fact that the reinforcement learning agent
does not have direct interaction with the game, but rather through
an autonomous test agent, and that the environment is partially
observable, the results obtained are quite encouraging and pave
the way for further experimentation with more complex levels of
Lab Recruits and eventually other 3D games with more complex
interaction spaces.

The proposed RL solution has the potential to discover inconsis-
tency and design issue that is valuable to the game designer. For

Environment/
Level

Curiosity
RL

Sparse Reward
RL

Entity
Cov

Connect
Cov

Entity
Cov

Connect
Cov

buttonDoors 100% 100% 100% 100%
4-room 100% 80% 60% 50%
8-room 92% 60% 80% 54%
LargeMaze_1 80% 50% 40% 37%
LargeMaze_2 55% 30% 40% 20%

Table 5: Coverage measure of difference levels of Lab
Recruits game

example, analyzing the log of the learning process, we have identi-
fied two issues related to the placement of a button and the logical
connection between a door and button in LargeMaze_2 level.

6 RELATEDWORK
There have been studies [1, 18] on the reinforcement learning so-
lution to automated test generation for Graphical User Interface
(GUI) applications. These studies demonstrate how to detect fatal
exceptions and achieve high code and activity coverage. To date,
a couple of studies have investigated the use of automatic explo-
ration techniques to maximize game state coverage. The authors
of [3] introduce a self-learning mechanism to the testing of a First
Person Shooter game using deep reinforcement learning (DRL).
The Wuji framework [32] employs an RL policy together with evo-
lutionary multi-objective optimization to encourage exploration
and high game state coverage in two commercial combat games.
[29] investigates the possibility of using RL for load testing video
games, i.e., to examine the game’s performance. [5] has used Deep
RL to increase test coverage,in particular, to find exploits, test map
difficulty, and to detect common problems that arise in the testing
of first-person shooter (FPS) games. Curiosity has been a subject
of research in Reinforcement Learning for a long time [4]. One of
the first attempts to consider reinforcement learning agents with
a sense of curiosity is [7, 19], where curiosity is formulated as
the error in an agent’s ability to predict the consequence of its
actions. The curiosity-powered agent learns how to interact with
the environment by curiosity alone and able to learn skills to finish
the game-play [11, 12, 17, 20, 25, 28]. Authors of [10] address the
problem of automatically exploring and testing 3D games using
RL. They use the notion of curiosity as a motivating factor for
the agents to learn the complex navigation mechanics required to
reach the different areas around the map, thus providing higher
state coverage.

7 CONCLUSION
We have presented an approach based on reinforcement learning
for automated testing of 3D games and results from an exploratory
experimental study we have carried out on Lab Recruits, a 3D
game. Our objective is to assess the suitability of reinforcement
learning for the purpose of testing 3D games by remaining at a
higher level of abstraction when defining the states and actions
of the reinforcement learning environment. To this end, we have
proposed a curiosity driven reinforcement learning approach with a
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reward mechanism that enables the reinforcement learning agent to
explore the space of interactions in the game. The reward function
encourages the discovery of previously unseen states and discour-
ages immobility and revisiting of already seen states. The results
from our exploratory study are promising in that we have pre-
liminary evidence that reinforcement learning can be adopted for
automated testing of 3D games. In our experiments we used a few
levels of Lab Recruits, hence the results are not generalizable
to a wider range of games. However the results shed light on the
potential of curiosity driven reinforcement learning for the purpose
of automated testing with a higher level of abstraction in the defi-
nition of states and actions. Furthermore, the proposed approach
could be easily adapted for testing of other 3D games, provided that
there is an implementation of the testing agent interface.

As part of our future work, there are a number of aspects that
we would like to work on, and some of them are currently ongoing.
We would like to explore further by applying RLbT to more levels
in Lab Recruits, and eventually apply it to other 3D games from
the real world, such as Space Engineers6. On the other hand, from
an empirical perspective, we would like to perform comparative
studies to assess the effectiveness of RLbT with respect to other
testing approaches applicable to 3D games (e.g., [9]).
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