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ABSTRACT 
This deliverable describes the development of communication protocols and security procedures for 
IoT data processing and secure real-time data stream pipelines from physical data sources (devices, 
sensors, and actuators). This deliverable also covers the development of data fusion algorithms 
necessary for collecting, processing combining and fusion of data and information from multiple 
sources and services.
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ASHVIN PROJECT 
ASHVIN aims at enabling the European construction industry to significantly 

improve its productivity, while reducing cost and ensuring absolutely safe work 

conditions, by providing a proposal for a European wide digital twin standard, an 

open source digital twin platform integrating IoT and image technologies, and a 

set of tools and demonstrated procedures to apply the platform and the standard 

proven to guarantee specified productivity, cost, and safety improvements. The 

envisioned platform will provide a digital representation of the construction 

product at hand and allow to collect real-time digital data before, during, and after 

production of the product to continuously monitor changes in the environment and 

within the production process. Based on the platform, ASHVIN will develop and 

demonstrate applications that use the digital twin data. These applications will 

allow it to fully leverage the potential of the IoT based digital twin platform to reach 

the expected impacts (better scheduling forecast by 20%; better allocation of 

resources and optimization of equipment usage; reduced number of accidents; 

reduction of construction projects). The ASHVIN solutions will overcome worker 

protection and privacy issues that come with the tracking of construction 

activities, provide means to fuse video data and sensor data, integrate geo-

monitoring data, provide multi-physics simulation methods for digital representing 

the behavior of a product (not only its shape), provide evidence based 

engineering methods to design for productivity and safety, provide 4D simulation 

and visualization methods of construction processes, and develop a lean 

planning process supported by real-time data. All innovations will be 

demonstrated on real-world construction projects across Europe. The ASHVIN 

consortium combines strong R&I players from 9 EU member states with strong 

expertise in construction and engineering management, digital twin technology, 

IoT, and data security / privacy. 
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1. INTRODUCTION
This deliverable report is part of Work Package (WP) 3 of the ASHVIN project titled 
"Data fusion for real-time construction monitoring".  
The objective of WP3 is a development of novel algorithms that enable the extraction 
of features from the real world for mapping to simulated reality. As the important 
phases for that purpose, Tasks, 3.2 IoT Data Processing and 3.4 Data fusion, which 
these deliverable addresses, are designed to provide secure real-time data stream 
pipelines from physical data sources (T3.2) and the development of the necessary 
algorithms for collecting, processing, and fusing data from a variety of sources and 
services (T3.4). 
1.1    Background 
Productivity, costs and resource efficiency, as well as safety in the construction 
industry, are still excessively low compared to other industries. Two main reasons for 
that are vertical and horizontal fragmentation between all stakeholders within and 
across the design/engineering, construction, and maintenance of buildings and 
infrastructure. The other is the inherent disposition of construction itself related to that 
much of the work involves the delivery of one-of-a-kind products that must be 
manufactured at the location where the products will be used. 
In the past decades, the rapid development of digital technologies enabled significant 
improvements in day-to-day operations and processes in many industries. However, 
the construction industry is still slow in the adoption of advanced technologies.  
The Internet of things, digital twin, advanced digital scanning and imagery, machine 
learning, and AI have a powerful capacity to enable a holistic approach that will 
address fragmentation by integrating information and knowledge from the design and 
engineering phases to construction and further on to maintenance stages.  
Current initiatives and utilisation of the above-mentioned technologies did not 
advance much further from collecting large amounts of data from construction 
activities. During the planning process, however, it is impossible to take into account 
the significant relationships between various construction processes, construction 
design, and environmental data. 
ASHVIN project is conceived to address these inherent challenges with a holistic 
approach that deploys digital technologies through all stages of the construction 
development lifecycle. 
This will be achieved by provisioning the IoT-based digital twin platform, data fusion 
methods, AI analytics, visualisation, and specific applications and processes that will 
collect, use and integrate vast amounts of different data coming from the entire design 
/engineering and construction and maintenance process. 
Within the task T3.2 of the ASHVIN project, the focus is to develop and provide secure 
real-time data stream pipelines from physical data sources devices, sensors, 
actuators and virtual data sources in the cloud or on-premise applications that gather 
or generate data - to the IoT platform. The latter is meant to serve as a central place 
for secure data storage and retrieval and, thus, to cater to the data needs of the Digital 
Twin platform and various design and engineering applications.  
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While T3.4 creates algorithms and methods required to gather, analyze, and integrate 
information from diverse sources and services. Sources including various sensors 
(humidity, dust, smoke, water level, etc) are merged initially, allowing for the discovery 
of possible correlations between them. Pre-processing, fusion and machine learning 
algorithms are then employed to derive results and conclusions. During this task, data 
will be extracted from the IoT platform, pre-processing techniques will be applied to 
improve the quality of data and suitable fusion methods will be adopted, to maximise 
the information extracted from data.  
Summarising, data fusion has been applied for object activity recognition (PUC6) from 
heterogeneous sensors attached to a crane, occupancy detection from non-intrusive 
environmental sensors (PUC2 and 5), and water level correlation analysis from 
sensors installed on a bridge and from sensor data collected from a web site. 

1.2  Purpose of the document and audience 
The intended audience for this report is software developers who are planning to 
provide secure IoT data collection and data fusion methods from multiple sources and 
develop digital twin solutions for construction sites, whether they are general digital 
twin platforms or particular applications for utilising IoT data.  
In addition, the report is intended for IT managers and R&I specialists who want to 
better understand secure IoT data acquisition and plan to implement specific digital 
twin solutions on construction projects. 

1.3 Outline of the report 
This document is structured into 4 sections. The first section presents the background 
and the objective of the deliverable report. Section 2 explains in more detail the 
problems of the construction industry and the potential of digital technologies - in 
particular, IoT and digital twin - for solving them. In section 3  process of development 
of secure real-time data stream pipelines is presented, while section 4 elaborates on 
the creation of data fusion mechanisms, deployed to combine diverse types of data 
collected by different technologies. 
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2. DIGITAL TWIN FOR CONSTRUCTION
Despite technological advancements over the past few decades which enabled 
significant improvements in day-to-day operations and processes in many industries, 
the construction industry continues to have very low productivity, efficiency, 
and safety in comparison to other industries. 

One of the most significant causes of these problems is vertical and horizontal 
fragmentation which could be interpreted as a sort of invisible walls between project 
stages and between organisations and professions in a project's lifecycle. Limited 
space for standardisation, mass production, and flexibility is the second reason for 
the construction industry's primary challenge. This fragmentation creates the 
circumstances in which the majority of design and engineering is conducted without 
consideration for the construction processes required to realise the designs. During 
the planning process, it is impossible to take into account the significant connections 
between various construction processes, construction design, and environmental 
data. 

The value that digital technologies can provide to the construction industry comes 
from the integration of a huge amount of data, information, and knowledge from 
design /engineering phases to construction and further on to maintenance stages. 
Integration of that kind can be enabled with a wide spectrum of technologies such as 
the internet of things and its real-time continuous data acquisition, digital twin 
technology, data fusion methods, AI analytics, and visualisation, with specific 
applications and processes that can utilise vast amounts of different data, that have 
the potential to increase productivity, improve resource efficiency, and safety in the 
construction industry. 

Digital twin is the most substantial technology for solving fragmentation in the 
construction industry.  It should be understood as a digital/virtual representation of 
actual or potential physical objects, assets, devices, systems, and processes. It can 
provide detailed information, feedback, and insights about its real-world counterparts 
(on their properties, status, and performance) in real-time, with the purpose of 
optimising processes, detecting current and potential issues, predicting outcomes, 
and creating better products. 
Utilising the internet of things, sensors, realistic simulation, and advancements in 
computer vision and machine learning technologies, it provides vast quantities of 
cumulative measurements of its real-world counterpart as well as digital 
reproductions and simulations of the asset. 
In the current situation, these advanced technologies are not deployed in a manner 
that will solve the fragmentation and other problems of the construction industry. 

The Internet of things is utilized to collect a large amount of data, with little useful 
information to manage construction work, and furthermore, this data is not available 
through a central, single point of access which will enable insights into relations 
between major construction stages and processes. Digital twin initiatives, on the other 
hand, concentrate on the integration of only very specific streams of data, focusing 
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primarily on image-based, equipment-based, structural-monitoring-based, or geo-
monitoring-based information. 
 

The ASHVIN project is designed to address these inherent challenges with a holistic 
approach that provides seamless integration of all stakeholders and vertical and 
horizontal interoperability of data and information within and across 
design/engineering, construction, and maintenance of buildings and infrastructure. 
 

This will be achieved with the deployment of digital twins that will provide a dynamic 
digital representation of buildings or infrastructure systems, as well as a 
representation of all significant processes surrounding them during all stages of the 
project development lifecycle. 
 

Enabled by an industry-ready IoT platform that provides data from sensors, 
photogrammetric data, laser, and thermal scans, images and video, digital twin in this 
context will include an accurate representation of the real-world conditions, simulation 
of buildings' and infrastructure' multi-physics behaviour and real-time 
synchronizations between as-designed and as-built models from design /engineering 
phases to construction and to maintenance phases. 
 

Furthermore, to fully leverage IoT-based digital twins, the ASHVIN project also 
envisioned the development of machine learning and AI solutions for data processing 
and analysis, as well as a vast array of design and engineering applications integrated 
in the central digital twin platform. 
 

With this approach, IoT-based digital twin can synchronise as-designed and as-built 
models to continuously monitor real-time progress against initial plans, allowing early 
detection of discrepancies or reactions and flexible planning for changes.  
 

Combining multiple relevant data sources with AI-reinforced data analytics and fusion 
methods into one decision central instance also enables holistic monitoring of support 
activities, such as lead time planning for material and pre-fabricated products, 
discipline hand-off planning, safety hazard identification, optimization of equipment 
usage and site logistics planning. 
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3. IOT DATA PROCESSING PIPELINES

3.1 Ashvin Platform and IoT data processing pipelines 
The ASHVIN project's holistic strategy described in the previous section is founded 
on the Ashvin platform (AP) which consists of several technology layers: 

i) Sensing and video/image/monitoring

ii) Edge computing

iii) Ashvin IoT platform (AIP) and game-engine digital twin platform (DT)

iv) AI analytics, and IoT data fusion techniques based on AI data association
 techniques 

v) Design and engineering applications — Ashvin Toolkit

Figure 1:  Ashvin Platform (AP) 

The Ashvin platform (AP) presented in Figure 1, relies on the data gathering from 
multiple sources to make meaningful use of the Digital twin platform (DT) as well as 
other applications/tools. It means that DT and other tools need to be able to access 
the gathered data, preferably in a uniform manner and from a central repository. The 
accessed data can be historical (data gathered in the past) or real-time (data being 
collected in the present moment). 



Data fusion methods and digital twin based IoT data processing pipelines 

13 

In the context of the Internet of Things (IoT), data collection and retrieval are regarded 
as messaging. Essentially, devices and applications exchange messages. 
Messages contain payload - usually, measurements originating from devices - and 
metadata - the part which describes the message itself, such as a message 
timestamp, etc. The Ashvin IoT platform (AIP), which is based on Mainflux open-
source messaging middleware and the Angular GUI framework, is the messaging 
backbone of the entire AP. This means that DT and other AP tools rely on the AIP to 
collect and access the needed data.  
To serve the purpose of the messaging “backbone”, the AIP has to implement 
communication pipelines that lead from devices to the central data repository and 
from the central data repository to applications. Furthermore, these pipelines need to 
be secure in order to prevent unauthorised access and eavesdropping. Finally, the 
pipelines need a single point of access from the outside and the inside (the DT and 
tools) of the AP and a uniform way of data retrieval, again from the outside and the 
inside of the AP. 
These three points: pipeline topology, secure access and retrieval of data and a 
uniform point and way of data access constitute the main goals and objectives of 
T3.2. 

3.2 Goals and objectives of IoT data processing pipelines 
The main outcome of IoT data processing is development of communication protocols 
and security procedures for enabling secure real-time data stream pipelines from 
physical and virtual data sources to/from the IoT platform. Physical sources of data 
include primarily devices, sensors, and actuators. Virtual data sources include cloud 
or on-premise applications that gather or generate data. In order to meet data 
requirements of the DT and numerous design and engineering applications/tools, we 
need a central location/repository for safe data storage and retrieval. 
Access to stored data is provided in the form of : 

1. real time data streams via MQTT subscription.
2. historical data packages via HTTP REST API

where data is fetched from the InfluxDB database. 
Concerning the first option, MQTT is an industry standard messaging protocol for the 
Internet of Things, where devices or applications can send or receive messages 
to/from communication channels. Channel acts as an open stream of messages 
operating in real time.
Concerning the second option, the client sends HTTP requests to the server. The 
server sends back an HTTP response with the requested message data. 
Both options rely on the InfluxDB, a time series database, where data points are 
stored in a sequence, one after another, and are associated with a timestamp. 
In addition, a unified possibility for enabling exclusive access to entire systems within 
the ASHVIN platform and unified management of platform users were required. In 
this regard, security measures and procedures must be implemented to prevent 
unwanted and unauthorized data access. 
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The full blown security IoT system uses certificates, a sort of device and application 
identity cards (or passports) checked by the central certificate authority (which verifies 
the authenticity of certificates). For the moment, the procedure for issuing certificates 
is not entirely user-friendly - the work is being done in making it easy to use -, so 
simple device and application credentials are currently used, for convenience. 
In the context of the AIP, we use X509 client- and server-side Mutual Transport Layer 
Security (mTLS) authentication. This means that the client has to provide 
authentication certificates to the server and vice versa (this is what “mutual” stands 
for). X509 is a standard defining the format of certificates. Briefly put, every 
communication party exposes a public key and stores a secret key: a message 
encrypted (locked) with a public key can be only decrypted (unlocked) with a private 
key. In a nutshell, an mTLS certificate contains a public key and a reference to the 
certification authority. 
The AIP uses the Vault management system (which could be regarded as digital safe) 
for issuing and storing device and application certificates. We are currently 
developing the easy and UI based access to the vault. 
Once the certificates are exchanged and checked, that is, once we know that 
communication parties are really the ones who they claim to be, we need to check 
what kind of access rights the corresponding party has. Relations-based access 
control (ReBAC) policies are used to control access (access here means the 
possibility to read/retrieve and write/store messages) to the AIP. ReBAC is essentially 
a system used to handle authorisation (permissions) based on roles, attributes or 
other predicates pertaining to the AIP entities (mainly users and things as well as 
groups of users and things). 
The access predicates (relationships), AKA policies, in the context of the AIP, are 
built on top of the groups of things (which represent devices and application) and 
users (things and users are the main entities of the AIP). Policy service itself is based 
on the open-source implementation of Zanzibar, Google's Global Authorization 
System. The implementation is still in progress, however, fundamental capabilities 
like user access rights and sharing of things are finished. 
Single sign-on (SSO) is added to the AP. SSO is an authentication system that allows 
a user to log in with single credentials. In the context of the AP, which consists of the 
AIP and DT, as well as of numerous applications/tools used to process the gathered 
data, this means that we don’t have to provide separate credentials for each 
authentication demanding component (the AIP, DT and applications/tools) of the AP. 
This also facilitates the tighter integration of the AP components. SSO itself is built 
on the Keycloak and OpenID Connect (widely used open source identity management 
solution). 
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3.3 Our Advancements in IoT Data Processing 

3.3.1 Secure certificate storage and creation with Vault 
Mainflux relies on Transport Layer Security (TLS) for the communication party 
authentication and message encryption.  
TLS is an encryption protocol: 
a) the protocol is a set of rules or procedures on how the exchanged data (IoT
messages, here) is formatted and interpreted 
b) encryption is a process of transforming a message into secret code to hide the
encrypted information. 

This means that TLS is a set of rules of the message encryption, transmission and 
decryption. TLS ensures the client-server authentication, the procedure of 
determining whether a client or a server is who or what it says it is. 
This means that users and things can establish a secure connection over the IoT 
network. In the AIP terminology, “users” are entities that represent people and 
organisations, and “things” are entities that represent physical devices and virtual 
applications.  
The AIP uses mTLS (mutual TLS), an extension of TLS, which is basically a TLS with 
a two-way verification. When we say “client”, in the context of the AIP, it means an 
HTTP, MQTT, etc. request made on the behalf of the user and thing - a person or an 
organisation (user) requesting a read/write access to a certain device or application 
(thing). When we say “server”, in the context of the AIP, it means the Mainflux 
messaging middleware itself, i.e. a software that handles and responds to client 
requests.  
The identities of both server and client are verified before a connection is established 
and the encrypted data is exchanged in both ways. This means that not only the 
server, as described above, but also the client must have and submit a certificate that 
the server should recognize before proceeding on to the HTTP or MQTT message 
exchange. The implications are two-fold. 
Firstly, a secure place to store certificates and an automated way of certificate life 
cycle management are required. The AIP currently exposes a command-line interface 
(CLI) to issue certificates. However, the AIP supports the use of Vault, an open source 
and identity-based secret and encryption management system used to safely and 
securely store and protect sensitive data contained in certificates.  

https://www.vaultproject.io/
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Vault (Figure 2) uses a standardised procedure for distribution and lifecycle 
management of cryptographic keys, that is, users' and things' SSL certificates.  
Secondly, an automated way to issue certificates is required. Vault's Public key 
infrastructure (PKI) secrets engine dynamically generates X.509 certificates (used by 
Mainflux) on demand. This allows users and things to acquire certificates without 
going through the usual manual process of generating a private key and Certificate 
Signing Request (CSR) via CLI. 

Figure 2:  Kubernetes cluster with Vault hosted in Kubernetes pod 

SSL certificates are used to secure a TLS server-client connection. Simply put, an 
SSL certificate is a file stored in a special purpose database on the server side. An 
SSL certificate contains a thing's public key accessible to the AIP platform users. 
Besides the thing’s public key, a thing's private key is kept secret and secure. 
The thing’s private key is accessible only by Mainflux middleware, i.e. on the server 
side. The user uses the public key to encrypt the message read by the server 
(more precisely, the things service, one of the Mainflux middleware microservices).  
By successfully decrypting a message that was encrypted with the public key - please 
notice the message encrypted with the public key can be decrypted only with the 
private key - the server proves that it possesses the private key and thus proves its 
identity to the user. 

3.3.2 Single sign-on and user management with Keycloak 
Our IoT Platform based on Mainflux middleware is a game engine-based digital twin 
platform supporting various design and engineering applications. Mainflux 
middleware is a set of microservices, which includes auth service.  
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Auth service is responsible for both authentication and as well as for authorization. 
Most of these components including IoT Platform and digital twin platform, require 
user authentication. Each component has its own separate user management 
system and a separate authentication mechanism. This creates a problem of 
organising and maintaining separate user identities and credentials. To solve this 
problem, a single sign-on (SSO) system is used. SSO is an authentication 
mechanism that allows a user to log in with single credentials to any of the 
aforementioned parts of the ASHVIN platform.  
Behind the authentication wall, a user should be able to access freely everything it is 
authorised to access. The access clearance mechanisms belong to the topic of 
authorization which is not to be confused with authentication. The latter simply 
determines whether someone or something is who or what it says it is, the former is 
about read, write and execute permissions over digital entities such as files. 
To implement a single sign-on (SSO) mechanism, our platform uses Keycloak, an 
open source identity and access management system (Figure 3). 
Keycloak provides: 

• user federation - the way to associate a person's or organisation's identity and
attributes across multiple different identity and attribute management
systems; in the context  of the AP, it means to associate single user’s identities
of the AIP, DT and accompanying tools,

• strong authentication - multi-factor authentication (by using, e.g., an
email/phone message and a password-username credentials) and challenge–
response protocol (where a user must provide a valid answer to a question,
e.g. to recognize a number on a picture),

• user management - the complete user CRUD (create, read, update and
delete) system

• fine-grained authorization, e.g. time-based access control, and more.

Figure 3  Keycloak login screen 

https://www.keycloak.org/
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Figure 4   Mianflux Dashboard screen 

In concrete terms, this means that the AP users don't have to deal with login forms, 
user authentication and other complicated aspects of user identity and credentials 
management per the AP component. 

Figure 5 Keycloak admin panel 
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The opposite of the sign-in is the sign-out. The problem with the non-single sign-out 
is that a user can log out of one application, say, the DT, while staying logged in 
another application, say the AIP, forgetting to log out, thereby creating a security 
breach. When there are many more applications, as in our case, potential for security 
compromise increases proportionally. To solve this problem, Keycloak features a 
single sign-out mechanism. Once logged out of Keycloak, users cannot access 
anymore anything which resides behind the Keycloak virtual protection wall. 

3.3.3 Open weather data gathering, processing and aggregating with Telegraf 
Telegraf is a server agent for gathering, processing, aggregating, and persisting 
metrics (measurements). It is used as a plugin which integrates into the existing 
system, the AIP, in our case, and allows developers to add support for metric 
collection. The metric collection mechanisms added by Telegraf complement the 
already existing metric collection mechanisms used by a system (the AIP). As 
suggested, Telegraf not only enables you to gather data, it also transforms, 
decorates, and filters metrics. Finally, with Telegraf, metrics can be aggregated 
thereby applying basic descriptive statistics (e.g. mean, min, max, quantiles, etc.) to 
the collected data. Together with Grafana, an open source analytics and interactive 
visualisation framework, Telegraf presents a powerful option for data description and 
visualisation. 
The AIP uses Telegraf in order to import OpenWeatherMap data, an online service 
that provides forecasts, hyperlocal precipitation forecast, nowcasts and historical 
weather data for any geographical location via API (One Call API 3.0). Figure 5 shows 
the three types of data collected (historical and current) and generated (forecasted) 
by the OpenWeatherMap. 
Telegraf uses OpenWeatherMap's One Call API 3.0 in order to get weather data for 
a specified location. For now, the data is gathered for an international Airport at Zadar, 
Croatia, but there is a plan to continuously gather data for all geographical locations 
of demo sites. 
Telgraf is compatible with InfluxDB, an open-source time series database, used by 
the AIP to store time series data, such as weather data. So, once Telegraf picks up 
the data, it is forwarded to the InfluxDB database residing in the AIP Kubernetes 
cluster. Subsequently, weather data is available as a real-time stream or as 
historically stored time series (Figure 6). 

https://openweathermap.org/


Data fusion methods and digital twin based IoT data processing pipelines 

  
  

20 

 

 
Figure 2 Weather data in JSON in Mainflux UI 
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3.3.4 User and thing groups authorization policy management with Ory 
Keto 

The AIP is built around three main entities: users, things and channels. Users 
represent real (human) users or organisations. Things represent physical devices (on 
the edge) or virtual applications (in the cloud or on-premises) connected to Mainflux. 
Connected applications and devices use the AIP for message exchange with other 
"things" (apps and devices) via channels. Channels refer to communication channels 
between device/application abstractions, i.e. things. Mainflux channel is basically a 
message topic (which translates to an MQTT topic, HTTP addres) that can be used 
as a message relay by all the things connected to it. 
For grouping the AIP entities, there are groups object in the auth service of Mainflux 
middleware (the AIP backend/server service). The auth service is responsible for both 
authentication and authorization. Groups are primarily used to group users (persons 
and organisations) and things (devices and applications) according to arbitrary criteria 
to achieve logical organisation. Groups are organised like a tree, akin to a family tree. 
Group can have one parent and possibly zero or more children. There is no upper 
limit to the number of children a group can have. A Group with no parent is considered 
the root of the tree structure. Whereas Groups are yet implemented in the user 
interface (UI) mode, they are fully functional in the backend of the AIP. Further steps 
will implement group management through UI. Figure 7 - Figure 9 show our UI 
Groups. 
In the AIP, we set permissions on the AIP entities: users, things, and groups of users 
and things. User's permissions control user's ability to create, read, update and delete 
things and other users. Thing's permissions control things read/write access to 
channels. 

Figure 3 Mainflux UI Groups 
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Figure 8 Mainflux UI Groups 

Figure 9   Mainflux UI users and users details 

The AIP policies are based on Ory Keto, an open source Golang implementation of 
Zanzibar, Google's global authorization system. The policies used by the AIP 
constitute what is known as relationship-based access control (ReBAC), where 
permissions are organised based on relationships between digital resources, i.e. 
users, things, and groups of users and things: 

https://github.com/ory/keto
https://zanzibar.academy/
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• Subjects that bear the policy such as users or things, or groups of users and
things.

• Objects the policy bears upon; again, users or things, or groups of users and
things.

• Relation, an action that the subject wants to do on the object, such as CRUD
(create, read, update and delete) or read/write.

The subject-object-relation set constitutes the anatomy of a single policy. On the 
other hand, The concrete AIP set of policies include: 

• member: used to indicate memberships of users, things and groups (of
users and things), e.g. if this user belongs to that group,

• read, write: the permissions users and groups of users have in relation to
things and groups of things, e.g. if this user is allowed to publish messages
(write) via on behalf of that thing,

• create: allows a creation of new users, i.e. if this user is allowed to create a
new user.

3.3.5 DigitalOcean to AWS Kubernetes migration and automated DB 
management with AWS and Velero 

The AIP uses DigitalOcean cloud computing services to provision and deploy its 
services containerized by Docker and clusterized via Kubernetes. Docker technology 
is used to put services in virtual OS based packages called containers. Kubernetes 
is an open-source system for automating deployment, scaling, and management of 
containerized applications in the form of configurable clusters of nodes. Therefore, 
the user accesses a node of the Kubernetes cluster which consists of a set of pods 
where containers with a desired service (such as database retrieval of messages) is 
located.  
Migration took place so the AIP Kubernetes cluster (Figure 9 and 10 and 11) is 
hosted on Amazon™’s AWS cloud computing platform which offers a set of 
infrastructure as a service (IaaS), platform as a service (PaaS) and packaged 
software as a service (SaaS) solution. In addition, it can handle extensive traffic 
which is well suited for our needs of IoT messaging middleware. (e.g. when sending/
receiving images). 
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Figure 10 AWS Kubernetes cluster admin panel

Figure 11 AWS Kubernetes cluster admin 



Data fusion methods and digital twin based IoT data processing pipelines 

25 

Figure 4 AWS Kubernetes cluster admin panel 

AWS also offers fully managed database services. This provides for continuous 
monitoring, self-repairing, and automated scaling of database related services as well 
as databases themselves. The AIP is based on the Mainflux IoT messaging 
middleware and is thus built around entities such as users, things, groups of users 
and things, and channels. Besides these entities, there are also messages that are 
exchanged by things via channels. Users, things, groups of users and things, 
channels and messages need to be stored in respective and different databases. That 
means that the AIP needs, in order to function properly, at least half a dozen database 
volumes (see below) and related database microservices (see below).  
AWS managed database system does the handling of the database management 
and storage in a fully automated manner. Instead of users manually handling services 
and volumes, the AWS managed database system does the handling "behind the 
scenes" and simply exposes a single URL (an address to access a database) to the 
rest of the AIP Kubernetes cluster. 
On top of that, the AWS managed database system enables Relational Database 
Service (RDS) managed database encryption (Figure 12). An encrypted DB instance 
provides an additional layer of data protection by securing data from unauthorised 
access to the underlying storage. The encrypted data keeps, behind the "wall" of 
encryption, the underlying storage (basically, previously mentioned volumes), thus 
enabling automated backups, read replicas, and snapshots of databases. 
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Figure 5 AWS managed DB admin panel 

The downside of the AWS managed database system is that it does not support 
InfluxDB, a time series database, used, amongst other types of databases, by the 
AIP to store primarily messages. However, the AWS managed database system does 
not handle time series databases. 
As a consequence, we still need to manage InfluxDB in a semi-manual fashion 
described, i.e. by using a specialised type of service (a database manager) and a 
connected volume (a database physical storage). However, the process of backup 
and restore, disaster recovery, and migration of InfluxDB based databases is done 
using an open source tool Velero. Velero is specifically meant for Kubernetes cluster 
resources and persistent volumes management automatization. To put it simply, 
Velero "wraps" around InfluxDB related services and connected volumes and offers 
a similar set of operations and automations to AWS managed database system. 

3.3.6 Indoor environmental data gathering, and aggregation with ChirpStack 
      LoRaWAN Network 
The LoRaWAN protocol is a Low Power Wide Area Networking (LPWAN) 
communication protocol based on LoRa, a wireless modulation technique based on 
Chirp Spread Spectrum (CSS) technology. CSS is a wireless audio frequency 
technology that operates in a licence-free radio frequency spectrum. It is robust 
against noise and disturbances, and signals can be sent and received (relayed) 
across long distances. The LoRaWAN itself is an open specification, so anyone can 
set up and operate a LoRa server network. 
The AIP supports use of LoRaWAN Networks by means of lora-adapter microservice. 
The lora-adapter service is located between the Mainflux middleware (the AIP 
backend) and a LoRa Server (located in LoRaWAN network). The adapter forwards 
messages from a LoRa Server to the Mainflux channels via MQTT protocol, using the 
adequate MQTT topics and the appropriate message format (JSON and SenML), i.e. 

https://velero.io/
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respecting the APIs of both systems (LoRa Server, on the one hand and the Mainflux 
middleware, on the other). 
In the context of the AP, LoRaWAN Network and LoRa Servers are used to collect 
data from indoor environment by means of a set of sensors. Sensors are connected 
to the router which routes the data to the LoRa Gateway. The latter relays the data to 
the LoRa Server found in the cloud. The whole LoRa "on the edge" setup (see Figure 
11) is located in a public two-story residential building in Gdynia, Poland. The building
was constructed in 1921 and has a very low energy performance. Indoor 
environmental data can provide further insights related to heat loss and thus can be 
used to improve the energy consumption balance of the building. 

The first attempt to collect data and store it in the AIP was done using The Things 
Network, a LoRaWAN Network Server provider. The Things Network is based on The 
Things Stack, a complete and open source LoRaWAN Network Server technology. 
The Things network exposes an interface to securely manage applications, devices 
and gateways. It also offers a set of tools to manage and use LoRa servers. The 
indoor environmental data federated by means of LoRa Servers hosted by The 
Things Stack was picked up by the aforementioned Mainflux middleware lora-adapter 
and forwarded to the InfluxDB database located in the AIP Kubernetes cluster. 

Figure 6 The Things Network LoRaWAN Network Server admin panel 

ASHVIN's in-house customised LoRa Server was deployed using the ChirpStack 
open-source LoRaWAN Network server stack (Figure 13 and Figure 14). The indoor 
environmental data is now directed to LoRa Servers found 
onhttps://lora.mf.ASHVIN.eu/ address. As in the case of The Things Network, the 
data on the LoRa server is picked up by a lora-adapter and forwarded to the InfluxDB 
database found in the AIP Kubernetes cluster.  

https://www.thethingsnetwork.org/
https://www.thethingsnetwork.org/
https://www.thethingsindustries.com/
https://www.thethingsindustries.com/
https://www.chirpstack.io/
https://lora.mf.ashvin.eu/
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Figure 7 The Things Network LoRaWAN Network Server admin panel 

Figure 8 ChirpStack admin panel 
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4. DATA FUSION METHODS  
Task Τ3.4 of data fusion is responsible for the analysis and fusion of heterogeneous 
data collected from pilot sites. Data fusion will be implemented in some of the pilot 
use cases, serving different purposes each time. Data fusion methods support Digital 
twin (DT) based IoT data processing pipelines by providing the result of the prediction 
algorithms, e.g. predicted number of people in a pilot site. 

4.1 Goals and objectives 
The main outcome of the task is the development of the necessary algorithms for 
collecting, processing and fusing data/information from various sources, which are 
mainly sensors. The data/information from various sources across the different pilot 
sites is heterogeneous therefore, the main is its combination (fusion) using suitable 
methods.  
Fusion is a broad term that includes methodologies that combine heterogeneous 
data/information either at a results level (late fusion) or at data level (early fusion).  
Unlike late fusion which has a wider variety of techniques, early fusion is 
predominantly achieved by concatenation. Concatenation uses homogenous formats 
of pre-processed and filtered data/features extracted from the raw variables, as input 
in a predictive algorithm. Late fusion refers to the combination of predictive results 
from different data sources. For example, let’s say that there are two sensors installed 
in a construction site for fall detection and predictive algorithms are applied on each 
of these sensors, then the prediction results of the two algorithms are combined with 
a proper late fusion method, in order to extract a firmer result about fall detection. 
Our pilot sites from which the data is sourced are summarized hereunder. 
 PUC2 (FASADA): This PUC2 in Poland uses the data/information from 

environmental sensors installed in a residential building for occupancy detection 
and to assess the air quality. The ground truth for this prediction will be an integral 
variable revealing the number of people per hour on certain days. This information 
is received by questioning the habitants of the building.  

 PUC5 (NCC): This pilot use case is the construction of an office complex  in 
Sweden which collects the data from installed environmental sensors for 
occupancy detection to understand the level of activity per room or per floor. 
The installed sensors also provide information about the activity level, with a 
continuous variable that is used as a ground truth for the development of 
algorithms.    

 PUC6 (UPC): This PUC assesses the crane’s positions and  activities during 
construction using TUB-developed classification algorithms, based on data from 
a device mounted on the crane in Spain. The crane-mounted-device 
encapsulates  GPS, accelerometer, gyroscope and pressure sensors.  

 PUC10 (NGEO): This PUC is a quay wall in the Netherlands. The goal here is to 
combine the data/information from the available sensors in order to find the 
correlation patterns between water levels inside and outside the quay wall.  

Section 4.2 presents the applications of data fusion by analysis categories. The first 
category of activity recognition and occupancy detection problems which involves 
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solving classification or regression algorithms is followed by the second category of 
implementing the correlation patterns’ analysis and crane activity tracking.  

4.2  Activity recognition and occupancy detection 
This section describes the work that has been done until the preparation of the 
current deliverable. The following subsections are divided according to the type of 
the task performed on PUC2 and PUC5.   
4.2.1  Occupancy detection through environmental sensors 
i. Related work
In smart buildings, indoor air quality systems can be used not only to estimate the 
quality of the air condition, but also to estimate the mobility and presence of people/ 
objects, a task known as occupancy detection. In a nutshell, occupancy detection 
involves detecting the presence of people in a space (building or room), which can 
be useful for safety reasons, such as intrusion detection or presence of people in a 
construction site where dangerous operations are taking place.  
Indoor air quality systems consist of environmental sensors that are non-intrusive and 
easy to install and use. Such sensors measure the humidity level, the presence of 
smoke, the dust concentration in the atmosphere, and temperature among others.  
Machine learning and deep learning algorithms are data driven approaches used to 
predict occupancy from environmental sensors .Support Vector Machines or KNN 
algorithms applied to sensor data have several applications in the relevant literature. 
There are a variety of sensor combinations described in the literature, but there is no 
apparent pattern indicating that adding more sensors to an algorithm improves its 
accuracy. These applications may also incorporate methods for feature selection and 
extraction. Different combinations of sensors can be found in literature, without having 
a clear pattern of improving the accuracy results when using more sensors in the 
algorithm. These applications may also include feature selection and extraction 
methods. 
ii. Implementation
PUC2 and PUC5 are explored for occupancy detection using environmental sensor 
data collected from a real physical environment and not a simulated experiment. 
However, it is expected that real environment applications lack adequate ground truth 
values. In PUC5 the ground truth was measured from a device as a quantitative 
variable that denoted activity. For PUC2, the ground truth was collected through 
questionnaires completed by the habitants of the building who stated their presence 
for specific days and time slots.    
The specific environmental sensors in PUC2 comprised of Humidity, CO2, Light, 
Pressure, Temperature, VOC (gas detector) whereas PUC5 sensors comprised of 
Smoke, Sound Level, Temperature, Relative Humidity, Dust, Air Pressure, Activity, 
Acceleration. 
For both use cases, the implementations include concatenation of the sensor values 
and application of predictive algorithms.  
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For PUC2 (FASADA), the following is a summary of the actions that were taken to 
attain the analysis’ results: 

1. Collect sensor data from online database.
2. Receive target variable through a questionnaire.
3. Transform and merge online and questionnaire data.
4. Clean and pre-process.
5. Create and test a variety of models.

In PUC2, data was transformed into a format more conducive to the application of 
machine learning models and the prediction of the building's occupancy. The target 
variable (i.e. the variable to be predicted), which was obtained through questionnaires 
the occupants were required to answer, was converted from its original format into a 
data frame which was then fused with the sensor data to deliver the essential data to 
the models. After the data transformation was complete, data and pattern analysis 
was conducted to identify potential connections between the variables. Figure 15 
displays part of the data frame that was created after the data transformation and was 
used for the machine learning model creation. 

Figure 9 Final Data format (PUC 2) 
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Figure 18 Fluctuation of mean humidity value with the change of temperature (PUC 2) 

Figure 18 and Figure 19 give a concise overview of how the data was utilised prior to 
model training. The correlation between the characteristics was investigated, as was 
the significance of the characteristics. Figure 17 illustrates the significance of each of 
the six utilised attributes. The most crucial features are 2, 3, and 5, which relate to 
humidity, lux, and temperature. 

Figure 19  Correlation of sensor values (PUC 2) 

Figure 20  Feature importance (PUC2) 



Data fusion methods and digital twin based IoT data processing pipelines 

33 

For the FASADA use case a variety of regression models were used. The best 
performance derived from CatBoostRegressor with MSE = 0.06 and R2 = 0.63, the 
second best model was Extra Trees Classifier with similar metrics. In this case, the 
available data for the model are limited, and as a result, the preliminary findings 
cannot be relied upon. 
Following with the analysis conducted on PUC5 (NCC), the following actions were 
taken: 

1. Downloaded data from online storage.
2. Analysis of files from various dates and selection of the best one.
3. Pre-process accordingly the missing values.
Create and test a variety of models. 

Since the recording of data is done on a monthly basis for this PUC, there is plenty 
of data for model building and causality analysis, with the downside of a lot of missing 
values. Figure 21 depicts the case with the fewest missing values. From Figure 18 a 
problem that often occurred is evident, were in most of the cases there were a lot of 
missing values either on the sensors or the target variable. This use case has a 
number of distinct files from different dates that were analysed in order to identify the 
file containing the most relevant data for our experiment. 

Figure 21 Missing/NaN values (PUC 5) 

Due to the nature of the data and the number of missing values, the MAE and MSE 
values were too high for each of the models that were utilised to identify the model 
with the most accurate predictions.  
In this instance, K Neighbours Regressor and Extra Trees Regressor performed the 
best. In both instances, the MAE is near to 2 and the MSE is close to 20, making the 
models less dependable than desired. Simpler and faster models, such as Linear 
Regression failed as the MSE was ten times larger. Due to poor performance of the 
models in this use case, no results are offered in this deliverable. 
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4.2.2 Activity recognition for duration extraction using cranes 
On the demonstration site #6 in Barcelona, kinematic sensor data were collected 
during concrete pouring works executed by a tower crane. Different sensors were 
mounted on a crane hook and the collected data were fused for data mining. The raw 
data were classified by ML classifiers for activity recognition to extract activity 
durations. Due to continuous data collection, it could be investigated how the activity 
durations change according to an increasing amount of gathered data. 

Method 
The proposed method is presented in Figure 21. At first, raw data are collected during 
construction execution by various kinematic sensors. The collected raw data are sent 
via the internet automatically to the ASHVIN platform. On the ASHVIN platform, it is 
possible to access the collected raw data and fuse them. The data set has to be 
checked for duplicate timestamps and missing data points have to be interpolated to 
create a continuous data set with the same distance between the data points. The 
data are normalised and several data points are merged to sliding windows. The 
sliding windows are used to calculate features for a number of data points. 
Afterwards, the sliding windows have to be labelled by comparing the timestamps 
with a recorded video. Then different ML classifiers can be used for supervised 
learning. Subsequently, these ML algorithms are used for classification of the data 
into different labels – the different activities. The performance of the classifiers has to 
be compared as there is no general best ML algorithm. The results of the best 
performing classifier can be used for activity recognition. Each classified instance is 
equal to one window. The duration of each repetition of each operation can be 
calculated by: n*wl*ol = duration, with n = number of windows, wl = window length, 
and ol = percentage of overlap. Afterwards, heuristics are used to detect non-
meaningful classified instances. This results in the final operation durations. If the 
construction execution starts again, new data are collected and the whole procedure 
begins again. 

Figure 10 Methodology pipeline 

Data collection 
The WTGAHRS2 device consisting of an inertial measurement unit (IMU), a GPS 
tracker, and a barometer was mounted on a crane hook during concrete works for 
data collection (Figure 23). The device was connected to an ESP32 to send the 
collected raw data directly to the ASHVIN database or save it on a memory card. The 
sensors gathered data during two deliveries of concrete by trucks. The crane was 
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used to pour concrete into the formwork on the 7th floor after the truck arrived. The 
activity consisted of four repetitive operations: Lifting bucket down, filling bucket, 
lifting bucket up, and pouring concrete (Figure 24). 

Figure 23 Picture of the device mounted on the crane 

Figure 24 Operations (activities) performed by the crane 

For the first truck each operation was repeated nine times and for the second truck 
eight times besides the operation lifting down, which was repeated only seven times. 
After the completion of the first truck and the arrival of the second truck there was 
around one hour of idle time. This time was excluded in the further data mining 
process. 
The different sensors included a three-axis (X/Y/Z) accelerometer, a three-axis 
gyroscope, a GPS sensor, and a barometer. Thus, it was possible to collect three 
axes acceleration and angular velocity, longitude/latitude/altitude by the GPS sensor, 
and height by the barometer. The data from different sensors were fused. During data 
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collection each data point was saved with a timestamp. Overall, during 98:52 minutes 
activity time data were collected. This resulted in 27,335 data points. In comparison 
to other activity recognition studies for construction equipment a low sample rate was 
chosen, which is usually in the range between 50 Hz and 100 Hz (Sherafat et al. 
2020). However, it has been proven in human activity identification that a low sample 
rate requires less energy and performs well (Zheng et al. 2017). 

Data preparation 
For analysis of the data R software was used. The collected data were pre-processed 
before their usage in ML classifiers. Duplicated data points were removed and 
missing ones were interpolated to finally receive a data set with 4 Hz. Eight data 
points were merged to create sliding windows of a length of two seconds. The sliding 
windows were used to calculate six time-domain features: minimum, maximum, 
interquartile range, mean, variance, and root-mean-square-error. As ten different raw 
data were collected, the data set contained in total 60 features. The sliding windows 
were labelled manually by the help of the recorded video. 

Classification 
Different classifiers were used to compare the performance according to a 10-fold 
cross validation. The following classifiers were investigated: Naïve Bayes, Decision 
Tree, k-nearest neighbour (KNN), support vector machine (SVM), and Random 
Forest. The folds were fixed for testing the classifiers to ensure the same 
circumstances for each algorithm, although the cross validation is not necessary for 
the Random Forest classifier as it reduces the possibility of over fitting already. The 
overall accuracy of each classifier is presented in Table 1. The Random Forest 
classifier performs by far at best. The overall accuracy is more than 7 % higher than 
the SVM result as the second-best classifier. For the remaining three classifiers the 
distance is between 10 and 20 % to the Random Forest performance. As the Random 
Forest is an advanced version of the Decision Tree, the results are reasonable. 

Table 1: Classifier accuracy for 10-fold cross validation 

The confusion matrix helps to investigate the performance of classifiers as it 
compares the actual and the predicted classes. The resulting confusion matrix for the 
Random Forest classifier is presented in Table 2. As the data set is balanced as each 
operation has a similar number of instances, the performance of Random Forest 
seems to be an adequate result. It can be detected that no wrong predictions among 
the labels Concrete pouring and Filling occur. The reason for this is the different 
altitude. The wrong predictions occurred in conjunction for the labels Lifting down and 
Lifting up. The transition between the operations was fluently as e.g. already concrete 
was poured into the formwork while the bucket was still lifted up. 

Naïve Bayes Decision Tree KNN SVM Random Forest 
Accuracy (%) 81.15 87.17 76.84 90.12 97.72 
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Table 2: Confusion matrix for Random Forest 

 

 

 

 

Prediction 

 Total  Concrete 
pouring Filling Lifting down Lifting up 

Actual 

 Concrete 
Pouring 1,420 0 4 15 1,439 (24.26 %) 

 Filling 0 1,265 9 4 1,278 (21.54 %) 
 Lifting Down 8 14 1,491 26 1,539 (25.94%) 
 Lifting Up 22 18 15 1,621 1,676 (28.25%) 

  Total     5,932 

 
The confusion matrix can be used to calculate Precision and Recall for each different 
operation. These two are performance metrics for classifiers. Precision is the relation 
of the number of true positives to the total number of positive predicted instances. 
Recall can be defined as the number of true positives divided by the total number of 
positives in the data set. In ML models there is a trade-off between Precision and 
Recall. 

Table 3: Precision and Recall for the Random Forest classifier 

Operation Precision [%] Recall [%] 
 Concrete Pouring 97.93 98.68 
 Filling 97.53 98.98 
 Lifting Down 98.16 96.88 
 Lifting Up 97.30 96.72 

 

The classified data set resulting from the Random Forest classifier was revised by 
heuristics. If there were three or less classified data points between series of five or 
more same instances, the instances were aligned. If there was a single instance 
between two different classified data points, it was removed. Formally this can 
described as: 

 Instances Label x ≥ 5 ; Instances Label y ≤ 3; Instances Label x ≥ 5 → merge 
all instances to label x 

 Instances Label x ≥ 1 ; Instances Label y ≤ 1; Instances Label z ≥ 1 → remove 
instance with label y 
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Afterwards, if there were series of instances ≤ 3, these instances were removed. The 
final number of windows was multiplied by one, as the windows have a duration of 
two seconds with an overlap of 50 % among the windows.  
Thus, the duration for each repetition of each operation was calculated as presented 
in Table 4. In the first row the durations of the first truck are listed and in the second 
row the durations during the second truck. 

Table 4:  Resulting operation durations 
Operation Duration [s] 

Filling 36, 103, 77, 73, 81, 92, 91, 73, 90; 
131, 65, 58, 72, 62, 68, 84, 49 

Lifting up 124, 82, 114, 99, 111, 104, 119, 93, 43; 
99, 63, 85, 95, 98, 123, 79, 90 

Concrete pouring 37, 112, 58, 59, 57, 68, 83, 50, 240; 
89, 33, 30, 65, 42, 26, 337, 72 

Lifting down 90, 108, 91, 96, 76, 98, 101, 70, 108; 
84, 76, 99, 110, 99, 101, 105 

 

These extracted activity durations can be used afterwards in the ASHVIN tools such 
as the DES tool for planning of upcoming construction works. 
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4.2.3 Fusion of sensor data for water levels correlation 
For PUC10, two types of processes were followed including data collection and data 
analysis/fusion. 
Data was collected from two independent sources including fiber optic sensor (see 
Figure 25) readings that were converted into a meaningful unit of measurement 
(height of water), and an online source; https://waterinfo.rws.nl/. From the online data 
source, only the water level height of the water closest to the Quay wall (Figure  26) 
were selected for this use case. Multiple locations were selected to reduce the 
possibility of a defective sensor and to avoid moments of noisy measurements. 

                                 Figure 11 Positions of fibre optic sensors of PUC10 Quay wall 
 

 

Figure 26 marks the spot of the locations that were selected (PUC 10). 
 

 

https://waterinfo.rws.nl/
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After the data was obtained, some pre-processing was required. Initially, the data 
from the website contained information that was irrelevant to the analysis and had to 
be excluded. In general, the following actions were taken: After eliminating the 
unused elements, the data had to be transformed into a format that was easier to pre-
process and analyse. They were then resampled to a more convenient time frame 
(measured every one hour) in order to match the measurements with the data 
provided. Finally, the average value of the water level was collected to provide a more 
accurate estimate of the water level in the general area of the sensors. The end result 
of the online data was saved in one file containing all the measurements. 
With the data provided, a similar strategy was followed. The data were first checked 
for missing values before being resampled to remove timestamps that did not match 
those in the online data file. The initial data analysis revealed that several outliers 
needed to be removed, as well as various statistical transformations needed to be 
made to correct measurement errors. 
Figure 27  and Figure 28  show  the distribution of the measurements. 

                             Figure 12 Distribution of PUC10 online data after pre-processing 
 

Figure 28  Distribution of PUC10 data after pre-processing 
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The pipeline that was followed is depicted in Figure 29 

Figure 29  Processing Pipeline for PUC 10 

Results 
In order to get the best possible correlation between the data, Yeo Johnson 
transformation was applied. This transformation is used to make the data approach a 
normal distribution. Various correlation tests were performed and the results are 
presented in Table 5. The correlation between the measurements is considered weak 
with the highest value being 0.19 using Spearman's method. 

Table 5. Correlation results 

Current Correlation 

Kendall 0.12 

Spearman 0.19 

Pearson 0.03 
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5. CONCLUSIONS
This report describes Deliverable 3.3 of the Ashvin project related to Task 3.2 IoT 
data processing and Task 3.4 Data fusion. Several developments and 
implementations were conducted in order to achieve the goals of these tasks which 
are to enable IoT data processing of secure real-time data stream pipelines and the 
analysis and fusion of heterogeneous data collected from pilot sites. 

i) Secure certificate storage and creation with Vault encryption management system
ii) Utilization of Keycloak for Single sign-on and user management
iii) Open weather data gathering, processing and aggregating with Telegraf
iv) Ory Keto implementation for User and Thing groups authorization policy

management 
v) Migration from Digital Ocean to AWS Kubernetes and automated DB management

with AWS and Velero 
vi) Indoor environmental data gathering, and aggregation with ChirpStack LoRaWAN

Network 

Regarding the data fusion task, the conclusions from the current applications and 
progress can be summarized in the following Occupancy detection using 
environmental sensors is a trending task that also provides room for research, 
however, a significant amount of sensor readings along with ground truth values, are 
needed, in order to provide efficient prediction models. It is important to note, that at 
this phase of the project not all pilot sites have completed the data collection process, 
thus resulting in some poor performing models.  
The results that derived from the analysis of the data provided some basic machine 
learning models that can be further trained and explored with more data in order to 
become more reliable. With the reliability of the models increased accurate 
predictions can be produced. 
Future goals for the development of this task are the construction of predictive models 
based on a selection of the existing sensors and distinguishing the ones that can 
produce the most reliable models. More fusion methods will be implemented, mainly 
on research level, as their usage on the exact pilot site may not be effective.  
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