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Abstract— Kinesthetic teaching allows the direct skill transfer
from the human to the robot and has been widely used
to teach single arm tasks intuitively. In the bi-manual case,
simultaneously moving both end-effectors is challenging due
to the high physical and cognitive load imposed to the user.
Thus, previous works on bi-manual task teaching resort to
less intuitive methods by teaching each arm separately. This
in turn requires motion synthesis and synchronization before
execution. In this work, we leverage knowledge from the relative
task space to facilitate a kinesthetic demonstration by guiding
both end-effectors which is more human-like and intuitive
way for performing bi-manual tasks. Our method utilizes the
notion of virtual fixtures and inertia minimization in the null
space of the task. The controller is experimentally validated
in a bi-manual task which involves the drawing of a preset
line on a workpiece utilizing two KUKA IIWA7 R800 robots.
Results from ten participants were compared with a gravity
compensation scheme demonstrating improved performance.

I. INTRODUCTION

Kinesthetic teaching is commonly utilized in literature for
tackling the problem of Learning by Demonstration (LbD).
It allows the human-teacher to physically interact with the
robot for demonstrating a desired kinematic behavior. The
main advantages of kinesthetic teaching come from its direct
nature, as the motion is demonstrated directly on the robot by
the human-teacher who physically interacts with it [1]. In this
way, no mapping of the motion is required for transferring
the kinematic skills, as opposed to other LbD methods, such
as when the human demonstrates the task with its motion
being captured by video and/or other external sensors, also
known as the correspondance problem [1], [2].

Kinesthetic teaching has been widely used for teaching
end-effector skills to single robotic manipulators [3]–[7].
However, in many tasks, a bi-manual solution is required
which allows a bigger workspace and an enhanced dexter-
ity/maneuverability owing to the redundant DOFs. To the
best of our knowledge there are no works that demonstrate a
bi-manual task in the relative space by simultaneously guid-
ing both arms. In [8] a bi-manual peg-in-hole is demonstrated
by manually guiding one arm in the relative space, while
the other remains static which may be impractical due to
the kinematic limits of the single robot structure. In [9],
[10], demonstration of the motion of each end-effector is
performed separately. In the reproduction phase, the demon-
strated motion segments have to be smoothly sequenced and
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synchronized to reproduce the overall demonstrated motions.
In all the above works the kinesthetic demonstration of a bi-
manual task does not involve the simultaneous guiding of the
two arms unless the relative pose is fixed as when showing
the transferring of a box rigidly grasped by the two arms [10].
Demonstrating the relative motion between end-effectors is
a more cognitively and physically demanding task than its
single arm counterpart, arising from the fact that the human-
teacher has to utilize both their hands simultaneously facing
high cognitive and physical load [11], particularly when the
task involves the contact between two parts.

Task knowledge has been used to assist the human-teacher
in demonstrating a single arm task involving contact via
virtual fixtures (VF) placed appropriately in the task space
[6], [7], [12]–[16]. Moreover, inertia minimization has been
utilized in redundant manipulators to reduce the effective
end-effector inertia during kinesthetic guidance [17]–[19].

In this work, we utilize VF based on the knowledge of the
workpiece’s geometry, inertia optimization and joint limit
avoidance to assist teaching of a bi-manual task involving
contact with the workpiece’s surface by simultaneously guid-
ing the two end-effectors. To the best of our knowledge this
is the first time a shared controller that achieves all these
objectives is proposed, theoretically justifying its passivity as
well as the satisfaction of the joint limits. We further demon-
strate how we can successfully teach such a task maintaining
contact with reduced teaching duration and physical load.

II. PROBLEM FORMULATION AND CONCEPT SOLUTION

Let us consider the kinesthetic teaching of a bi-manual
task to a robot possessing two manipulators. In order for the
human to kinesthetically demonstrate the motion to the robot,
the parts involved in the task e.g. a workpiece and a tool, are
already firmly grasped by the robot’s manipulators and the
human has to grab the robot’s end-effectors with both their
hands and physically guide the robot. If the arms are only
under gravity compensation, the human has to account for
the task constraints and joint limits while being affected by
disturbances mainly from the unmodelled robot dynamics.
We address the problem of controlling the bi-manual robot
in such a way so that the user is facilitated in their task by
reducing their cognitive and physical load.

In many applications, knowledge of Relative Task Con-
strains (RTC) is available as they can be defined by the CAD
models of the parts involved in the task. Such constraints,
for example, can be defined for a process that is performed
at the upper surface of a workpiece with known CAD model,
where a tool must be in orthogonal contact with the surface.
Rather than planning a trajectory in a complex space, i.e.



on the surfaces of curved objects, which is a difficult and
time-consuming task, a trajectory may be demonstrated by
a user and encoded in a DMP from a single demonstration
allowing spatial generalization, for example in size variants
of the workpiece.

Given the availability of such a knowledge, we propose
the utilization of two VF signals for reducing the human’s
cognitive load, so that they do not have to consciously
account for the satisfaction of the task and joint constraints.
They are based on two different artificial potentials: a) a task
VF for facilitating the user and b) barrier VF in the joint
space to ensure the evolution of the robot’s joint positions
within their limits. The task VF facilitates establishing and
maintaining contact between the workpiece and the tool,
within the limits of the former, by a high stiffness attractive
potential.

Furthermore, the reduction of the physical load of the
human is addressed by the on-line minimization of the
inertial forces between the human and the robot along the
allowable directions of motion with respect to the task. This
optimization signal exploits the redundant DOFs of the bi-
manual robot, as it is projected into its relative dynamic null
space in order to not affect the relative task.

A. Kinematics and dynamics of the shared control system

Consider a bi-manual robot setup with each robot having
n-DOFs and q = [q⊺

1 q⊺
2 ]

⊺ ∈ R2n being its joint variables.
Let xi(q) ≜ [pi(q)

⊺ Qi(q)
⊺]⊺ ∈ T, for i = {1, 2}, be

the end-effector pose of the first and second manipulator
respectively, where T ≜ R3 × S3 ≡ SE(3), with pi ∈ R3

being the position and Qi = [ηi ϵ⊺i ]
⊺ ∈ S3 being the

orientation represented by a unit quaternion, while ηi ∈
[−1, 1] is the scalar and ϵi ∈ R3 the vector part of the
quaternion. The joint space equations of motion of the 2n-
DOFs bi-manual robot with gravity compensation and shared
control is described by:[
H1 0
0 H2

][
q̈1

q̈2

]
+

[
C1 0
0 C2

][
q̇1

q̇2

]
=

[
J1 0
0 J2

]⊺[
F1

F2

]
+

[
u1

u2

]
, (1)

where qi ∈ Rn with i = {1, 2} is the vector of joint
positions, Ji(qi) ∈ R6×n is the robot Jacobian, Hi(qi) ∈
Rn×n is the positive definite inertia matrix, Ci(qi, q̇i) ∈
Rn×n is the Coriolis and centripetal matrix, with Ḣi − 2Ci

being skew symmetric, Fi ∈ R6 is the human generalized
force applied to the i-th end-effector during the kinesthetic
teaching and ui ∈ Rn is the control signal to be designed
in order to facilitate the human in teaching the task. Let
u = [u⊺

1 u⊺
2 ]

⊺ ∈ R2n be synthesized by a task space signal,
a joint space signal and a dynamic null space signal, which
are combined as follows:

u = J⊺
R(q)uR + uJ + uN , (2)

where uR ∈ R6 is the relative task space control signal
that renders the VF for RTC enforcement, uJ ∈ R2n is a
control signal that renders the VF for joint limit avoidance,
uN ∈ R2n is a control signal for the minimization of the
inertial forces experienced by the user, and JR ∈ R6×2n

is the relative task space Jacobian of the two end-effectors
which is given by:

JR ≜

[
R⊺

2 0
0 R⊺

2

][
I6 −

[
I3 −S(p21)
0 I3

]][
J1 0
0 J2

]
(3)

and is expressed with respect to the second end-effector
that holds the workpiece with R2 ∈ SO(3) being the
rotation matrix of the orientation of the second end-effector
and S(p21) the skew-symmetric matrix of the displacement
vector between the two end-effectors p21 = −p2 + p1.

Let xR(q) ≜ [pR(q)
⊺ QR(q)

⊺]⊺ ∈ T be the relative pose
between the two end-effectors, where pR = R⊺

2(p1 −p2) ∈
R3 is the relative translation, QR = Q2Q1 = [η ϵ⊺]⊺ ∈ S3
the unit quaternion of the relative orientation Q2 denoting the
quaternion conjugate of Q2. The mapping from the relative
velocity of the end-effectors vR ≜ [ṗ⊺

R ω⊺
R]

⊺ ∈ R6, with
ṗR,ωR ∈ R3 being the relative linear and angular velocity
respectively, to ẋR is

ẋR = Jv(xR)vR, (4)

with Jv(x) ≜ diag
(
I3,

1
2JQ(Q)

)
and JQ(Q) ≜[

−ϵ ηI3 + S(ϵ)
]⊺ ∈ R4×3.

B. Relative Task Constraint

Let xc(σ) denote a parametric expression of the valid
poses of the 1st manipulator, i.e. x1, with respect to the
frame of the end-effector of the 2nd manipulator according
to the RTC:

xc(σ) ≜

[
pc(σ)
Qc(σ)

]
: Rm → T, (5)

where σ ∈ Rm is the vector of minimum required parameters
to describe the RTC and m ≤ 6 the RTC DOFs. Such
constraints in the form of parametric expressions can be
easily extracted by the CAD model of the parts; for instance
for m = 1 the motion is constrained on a curve which
can be defined by a B-spline and for m = 2 the motion
is constrained on a surface which can be defined by Non-
uniform Rational B-splines (NURBS), which are commonly
used expressions in CAD design. Examples of such paramet-
ric expressions can be found in [12].

The allowable directions of motion, are determined by
the columns of the following matrix, which involves both
translation and orientation:

Jc(σ) ≜

[
I3 0
0 2JQ(Qc(σ))

⊺

]
∂xc(σ)

∂σ
∈ R6×m. (6)

Notice that by formulating the task geometry with respect to
the moving end-effector frame that holds the workpiece, the
RTC remains static in the relative space.

III. PROPOSED CONTROLLER

A. Virtual fixture for RTC

To assist the human-teacher by communicating the di-
rections towards the satisfaction of the RTC, we propose
the utilization of penetrable VF initially proposed in [7] for
a single robot. In the bi-manual kinesthetic teaching task,



the VF are not fixed with respect to the inertial frame but
are utilized in the relative space and the control action is
distributed in both robotic manipulators using the relative
Jacobian (2), (3). In particular, the VF are enforced by the
control action (i.e., uR) which generates attractive forces
for both end-effectors towards the nearest relative pose that
belongs to the set xc.

Let the actual relative pose be xR, which can be calculated
from the pose of each end-effector x1 and x2. For calculating
the control action, the closest pose in the RTC set from xR
has to be found at every control cycle. To achieve this, one
has to solve online the following optimization problem and
then calculate xc(σ

∗):

σ∗ = argmin
σ∈Ωσ

ϕ(xR,xc(σ)) (7)

where
ϕ(xR,xc) ≜

∥ep∥2

r2
+

∥eo∥2

s2
, (8)

is a generalized metric between the two poses xR =
[p⊺
R Q⊺

R]
⊺ and xc = [p⊺

c Q⊺
c ]

⊺ with ep ≜ pR − pc
and eo ≜ Im(QcQR) is the vector part of the quaternion
difference, r, s ∈ R+ constant positive weights, ∥.∥ denotes
the Euclidean norm while Ωσ denotes the rectangular region
of the parametric space. Notice that by selecting s = sin θ2
with θ being a positive parameter, ϕ < 1 if and only if
∥pR − pc∥ < r and the angle between the two frames is
less than θ. Assuming the local convexity of (7) and given
the smoothness of xc(σ) by construction, (7) can be solved
on-line by the gradient descent law:

σ̇∗ ≜ −kg
∂ϕ(xR,xc(σ))

∂σ

∣∣∣∣
σ=σ∗

. (9)

The task VF is built upon the notion of artificial potentials.
This means that the control action is computed by the
gradient of a scalar potential function of the relative pose.
In particular, the control action is calculated by:

uR = −J⊺
v(xR)

∂U(xR,xc(σ
∗))

∂xR
−DvR, (10)

with D ∈ R6×6 being a positive definite damping matrix
introducing the active damping and U(xR,xc(σ)) : T×T →
R+ being the potential function. The following potential
function similar to [7] is utilized:

U(x,xc(σ)) ≜ kpf

(
∥ep∥
r

)
+ kof

(
∥eo∥
s

)
, (11)

where kp, ko ∈ R>0 are tunable gains and f(x) : R≥0 →
R≥0 is the following C1-smooth function shown in Fig.1a:

f(y) ≜

{
(3− g)y2 + (g − 2)y3, if y < 1

g(y − 1) + 1, if y ≥ 1
, (12)

with g ∈ (0, 3]. Its derivative ∂f(y)
∂y is proportional to the

force and torque magnitude transmitted to the user. Notice
that the specific selection of U distinguishes the relative
task space in two regions, the "high stiffness" and the free
space region based on the distance from the RTC set. The
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Fig. 1: Artificial potentials utilized for the VF signals.

parameters r and s define the boundary between those two
regions for translation and orientation respectively. In free
space for y > 1, ∂f(y)

∂y is constant and equal to g, which
corresponds to a relatively small constant force magnitude
so that the user is able to freely move the end-effectors at
the beginning and the end of the kinesthetic teaching while
being aware of the direction in which the RTC set lies. In the
high stiffness area the forces transferred to the user facilitate
the user in satisfying the RTC constraints.

B. Virtual fixtures for joint limit avoidance

Joints limits are also constraints that the user should be
aware of when manually guiding the robot. We propose
the utilization of VF in the whole joint space. These VF
together with the task VF may introduce local minima in the
relative space. However, such a problem did not occur in our
experimental evaluation. This may be attributed to the robot’s
high redundancy with respect to the relative task DOFs.

Assuming symmetrical joint limits, the control signal uJ
for each joint (j = 1, 2, ..., 2n) is given by:

uj = −kdq q̇j

−

{
kq

sign(qj)(qj−|qj |−d0)
ψjd20

ln(ψj), if |qj | > qj − d0

0, if |qj | ≤ qj − d0
,

(13)

where

ψj(qj) ≜ 1−
(qj − |qj | − d0)

2

d20
(14)

with kq, kdq being positive gains, d0 defining the activation
distance from the joint limit respectively and qj and qj
the current joint position and joint limit absolute values
respectively. The sign of the second term of (13) becomes
negative when approaching the upper joint limits and positive
when approaching the lower joint limits. This signal (13) is
derived from the artificial potential function shown in Fig.1b
and which is given by:

VJ(q) ≜ kq

2n∑
j=1

1

4
ln2 (ψj(qj)) . (15)

This is a positive continuously differentiable scalar function
for all (qj − |qj |) ∈ R+, V and ∥ ∂V∂qj ∥ approaches ∞ if and
only if (qj − |qj |) → 0, V and ∥ ∂V∂qj ∥ is zero if and only if
qj − |qj | > d0, and consequently uj = 0.



C. Passivity proof of VF control and satisfaction of the joint
limit constraints

Let v = [v⊺
1 v⊺

2 ]
⊺ ∈ R12 be the vector of generalized

velocities of the two end-effectors vi ∈ R6, i = 1, 2 and
Fh = [F⊺

1 F⊺
2 ]

⊺ ∈ R12 be the vector of generalized external
forces applied to each end-effector Fi ∈ R6, i = 1, 2.

Theorem 1: For the closed loop system (1), (2), (10) and
(13), with uN = 0, the following statements are true:

1) The system is strictly output passive with respect to
the end-effectors velocities v, under the exertion of the
interaction force Fh.

2) The evolution of the joint positions will always belong
to the hyper-rectangle defined by the joint limits, i.e.,
q(t) ∈ Ω,∀t, where Ω ≜ {q ∈ R2n : |qi| < qi,∀i =
1, 2, ..., 2n}, given any q(t0) ∈ Ω, under the exertion of
a bounded interaction force Fh applied by the human.
Proof: For the closed loop system, consider the follow-

ing storage function:

V ≜
1

2
q̇⊺Hq̇+ U(x,xc(σ

∗)) + VJ(q), (16)

where H = diag(H1,H2). Notice that VJ(q) = +∞ if and
only if q ∈ ∂Ω. Utilizing (9), the time derivative of the
potential function U(x,xc(σ

∗)) is:

U̇(x,x∗
c) = ẋ⊺ ∂U(x,x∗

c)
∂x − kg

(
∂ϕ
∂σ

∣∣∣
σ=σ∗

)⊺
∂U(x,x∗

c)
∂σ∗ (17)

with x∗
c = xc(σ

∗). Assuming that the nearest pose is found
within a control cycle, the second term of (17) is 0, as
∂ϕ
∂σ

∣∣∣
σ=σ∗

= 0 at each control cycle. Thus, the following
result holds for the time derivative of (16) by taking into
account ẋR = JvvR and v = Jq̇:

V̇ = v⊺Fh − q̇⊺ (kdqI+ J⊺
RDJR) q̇ (18)

with kdqI + J⊺
RDJR being positive definite and thus the

system is strictly output passive. By completing the squares,
(18) becomes:

V̇ ≤ q̇⊺J⊺Fh − λDq̇
⊺q̇

≤ −∥
√
λDq̇− 1

2
√
λD

J⊺Fh∥2 +
1

4λD
∥J⊺Fh∥2

≤ 1

4λD
∥J⊺Fh∥2,

(19)

with λD ≜ λmin(kdqI + J⊺
RDJR) ∈ R>0 denoting the

minimum eigenvalue, while J = diag(J1,J2). Integrating
(19), we get:

V (t) ≤ V (t0) +

∫ t

t0

1

4λD
∥J⊺Fh∥2dt,∀t > t0, (20)

which means that V (t) will be bounded, given that the force
applied by the human is of bounded energy. Thus, due to
(16), the joint positions will never reach their limits, when
starting within Ω.

D. Null space inertia minimization

To reduce the physical load that the user experiences
during manual guidance we propose the reduction of the
interaction forces by means of minimizing the effective
inertia of the manipulator along the directions of motion
defined by the RTC. The cost function to be minimized
consists of the weighted sum of two metrics, namely ct(q) ∈
R+ and cω(q) ∈ R+, which are related to the effective inertia
in the relative task space along the directions of the RTC in
translation and orientation respectively. In particular, the cost
function is defined as:

c(q) ≜ κcv(q) + λcω(q), (21)

where κ, λ ∈ R+ the constant weights for translation
and orientation respectively. The metrics cv(q), cω(q) are
determined based on the pseudo-kinetic energy matrices [20]
of the manipulator and are given by:

ci ≜ det
(
Ti(xc(σ

∗))⊺Λ−1
R,i(q)Ti(xc(σ

∗))
)−1

, (22)

where i = {v, ω} and Ti ∈ R3×mi a matrix whose columns
form an orthonormal basis which spans the column space
of the translational (i = v) and rotational (i = ω) part
of Jc, with mi being the DOFs involved in translation
and orientation part of the RTC separately, while ΛR,i =
(JR,iH

−1J⊺
R,i)

−1 are the respective relative space pseudo-
kinetic energy matrices. The metric (22) describes the ef-
fective mass/inertia towards the unconstrained directions of
the task. Taking the negative gradient of the inertia metric
(21) in the configuration space, i.e. − ∂c

∂q , and performing
gradient descent, a local minimum of the effective inertia
metric can be reached. In order to minimize (21) without
affecting the task, the redundancy of the manipulator is
exploited by projecting the gradient of (21) into the dynamic
relative null space using the dynamic relative null space
projection matrix given by: NR = I − J̄RJR, with J̄R =
H−1J⊺

R(JRH
−1J⊺

R)
−1 being the dynamic relative Jacobian

pseudoinverse. Projecting the optimization signal into the
relative null space, instead of the individual end-effector null
space, induces generalized forces in the absolute space that
guide the user to an improved pose with respect to the task.

Moreover, to avoid high values of the metric gradient
along the joint space domain, a smooth saturation function
of the form fsat(y) ≜ τ tanh

(
∥y∥
τ

)
y

∥y∥ is used to limit the
optimization signal to safe levels, where τ ∈ R+ is the bound
of the torque norm for a given y ∈ Rn. The null space
projected torque is then given by:

uN = N⊺
R

(
−fsat

(
kc
∂c

∂q

)
− kdHq̇

)
, (23)

where the damping term −kdHq̇ ensures that
−kdq̇⊺N⊺

RHq̇ ≤ 0 and thus it is dissipative [21].
Remark 1: To ensure passivity of the closed loop system,

consisted of (1), (2), (10), (13) and (23), one could utilize the
notion of energy tanks similarly to [7]. In this case, a portion
of the dissipated energy of the closed loop system could have
been considered to be stored in an energy tank, which in turn



would allow the inertia optimization to be performed when
it is not depleted.

IV. EXPERIMENTAL RESULTS

To validate and evaluate the performance of the proposed
controller, drawing over a marked path on a curved work-
piece with a marker, as seen in Fig.2b, is considered. This
task has similarities with common industrial tasks, such as
welding, milling, finishing, etc. Two KUKA IIWA7 R800
robots have been utilized for this experiment. The workpiece
is attached to the left arm while the marker to the right
arm as seen in Fig.2. In order to properly draw a line on
the workpiece, the user has to maintain orthogonal contact
with the surface of the workpiece. Three parameters are

(a) Marker tool (b) The considered drawing task.

Fig. 2: Experiment. The users were asked to kinesthetically guide
the marker tool to draw from p0 (blue) to pf (red) over the black
line on the workpiece. Arrows denote the normal vectors.

sufficient to describe the RTC. The parametric expression
describing the external surface of the workpiece is given by:
pc(σ1, σ2) = [r(σ1) cos (π − σ2) σ1 r(σ1) sin (π − σ2)]

⊺,
where r(σ1) = 0.075− σ1 tan(π/18), and the following for
orientation Rc(σ2, σ3) = Ry(π/2 + s2)Rx(π/18)Rz(σ3)
in rotation matrix form. The physical interpretation of
σ1, σ2, σ3 can be seen in Fig.3. The bounds in translation

Fig. 3: The object utilized for the experiment, with its upper surface
representing the spatial constraint.

and orientation for the VF, i.e., for (11), are selected to
be r = 0.02m and θ = 0.174rad respectively. The control
parameters are set to kp = ko = 0.5, D = 0.5I6, g = 0.1
for (12). The joint limit avoidance control parameters are set
to kdq = 0.001, kq = 0.15 and d0 = 0.0698rad. The joint
limits are q = [170 120 170 120 170 120 175]o for each arm.
For the null space inertia optimization the parameter values
are: κ = 20, λ = 300 for (21) and kc = 2.0, kd = 0.01

for (23), while the commanded signal norm is saturated at
τ = 4Nm. The control cycle is 2ms.

We compare the proposed framework with a gravity com-
pensation controller (GC) with the damping elements of the
proposed controller for a fair comparison i.e. kc = kp =
ko = 0 in (11) and (23). The joint limit avoidance signal
(13) is also enabled in GC. Furthermore, an audio feedback
is played to warn the user that the angle of the marker tool
and the normal to the RTC is outside the desired region, i.e.
∥eo∥ > 0.087rad, and the line is not properly drawn. Ten
participants have been asked to do a single demonstration
of the task, i.e. drawing on the marked path seen in Fig.2b,
using the proposed methodology and the gravity compensa-
tion controller. Two ATI mini40 F/T sensors mounted on the
wrists of the manipulators have been used to measure the
forces exerted by the users at the end-effectors. Before the
demonstration, the users did one test run with the proposed
and the GC methods in order to familiarize themselves with
the task. The initial robot configuration was the same for
all users, but variability between users resulted in different
robot configurations at the time of initial contact of the
tool with the workpiece. The total demonstration time, the
energy exchanged between the human and the robot (E), the
energy transmitted from the user to the robot (E+), the mean
distance of the marker tool from the RTC (µ(||ep||)) and the
mean angle between the marker tool and the normal to the
RTC vector (µ(||eo||)) were considered as evaluation criteria,
since they reflect the physical and cognitive load, and how
well the user executes the task, i.e. respects the constraints.
The measurements were logged from the moment the marker
makes contact with the workpiece until it reaches the end
of the marked path, i.e. p0 and pf in Fig.2b, respectively.
Notice in Fig.2a the head of the marker is flat, consequently
even a slight error in position or orientation would result in
contact loss and a partially drawn line. Fig.4 shows a boxplot
of the percentage change between the metrics of GC and
the proposed method, e.g. for the total energy Ep−Egc

Egc
100%

where Ep and Egc are the total energy measured in the
proposed approach and GC respectively. Apart from E+,
all the metrics demonstrate statistical significance, i.e. p <
0.05 on a paired t-test. All but one participant showed

Fig. 4: Improvement achieved by the proposed controller wrt GC.

improved times, E and µ(||eo||), while all participants had
improved µ(||ep||) with the proposed approach, and only
two participants had increased the energy transferred from
the user to the robot during their demonstration (E+). In



particular, with our approach the total demonstration time
was on average 24.6% lower compared to the GC with
a median reduction of 30.6% among the subjects, while
the total energy was on average 21% lower with a median
reduction of 24.5%. The VF for guidance, enforcing the
RTC, has improved the deviation from the surface and the
normal angle, reducing the error on average by 55.3% and
55.8% respectively. Results indicate that the cognitive and
physical load decreases, leading to increased efficiency and
accuracy during demonstration. Notice in Fig.5 the elbow of
the left robot arm being lower with the proposed method as
compared to the GC to minimize the inertia metric. A typical
time evolution of the inertia metric during demonstration is
depicted in Fig.6, showing improvements for the duration of
the demonstration. Similar results were observed for all other
participants. Finally, throughout all the experiments, the joint
limits were not violated due to the action of the joint limit
avoidance signal.

(a) [GC] (b) [Proposed]

Fig. 5: Snapshots of the experiment. The left elbow moves lower
in the proposed approach decreasing the effective inertia.
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Fig. 6: Typical time evolution of the inertia metric.

V. CONCLUSIONS

In this work the problem of assisting the kinesthetic teach-
ing of a bi-manual task with known workpiece geometry
is addressed. The proposed control scheme combines the
enforcement of task and joint limit VF as well as the null-
space minimization of the effective inertia along the task
DOFs. Experimental results with ten users show significant
improvements in all the evaluation metrics as compared
to the gravity compensation method. Future work includes
further evaluation in challenging bi-manual tasks, like two-
part assembly.
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